

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202003177

Melt Electrospinning Writing of Magnetic Microrobots

Yingchun Su, Tian Qiu, Wen Song, Xiaojun Han,* Mengmeng Sun, Zhao Wang, Hui Xie, Mingdong Dong,* and Menglin Chen*

WILEY-VCH

© 2020 Wiley-VCH GmbH

Supporting Information

Melt Electrospinning Writing of Magnetic Microrobots

Yingchun Su, Tian Qiu, Wen Song, Xiaojun Han,* Mengmeng Sun, Zhao Wang, Hui Xie, Mingdong Dong,* and Menglin Chen*

WILEY-VCH

Figure S1. The SEM images of PCL fibers. 0 $^{\circ}$ (A) and ~ 45 $^{\circ}$ (B) tilted angle with the tip-collector distance of 4 mm, the applied voltage of 3.5 kV, the air pressure of 0.25 bar, the stage speed of 100 mm/min and the needle diameter of 0.90 mm.

Figure S2. Characterization of PDMS channels made from fibers with different layers. (A) SEM images of PDMS channels made from fibers with different layers. (B) The depth of PDMS channels against different layers and linear fitting curve.

Figure S3. SEM images of different designed PDMS assymetric channels.

WILEY-VCH

Table S1. The elemental analysis of PCL/Fe₃O₄ assymetric magnetic robot.

Elements	wt%	at%
С	57.69	70.58
0	27.90	25.63
Fe	14.40	3.79

Figure S4. Magnetic manipulation system and corresponding magnetic field. (A) Schematic of magnetic system and corresponding magnetic field; (B) The intensity curve along different time for the component propulsion magnetic field in x-y plane and along z axis; (C) Schematic diagram to calculate the angle α between resultant magnetic field and x axis; (D) The theoretical angle α vs times.

Table	S2.	А	summarv	of	recent	literat	ures	about	magnetic	microrobo	ts.
	~										

Type of magnetic robot	Size	Actuation methods	The fastest velocity	Magnetic field	Refs.
Tadpole-like PCL/Fe₃O₄	$\sim 60 \ \mu m$ in thickness	Rotating magnetic field	2.0±0.1 mm/s	1.85 mT magnetic	This
microrobot	length	Propulsion magnetic field	340.4±6.2 μm/s	frequency 20 Hz	work
Burr-like porous spherical microrobot	Diameter ranged from 70 to 90 µm	Field gradient	~1.5 mm/s	20 T/m gradient	[1]
Bilayer hydrogel microsheet robot	80 μm thick and 800-1000 μm long	Field gradient	~1.2 mm/min	20 mT magnetic field and 2 mT/m gradient	[2]
A silicon carbonitride ceramic cylindrical microrobot	42 µm long	Rotating magnetic field	85.56 µm/s	22 mT magnetic field with a frequency 7 Hz	[3]
A soft two-tailed microrobot with a magnetic head and two collinear, unequal, and opposite tails	A 215 μm long first tail; the second tail length ranges of 215 - 430 μm; 25 and 80 μm in minor and major head diameter, respectively	Oscillated field	35.2 µm/s	18 mT magnetic field with a frequency 6 Hz and 5 T/m gradient	[4]
Superparamagnetic microparticle chain	5 µm in diameter	Rotating magnetic field	6.9 ± 2.9 μm/s	<10 mT magnetic field with a frequency 5 Hz; tilt angle of 40° and precession angle of 45°	[5]

Joystick

References

[1] J. Y. Li, X. J. Li, T. Luo, R. Wang, C. C. Liu, S. X. Chen, D. F. Li, J. B. Yue, S. H. Cheng, D. Sun, *Sci. Robot.* **2018**, *3*, eaat8829.

[2] D. I. Kim, H. Lee, S. H. Kwon, Y. J. Sung, W. K. Song, S. Park, *Adv. Healthc. Mater.* **2020**, *9*, 2000118.

[3] K. W. Gyak, S. Jeon, L. Ha, S. Kim, J. Y. Kim, K. S. Lee, H. Choi, D.P. Kim, *Adv. Healthc. Mater.* **2019**, *8*, 1900739.

[4] I. S. M. Khalil, A. F. Tabak, Y. Hamed, M. E. Mitwally, M. Tawakol, A. Klingner, M. Sitti, *Adv. Sci.* **2018**, *5*, 700461.

[5] B. Yigit, Y. Alapan, M. Sitti, Adv. Sci., 2019, 6, 1801837.