
Supplementary tables S1-S9 are available at: 1 

https://figshare.com/articles/Supplementary_Tables_-_Levade_et_al_2020/12440417 2 

 3 

Data availability 4 

After removal of human reads (Supplementary Methods), the sequence data has been deposited in 5 

NCBI under BioProject PRJNA608678. 6 

 7 

Supplementary Methods 8 

Clinical outcomes and metadata collection 9 

All study participants lived in Dhaka city, Bangladesh. Multiple household contacts could be 10 

enrolled from one household, and only one index case was enrolled per household. Household 11 

contacts were defined as individuals who shared the same cooking pot with an index patient for 12 

three or more days. Rectal swab samples were obtained from contacts beginning the day after 13 

enrollment of the index case. During the follow up period for contacts, two sets of rectal swabs 14 

were collected. The first set were collected during daily home visits, when report of symptoms 15 

was also collected, and was used for V. cholerae culture.  This data was used for the classification 16 

of clinical outcomes. The second set of rectal swabs collected over the first ten days, and day 30, 17 

also at the home visit, were used for DNA extraction to conduct the microbiome analyses. 18 

Infection status was determined using the first set of rectal swab samples, serologic data from the 19 

blood draw, and report of symptoms collected during the observation period. Blood samples 20 

collected during the same days from contacts were drawn at the International Center for Diarrheal 21 

Disease Research, Bangladesh, in Dhaka, Bangladesh. Symptomatic V. cholerae infection was 22 

defined by a contact reporting diarrhea within 3 days of a rectal swab positive for V. cholerae 23 



during the follow-up home visits, or by a four-fold increase in vibriocidal titer with diarrhea 24 

during the follow-up period. Two symptomatic contacts were rectal swab negative for V. 25 

cholerae but showed a four-fold increase in vibriocidal titer and reported diarrhea, and then were 26 

determined to be infected based on our inclusion criteria. V. cholerae infection (rectal swab 27 

positive) was defined as asymptomatic if no diarrhea was reported. All contacts in our study that 28 

developed infection had had the same serotype of V. cholerae as the infected household case 29 

(either Inaba or Ogawa).  30 

Midani and Expanded cohort description 31 

We used metagenomic reads from 65 of the 76 contacts from a previously published study 32 

by our collaborators, and these contacts are referred to as the Midani 2018 cohort (1). Eleven of 33 

the contacts from this study had insufficient DNA to perform metagenomic sequencing. Each 34 

sample from this cohort was sampled on day 2, the day of the enrollment of household contacts, 35 

one day after the presentation of the household index case at the hospital. To minimize the chance 36 

that the contact acquired a V. cholerae infection between index case enrollment and the first 37 

contact sample, the first household contact sample was always taken within a day, and generally 38 

<24h since the enrollment of the index case. To increase power in our study, we added household 39 

contacts samples from additional households, and also added samples from additional time points 40 

of Midani 2018 cohort contacts (see Table S1). This larger group of samples is referred to as the 41 

Expanded cohort, and is comprised of the 65 samples from the Midani 2018 cohort plus 33 42 

additional samples from 16 infected contacts (Figure 1). The 16 infected new contacts in the 43 

expanded cohort have multiple samples from different days that are prior to when infection 44 

occurred, and therefore have multiple “pre-infection” samples (Table S1). Enrollment and sample 45 

collection were identical for the two groups of samples collected. In total, 129 household contacts 46 

were initially enrolled. Eighteen contacts were excluded due to a positive rectal swab at the 47 



enrollment evaluation, and 3 were excluded due to recent antibiotic use. Nine contacts reported 48 

ambiguous clinical outcomes based on clinical and history evaluation (i.e. report of diarrhea with 49 

no serologic or culture evidence of V. cholerae infection). Six additional enrollees were excluded 50 

due to report of diarrhea during the week prior to enrollment. Among the remaining contacts, 10 51 

resulted with DNA evidence of V. cholerae infection despite a rectal swab culture negative for V. 52 

cholerae at the time of enrollment. Lastly, 13 contacts were excluded due to failure to amplify 53 

DNA from rectal swabs or sequencing failure. 54 

 55 

DNA extraction and sequencing  56 

Fecal samples and rectal swabs were collected during home visit and immediately placed 57 

on ice and stored at -80°C until DNA extraction. For each sample, DNA was extracted as 58 

previously described 4(1). Briefly, samples were processed using PowerSoil DNA extraction kits 59 

(Qiagen) after pre-heating to 65°C for 10 min and to 95°C for 10 min. A total of 98 samples were 60 

selected for library construction with NEBNext Ultra II DNA library prep kit and sequenced on 61 

the Illumina HiSeq 2500 (paired-end 125 bp) and the Illumina NovaSeq 6000 S4 (paired-end 150 62 

bp) at the Genome Québec sequencing platform (McGill University).  63 

 64 

Sequence preprocessing 65 

Sequencing fastq files were quality checked with FastQC 66 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). For removal of human and 67 

technical contaminant DNA, metagenomic shotgun sequences were aligned to the PhiX genome 68 

and the human genome (hg19) with Bowtie2 (2). Host-decontaminated fastq files were then 69 

quality filtered using Trimmomatic, a computational tool for removing low quality data (3), 70 

discarding all reads shorter than 75 nucleotides and with quality Phred score less than 20.  71 



 72 

Taxonomic and functional profiling 73 

 We performed taxonomic profiling of archaea, bacteria and microbial eukaryotes using 74 

MetaPhlAn2 (version 2.9) (4), with default parameters. Briefly, MetaPhlAn2 maps shotgun 75 

metagenomic sequencing reads against a precomputed database of clade-specific markers to 76 

produce a robust estimate of the taxonomic clades present in the microbiome sample and estimate 77 

their relative abundance. In addition to species-level relative abundance, we used MetaPhlAn2 to 78 

characterize the presence/absence of strain-specific markers for each sample. Species abundances 79 

are real numbers in the range [0,1] while markers assume binary values.  80 

Species-resolved functional profiling was completed using HMP Unified Metabolic 81 

Analysis Network 2 (HUMAnN2, version 2.8.1) (5), which maps reads to a sample-specific 82 

reference database from the pangenomes of the subset of species detected in the sample by 83 

MetaPhlAn2, quantifying gene presence and abundance on a per-species basis. A translated 84 

search is then performed against a UniRef-based protein sequence catalog for reads that fail to 85 

map to one of the detected species. The results are abundance profiles of gene families 86 

(UniRef90s) stratified by species contributing to those genes, which can be regrouped in higher 87 

level grouping categories (Pfam domains in this data set). Finally, gene families were further 88 

analyzed to reconstruct metabolic pathways abundance according to the MetaCyc pathway 89 

catalog (5).  90 

 91 

Statistical analyses 92 

Univariate analyses was performed to identify discriminatory biomarkers (species, protein 93 

families and pathways) using linear discriminant analysis (LDA) effect sizes (LEfSe) (6). LEfSe 94 

first uses the non-parametric factorial Kruskal-Wallis test to detect features with significant 95 



differential abundance for each class of interest, then uses LDA to estimate the effect size of each 96 

differential abundant feature (6). In our case, the significance threshold was set at p=0.05 and an 97 

LDA effect size of 2 was used for discriminative features.  98 

 99 

Random-forest based machine learning approach 100 

 MetAML (7) was applied to four types of quantitative profiles: taxonomic species-level 101 

relative abundances, strain-specific markers presence/absence patterns, MetaCyc pathways and 102 

gene-families grouped by Pfam domains relative abundances. In each case, we used Random 103 

Forest (RF) as classifier and set the following parameters as previously described by (8): the 104 

number of estimator trees was equal to 1000 and the quality of split at each tree node was 105 

evaluated using Shannon entropy. The minimum number of samples per leaf and the number of 106 

features per tree were respectively set as 1 and 30%, except for the strain-specific markers 107 

presence/absence profile, where the number of features equal the square root of the total number 108 

of features, due to the higher number of features. One of the advantages of RF models is that they 109 

can intrinsically integrate binary and multi-class classification problems, and implicitly provide a 110 

list of the most informative features to the predictive model. Another advantage of RFs is the 111 

built-in feature selection step during the model generation phase, which allows a selection of a 112 

reduced subset of the most important features for discriminating between classes. Adding a 113 

feature selection step to a model is a useful way to remove irrelevant features, especially in 114 

datasets with high dimensionality. Feature selection can also reduce overall training time and the 115 

risk of overfitting (7). 116 

The feature relative importance values were used to perform an embedded feature 117 

selection strategy, implemented as described in (7), in addition to the RF model, for two 118 

(Uninfected vs Infected contacts) and three classes (Asymptomatic infected vs Symptomatic 119 



infected vs Uninfected contacts). Feature selection benefits include removal of irrelevant features, 120 

especially in datasets with high dimensionality, to decrease the overall training time and reduce 121 

the risk of model overfitting (9).  Each cohort (the Midani_2018 and the expanded cohort) was 122 

analyzed independently for the RF model, using a stratified cross-validation approach. In the 123 

feature selection model, we chose the minimum number of features that maximized the accuracy 124 

in order to generate a final model on this limited number of features (Figure S2). The same set of 125 

selected features determined by the Midani_2018 dataset was used for the two cohorts in this 126 

approach. In all cases, the sensitivity and accuracy of the models generated were tested by 127 

performing stratified 3-fold cross validations, repeated and averaged on 20 independent 128 

runs. Finally, the results obtained for the original classification problem were compared with 129 

those obtained by a random classifier (denoted in the paper as Shuffled). For this purpose, we 130 

shuffled randomly the labels of all the samples, and used these same settings. Difference of 131 

performance between classifiers and statistical significance were calculated as described in 132 

Pasolli et al (7). 133 

The following performance metrics were reported: 1) the overall accuracy (i.e., the 134 

proportion of outcomes correctly predicted), 2) the precision (i.e., the number of correct positive 135 

samples divided by the number of samples predicted as positive), 3) the recall (i.e. the true 136 

positive rate, or power), and 4) the F1 score, which is the harmonic mean of precision and recall. 137 

For binary classification problems, class posterior probabilities were used to plot the Receiver 138 

Operating Characteristic (ROC) curve, which represents the true positive rate (i.e., the recall) 139 

against the false positive rate (i.e., the number of wrong positive samples divided by the total 140 

number of non-positive samples). From the ROC curve, the program computes the area under the 141 

curve (AUC), which can be interpreted as the probability that a randomly selected positive 142 



sample will have a higher classification result than a randomly selected negative one. The AUC 143 

ranges in [0, 1], where 0.5 corresponds to random prediction. 144 

 145 

  146 



Supplementary Figures 147 

 148 

Figure S1. Classification result from species abundance, strain-level markers 149 

presence/absence, pathways and gene family abundances. Four different classifications of 150 

microbiome information were used to predict disease susceptibility (Uninfected vs Infected) 151 

using a random forest algorithm and stratified 3-fold cross validation. Plots show Average ROC 152 

curves by using the four type of features for two different datasets (the Midani et al data and the 153 

Cohort from Midani et al Expanded cohort

All features All features

Features selection Features selection



expanded dataset). Random Forest was applied on all features (top row) and on a set of selected 154 

features (bottom row).  155 

 156 

Fig. S2. Identification of a minimal number of features for each type of biomarker.  157 

Prediction performances (AUC values) at increasing number of microbial species, pathways, 158 

strains markers and genes families, obtained by retraining the random forest model on the top-159 

ranking features identified with a first random forest model training with a 3-fold cross-validation 160 

approach. 161 



 162 

10-3 10-2 10-1 100 101 102

average relative abundance

Mitsuokella multacida
Catenibacterium sp CAG 290

Burkholderia pyrrocinia
Eubacterium rectale

Prevotella sp 885
Bifidobacterium longum

Prevotella sp TF12 30
Roseburia sp CAG 471

Bifidobacterium adolescentis
Faecalibacterium prausnitzii

Prevotella sp CAG 5226
Campylobacter hominis

Slackia isoflavoniconvertens
Bifidobacterium bifidum

Firmicutes bacterium CAG 83
Dialister sp CAG 486

Eubacterium sp CAG 202
Actinomyces odontolyticus

Clostridiales bacterium KLE1615
Ruminococcus gnavus

Prevotella copri
Shigella flexneri

Veillonella parvula
Burkholderia stabilis

Bacteroides vulgatus

0 1 2 3 4 5
Relative importance (in blue)[%]

10-4 10-3 10-2 10-1 100 101

average relative abundance

[Collinsella] massiliensis
Prevotella sp 885

Burkholderia pyrrocinia
Enorma massiliensis

Catenibacterium sp CAG 290
Veillonella parvula

Eubacterium rectale
Collinsella aerofaciens
Clostridium ventriculi

Escherichia coli
Gemmiger formicilis

Bifidobacterium bifidum
Roseburia faecis

Bifidobacterium adolescentis
Shigella sonnei

Faecalibacterium prausnitzii
Shigella boydii

Streptococcus parasanguinis
Bifidobacterium longum

Eubacterium sp CAG 146
Prevotella sp AM42 24
Roseburia sp CAG 471

Veillonella atypica
Veillonella infantium

Prevotella sp TF12 30

0 1 2 3 4
Relative importance (in blue) [%]

A

B



Fig. S3. Most important discriminating species of the gut microbiome at the time of 163 

exposure to V. cholerae identified in the Midani 2018 dataset, classified by clinical outcome. 164 

(A) Species associated with contacts that became infected (or remained uninfected) during 165 

follow-up. (B) Species associated with contacts that became 166 

uninfected/asymptomatic/symptomatic during follow-up. For each species reported on the 167 

vertical axis, the top bar (blue) corresponds to the species relative importance (with standard 168 

deviation) and the other bars refer to the average relative abundance. The top 25 most important 169 

features are shown here; See Table S6 for the full list. Feature relative importance was computed 170 

using the Mean Decrease in Impurity strategy, as described in the Methods.  171 

 172 



Fig. S4. Most important discriminating species identified with the random forest algorithm 173 

on the expanded dataset for (A) contacts that became infected or remained uninfected and 174 

(B) contacts that remained uninfected, or became infected and were asymptomatic vs 175 

symptomatic. For each species reported on the vertical axis, the top bar (in blue) corresponds to 176 

the feature relative importance (with standard deviation) and the other bars refer to the average 177 
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relative abundance.  Feature relative importance (blue) is computed using the mean decrease 178 

impurity strategy. 179 

 180 



Fig. S5. Linear discriminant analysis (LDA) scores computed for differentially abundant 181 

species, pathways and genes families in the fecal microbiomes of samples from the 182 

Midani_2018 cohort for 2 categories.  The cohort is divided in two categories: controls who 183 

remained uninfected (yellow) and controls who became infected (red). Length of the bar indicates 184 

effect size associated with a feature. p = 0.05 for the Kruskal-Wallis H statistic; features with 185 

LDA score > 2 are shown.186 



 187 

 188 

Fig. S6.  Linear discriminant analysis (LDA) scores computed for differentially abundant 189 

species, pathways and genes families in the fecal microbiomes of samples from the 190 

Midani_2018 cohort for 3 categories. The cohort is divides in three categories: controls who 191 

remained uninfected (yellow), controls who became infected and symptomatic (red), and controls 192 



who became infected but stayed asymptomatic (green). Length indicates effect size associated 193 

with a feature. p = 0.05 for the Kruskal-Wallis H statistic; features with LDA score > 2 are 194 

shown. 195 



196 
Fig. S7. Relative abundance of the top 21 most important discriminating species of the gut 197 

microbiome of contacts at the time of exposure to V. cholerae identified in the Midani 2018 198 

dataset for two classes (Uninfected vs Infected). The straight line indicates the group means, 199 

and the dotted line indicates the group medians.200 



 201 
Fig. S8. Relative abundance of the top 21 most important discriminating species in the gut 202 

microbiome of contacts at the time of exposure to V. cholerae identified in the Midani 2018 203 

dataset for three classes (Uninfected vs Asymptomatic Infected and Symptomatic Infected). 204 

The straight line indicates the group means, and the dotted line indicates the group medians 205 
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 206 

Figure S9. Most important discriminating gene families of the gut microbiome at the time of 207 

exposure to V. cholerae identified in the Midani 2018 dataset, classified by clinical outcome. 208 

(A) Genes associated with contacts that became uninfected/infected during follow-up. (B) Genes 209 

associated with contacts that became uninfected/asymptomatic/symptomatic during follow-up. 210 

For each gene-family reported on the vertical axis, the top bar (in blue) corresponds to the feature 211 
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relative importance (with standard deviation) and the other bars refer to the average relative 212 

abundance (copies per million). The top 25 most important features are shown here; See Table S8 213 

for the full list. Feature relative importance was computed using the mean decrease in impurity 214 

strategy, as described in the Methods. 215 
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 217 

Fig. S10. Most important discriminating gene-families (grouped by Pfam domain) identified 218 

with the random forest algorithm on the Expanded dataset for (A) contacts that became 219 

infected or remained uninfected and (B) contacts that remained uninfected, or became 220 

infected and were asymptomatic vs symptomatic. For each gene-families reported on the 221 

vertical axis, the top bar (in blue) corresponds to the feature relative importance (with standard 222 
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deviation) and the other bars refer to the average relative abundance (copies per million). Feature 223 

relative importance (blue) is computed using the mean decrease impurity strategy. 224 



 225 

226 

Fig. S11. Most important discriminating pathways identified with the random forest 227 

algorithm on the Midani_2018 dataset for (A) contacts that became infected or remained 228 

uninfected and (B) contacts that remained uninfected or became infected and were 229 

asymptomatic vs symptomatic. For each pathway reported on the vertical axis, the top bar 230 

Relative importance (in blue) [%]

A

B



(blue) corresponds to the feature relative importance (with standard deviation) and other bars 231 

refer to the average relative abundance (copies per million). Feature relative importance (blue) is 232 

computed using the mean decrease impurity strategy. 233 

 234 

Fig. S12. Most important discriminating pathways identified with the random forest 235 

algorithm on the expanded dataset for (A) contacts that became infected or remained 236 

uninfected and (B) contacts that remained uninfected, or became infected and were 237 
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asymptomatic vs symptomatic. For each pathway reported on the vertical axis, the top bar (in 238 

blue) corresponds to the feature relative importance (with standard deviation) and the other bars 239 

refer to the average relative abundance (copies per million). Feature relative importance (blue) is 240 

computed using the mean decrease impurity strategy.241 



Fig. S13. Enriched and top predictive gene families (Pfam domain grouping) involved in iron metabolism, annotated by their 242 

taxonomic contributors. Gene families involved with iron metabolism that were differentially abundant in contacts who remained 243 
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uninfected were identified with LEfSe are represented on the left (shown in Supplementary Fig 2). On the right are the top predictive 244 

gene families involved with iron metabolism identified with MetAML. Total bar height reflects log10-scaled community abundance. 245 

Genera contributions are linearly scaled within total. 246 
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Fig. S14. Top predictive gene families (Pfam domain grouping) for each class (uninfected, asymptomatic and symptomatic 248 

infected contacts), annotated by their taxonomic contributors. Total bar height reflects log10-scaled community abundance. Genera 249 

contributions are linearly scaled within total. 250 
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