Expanded View Figures

Figure EV1. Analysis of the hypomorphic nature of the Bbs4^{GT} allele.

- A The exon inclusion in *Bbs4* transcript in the brain of *Bbs4*^{+/+} (WT), *Bbs4*^{GT/GT}, and *Bbs4*^{KO/KO} mice was analyzed by end-point RT–PCR with primers specific to exons 5, 6, 7, 8, or 10 (forward) and exon 11 (reverse). A single mouse of each genotype was analyzed.
- B The relative expression of *Bbs4* exon 5–6, exon 6–7, exon 7–8, exon 8–10, exon 10–11 in the brain and kidney of *Bbs4*^{+/+} (n = 2 mice), *Bbs4*^{CT/GT} (n = 1), and *Bbs4*^{KO/KO} (n = 1) mice was analyzed using RT–qPCR. Melting curve analysis for the amplicon representing exon 5–6 is shown for *Bbs4*^{+/+} and *Bbs4*^{CT/GT} mice. The average from two animals is shown for *Bbs4*^{+/+}.
- C Results of Sanger sequencing of the amplicon representing *Bbs4* exon 5–6 of the *Bbs4*^{GT/GT} mice. The sequence shown in red originates from the *Bbs4* GT cassette (En2 exon) and is absent in *Bbs4* WT RNA.
- D C-terminally FLAG-tagged full-length *Bbs4* WT and *Bbs4* GT cDNA was transiently expressed in HEK293T cells. The expression of BBS4 was detected by anti-FLAG antibody via immunoblotting. Re-probing the membrane for actin served as a loading control. The same actin staining (30 s exposure) is shown for both exposures of anti-FLAG staining. The arrow indicates a weak band with low apparent molecular weight which was present only in cells transfected with *Bbs4* GT cDNA. Representative experiment out of two biological replicates is shown.
- E The expression of properly spliced *Bbs4* (primers annealed to exon 5/6 boundary and exon 7) in the brains of *Bbs4*^{+/+} and *Bbs4*^{GT/GT} mice was analyzed by RT–qPCR. The melting curve analysis of the amplicon is shown. The experiment shows two technical replicates (the tissue was divided into halves before RNA isolation) using a single animal of each strain.

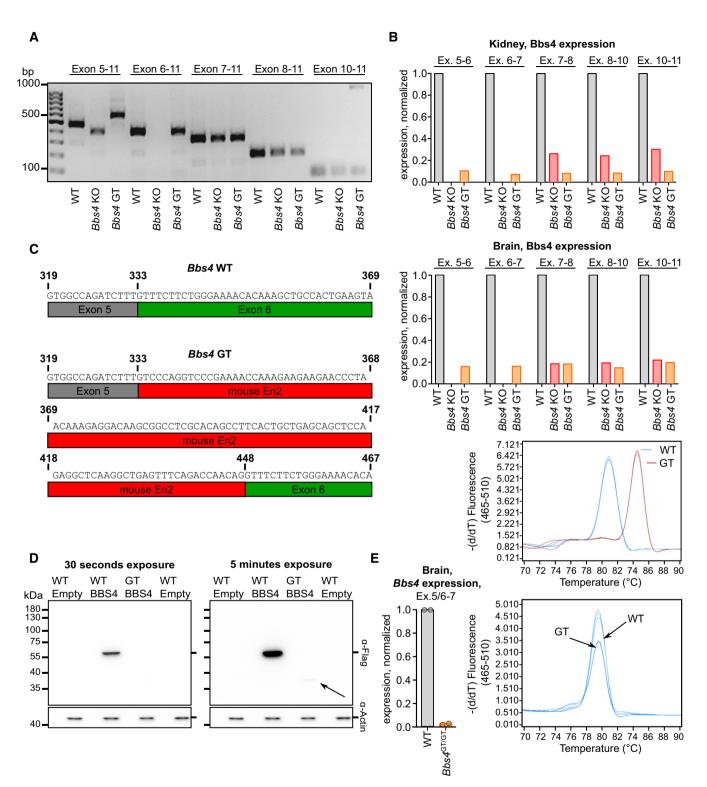


Figure EV1.

Figure EV2. T-cell compartment is mildly affected in Bbs4^{KO/KO} mice and unaffected in Bbs4^{GT/GT}.

- A, B Cells isolated from thymi of 6 weeks old $Bbs4^{+/+}$ (WT) (n = 5 mice) and $Bbs4^{-T/GT}$ (n = 4) littermates were analyzed by flow cytometry in three independent experiments. Representative staining is shown. (B) Thymic cell populations: double-positive (DP) (CD4⁺ CD8⁺), CD4 single-positive (SP) (CD4⁺, CD8⁻), CD8 SP (CD4⁻ CD8⁺), double-negative (DN) (CD4⁻ CD8⁻) cells.
- C, D Cells isolated from lymph nodes (LN) and spleens (SPL) of $Bbs4^{+/+}$ (n = 9 mice) and $Bbs4^{GT/GT}$ (n = 10) littermates, or $Bbs4^{+/+}$ (n = 9) and $Bbs4^{KO/KO}$ (n = 8) littermates were analyzed by flow cytometry, and percentage of TCRB⁺, or CD8⁺, CD4⁺ cells was determined. Seven independent experiments for Bbs4^{CT/GT}, six independent experiments for Bbs4^{KO/KO}. Mean ± SEM. Statistical significance was calculated using two-tailed Mann–Whitney test.
- F
- Representative experiments howing CD4⁺ and CD8⁺ T-cell populations in spleens of $Bbs4^{CT/CT}$, $Bbs4^{KO/KO}$, and their WT littermates. Cells isolated from lymph nodes (LN) and spleens (SPL) of $Bbs4^{+/+}$ (n = 8 mice) and $Bbs4^{CT/CT}$ (n = 9) littermates, or $Bbs4^{+/+}$ (n = 9) and $Bbs4^{KO/KO}$ (n = 8) littermates were analyzed by flow cytometry, and percentage of CD8⁺ CD44⁺ cells was determined. Six independent experiments were performed for each strain. F Representative staining of T cells from spleen is shown. Mean \pm SEM. Statistical significance was calculated using two-tailed Mann–Whitney test.

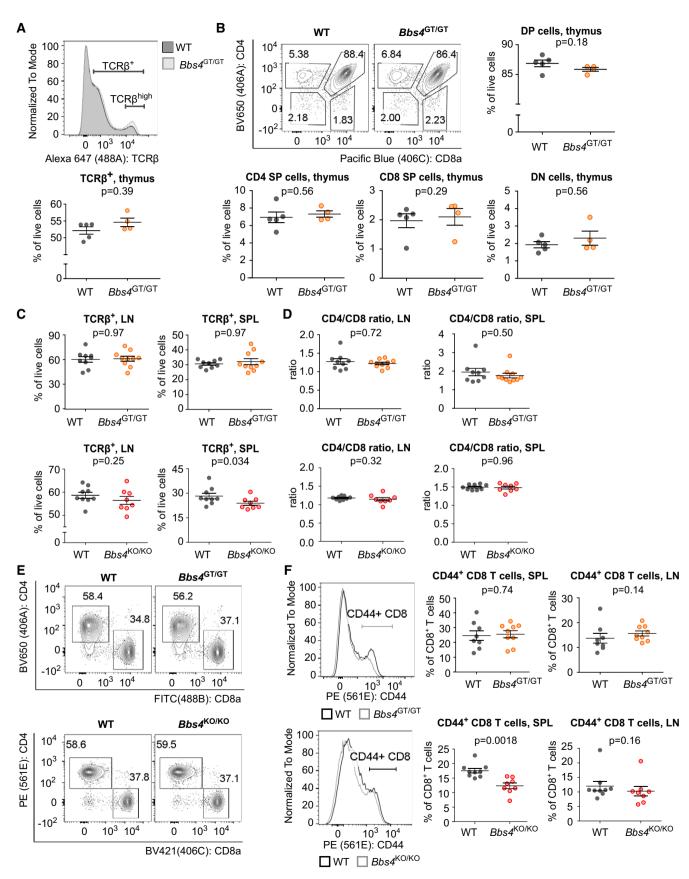


Figure EV2.

Figure EV3. Bbs4 deficiency in mice leads to B-cell compartment alterations.

- A Percentage of B220⁺ cells in the bone marrow (BM) of *Bbs*4^{GT/GT} (*n* = 10 mice), *Bbs*4^{KO/KO} (*n* = 10) and their *Bbs*4^{+/+} (WT) littermates (*n* = 9, *n* = 11, respectively) was determined by flow cytometry. For *Bbs*4 GT strain, a representative experiment out of six in total is shown. For *Bbs*4 KO strain, a representative experiment out of eight in total is shown. Statistical significance was calculated using two-tailed Mann–Whitney test. Medians are shown.
- B Splencyte count in $Bbs4^{+/+}$ (n = 9 mice) and $Bbs4^{KO/KO}$ (n = 7) mice. Medians are shown. Statistical significance was calculated using two-tailed Mann–Whitney test.
- C Percentage of B cells (CD19⁺) in the spleen (SPL) of $Bbs4^{CT/GT}$ (n = 8 mice), $Bbs4^{KO/KO}$ (n = 10) and their $Bbs4^{+/+}$ littermates (n = 9 and n = 11, respectively) was determined. Six independent experiments for $Bbs4^{CT/GT}$ and eight experiments for $Bbs4^{KO/KO}$ were performed. Statistical significance was calculated using two-tailed Mann–Whitney test. Medians are shown.
- D Percentage of splenic (SPL) late mature ($lgM^{-} lgD^{+}$) B cells (Late matB) among viable CD19⁺ cells in *Bbs4*^{+/+} (*n* = 9 mice) and *Bbs4*^{GT/GT} (*n* = 8) mice. Representative experiment out of six in total is shown. Statistical significance was calculated using two-tailed Mann–Whitney test. Medians are shown.
- E Percentage of late mature ($\lg M^{-} \lg D^{+}$) B cells (Late matB) among viable CD19⁺ cells in lymph nodes (LN) from *Bbs4*^{CT/GT} (*n* = 8 mice) and *Bbs4*^{+/+} littermates (*n* = 9), or *Bbs4*^{KO/KO} (*n* = 10) mice and *Bbs4*^{+/+} controls (*n* = 11). Representative experiments are shown. Statistical significance was calculated using two-tailed Mann–Whitney test. Medians are shown.
- F Schematic representation of the Bbs18 KO mouse model. Bbs18 reference sequence: ENSMUSG0000084957 (Ensembl database).
- G Genotypic ratio of Bbs18^{+/+}, Bbs18^{+/KO}, or Bbs18^{KO/KO} at weaning from mating of Bbs18^{+/KO} parents. Binomial test was used for statistical comparison of the observed distribution to the expected Mendelian ratio.
- H, I Comparison of Bbs18^{kO/KO} mice (n = 2 mice) mice with pooled Bbs18^{+/+} (n = 1, dark gray square) and Bbs18^{+/KO} (n = 3, light gray square) controls. All six mice were littermates and were analyzed side by side in a single experiment. (H) Percentage of B-cell precursors (IgM⁻ IgD⁻) in the bone marrow (BM). Gated on viable B220⁺ cells. Medians are shown. (I) Percentage of splenic MZ B cells (CD23⁻ CD1d⁺) in Bbs18^{KO/KO} mice and their control littermates was determined. Gated on viable CD19⁺, IgD⁻ IgM⁺, CD138⁻ cells. Medians are shown.

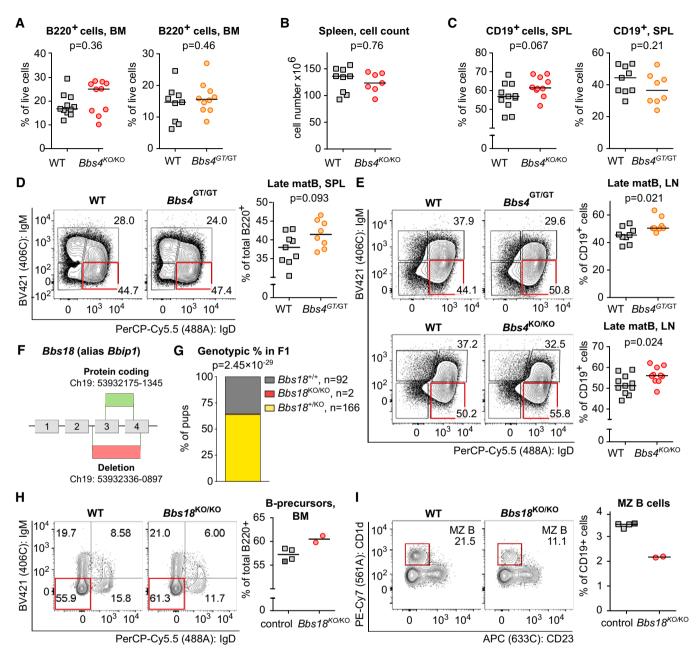
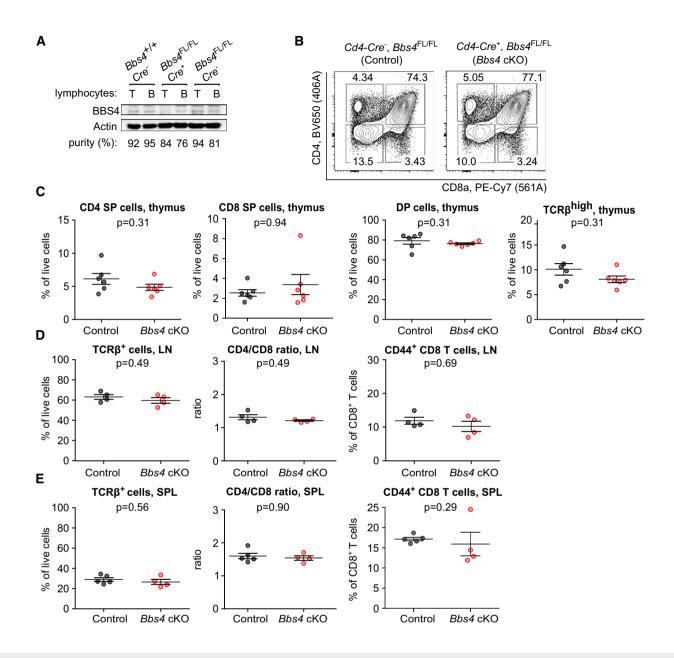
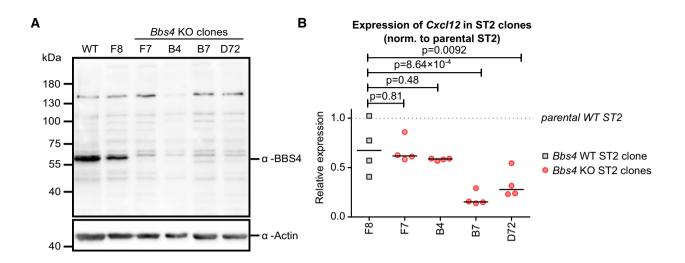




Figure EV3.

Figure EV4. BBS4 has no intrinsic role in T-cell development.

- A The immunoblot analysis of the BBS4 expression in enriched T or B cells taken from lymph nodes and spleens of *Bbs4^{+/+} Cd4-Cre⁻*, *Bbs4^{FL/FL} Cd4-Cre⁺*, and *Bbs4^{FL/FL} Cd4-Cre⁻* mice. The purity of the enriched populations is indicated. β-actin staining served as a loading control. Part of the identical immunoblot is shown in Fig 1B. A representative experiment out of three biological replicates in total is shown.
- B–E Cells isolated from thymi (B, C), lymph nodes (LN) (D), and spleens (SPL) (E) of *Bbs4*^{FL/FL} *Cd4-Cre*⁺ (*Bbs4* cKO) mice were analyzed by flow cytometry. *Bbs4*^{+/+} *Cd4-Cre*⁺ and *Bbs4*^{FL/FL} *Cd4-Cre*⁻ mice were used as controls interchangeably. (B, C) Thymic cell populations: CD4 single-positive (SP) (CD4⁺, CD8⁻), CD8 SP (CD4⁻ CD8⁺), double-positive (DP) (CD4⁺ CD8⁺), TCRβ^{high} cells. *n* = 6 mice per group, four independent experiments. Mean ± SEM, two-tailed Mann–Whitney test. (D) T-cell populations in lymph nodes, *n* = 4 mice per group, three independent experiments. Mean ± SEM, two-tailed Mann–Whitney test. (E) T-cell populations in spleens of control (*n* = 5 mice) and *Bbs4* cKO (*n* = 4), analyzed in three independent experiments. Mean ± SEM, two-tailed Mann–Whitney test.

Figure EV5. BBS4 regulates Cxcl12 expression in ST2 cells.

- A The expression of BBS4 in the parental ST2 line and in five *Bbs4* KO ST2 clones was analyzed by immunoblotting. The parental line and the clone F8 expresses BBS4, whereas the other clones lack BBS4. Re-probing the membrane for actin served as a loading control. These results are in agreement with the results of the sequencing of the *Bbs4* locus (Appendix Table S6). A representative experiment out of two biological replicates is shown.
- B The expression of *Cxcl12* in the parental ST2 line, in one *Bbs4* WT clone (F8) and in four *Bbs4* KO ST2 clones (indicated in red) was analyzed by RT_qPCR . The expression was normalized to *Gapdh* and to the parental ST2 line for each experiment (= 1, represented as a dotted line). The statistical significance was calculated with repeated measures ANOVA (*P* = 0.0007) with Dunnett's multiple comparison post-test (indicated) for comparing each *Bbs4* KO clone to clone F8. *n* = 4 biological replicates.