Appendix PDF contents

- 1. Appendix Figure Legends (pages 1-13)
- 2. Appendix Figures S1-S17 (pages 14-30)
- 3. Appendix Table S1 (page 31)
- 4. Appendix Table S2 (pages 32-33)
- 5. Appendix Table S3 (pages 34)
- 6. Appendix Table S4 (pages 35)

Appendix Figure Legends

Appendix Figure S1. HAT1 knockout HepG2 cell lines are established by the CRISPR-Cas9 system

A. The expression levels of HAT1 were measured by Western blot analysis in 48 cell clones derived from HepG2 cells #1-#24 clones came from the SgRNA1-selected cells, and #25-#48 clones came from the SgRNA2-selected cells.

B. Three clones were selected by length polymorphisms of PCR product and validated by Sanger sequencing. Clone #3 and Clone #20, Clone #34 were generated by SgRNA1 and SgRNA2 that produced Clone #3 with 1-bp deletion and 2+bp insertion, 4-bp deletion and 1+bp insertion for Clone #20 and 2+bp and 1+bp insertion for two alleles of Clone #34 at different positions, respectively.

Appendix Figure S2. HAT1 is able to modulate succinylation on multiple proteins

A. Total cell lysates from wild type (WT) and HAT1 knockout (KO) Clone 2 HepG2 cells were analyzed by Western blot analysis with the indicated pan-anti-Ksucc antibody and pan-anti-Kac antibody for Ksucc and Kac levels. The efficiency of HAT1 knockout was measured by Western blot analysis.

B. The levels of succinyl-CoA were analyzed by ELISA assays in HepG2 cells and HAT1 KO HepG2 cells. N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ns, no significance.

C. Total cell lysates from wild type (WT) and HAT1 knockout (KO) Clone 1 HepG2 cells were analyzed by Western blot analysis with the indicated antibodies for Kac, lysine butyrylation (Kbu), lysine crotonylation (Kcr), and lysine propionylation (Kpr) levels. The efficiency of HAT1 knockout was measured by Western blot analysis.

Appendix Figure S3. Succinylation quantitative proteomics identify proteins and sites of HAT1-mediated succinylation

A. The schematic representation of the experimental workflow for the succinylation quantitative proteomics of HAT1-regulated succinylation was shown.

B. Venn diagram revealed the overlap between replications of the succinylation quantitative proteomics.

C. Histogram showed the Ksucc site distribution in the succinylation quantitative proteomics.D. The consensus sequence logos demonstrated enrichment of amino acid residues among the HAT1-targeted Ksucc sites in the succinylation quantitative proteomics.

Appendix Figure S4. HAT1-mediated succinylation is involved in multiple biological processes and pathways

A-D. The succinylated proteins targeted by HAT1 were involved in many processes of physiology and pathology in the succinylation quantitative proteomics.

A. GO function enrichment analysis showed cellular biological process, molecular function, and cellular component with succinylated proteins targeted by HAT1.

B. Histogram revealed the relative fold change of Ksucc levels in the succinylation quantitative proteomics.

C. KEGG analysis showed the canonical pathway with succinylated proteins targeted by HAT1 in the succinylation quantitative proteomics.

D. Protein domain analysis demonstrated the specific domain of succinylated proteins targeted by HAT1 in the succinylation quantitative proteomics.

Appendix Figure S5. HAT1 is a novel histone succinyltransferase

A. Histones were extracted from HepG2 (WT) and HAT1 knockout (KO) Clone 2 HepG2 cells. The total histone succinylation and acetylation levels were analyzed by Western blot analysis in the cells. The histone levels were measured by GelCode Blue staining. The efficiency of HAT1 knockout was measured by Western blot analysis.

B. Histone H3 was immunoprecipitated from HepG2 cells with or without endogenous HAT1 depletion (by knockout). The levels of succinylation, acetylation, histone H3, HAT1, and β -actin were analyzed by Western blot analysis in the cells.

C. The efficiency of HAT1 shRNAs was validated by Western blot analysis in 293T cells

transfected with indicated shHAT1. Three shRNAs targeting HAT1 mRNA were designed, among which shHAT1-3 showed the strongest knockdown efficiency and was used in the following experiments.

D, E. Histone H3 was immunoprecipitated from PANC1 and HuCCT1 cells with or without endogenous HAT1 depletion (by shRNA). The levels of succinylation, acetylation, histone H3, HAT1, and β -actin were analyzed by Western blot analysis in the cells.

F. HAT1-catalyzed histone H3 acylation was analyzed by *in vitro* acylation assays using Western blot analysis after mixing purified HAT1, histone H3, and succinyl-CoA/butyryl-CoA/crotonyl-CoA/propionyl-CoA.

Appendix Figure S6. T188 of HAT1 is critical for HAT1-mediated succinylation

A. Two-dimensional (2D) diagram showed the catalytic pocket of HAT1 that bound to succinyl-CoA.

B. Histone H3 proteins were immunoprecipitated from HAT1 KO HepG2 cells, and HAT1 KO HepG2 cells re-expressed with HAT1 or indicated HAT1 mutants. The levels of succinylation, acetylation, histone H3, HAT1, and β -actin were determined by Western blot analysis in the cells.

C, D. The steady-state kinetics of HAT1-mediated histone H3 modifications was shown. Immunoprecipitated wild type Flag-HAT1 or Flag-HAT1 (T188A) from 293T cells was incubated with purified histone H3 in the presence of acetyl-CoA or succinyl-CoA. The steady-state kinetics of HAT1 activity was determined by measuring CoA production. The *K*m values of wild type Flag-HAT1 for histone H3 acetylation and succinylation were 1.08 ± 0.14 μ M (means ± S.D.) and 0.61 ± 0.10 μ M, respectively. The *K*m values of Flag-HAT1 (T188A) for histone H3 acetylation and succinylation were 1.15 ± 0.14 μ M and 1.57 ± 0.37 μ M, respectively. The steady-state kinetic curves showed the mean values from three independent measurements (n=3). The *V*max values of wild type Flag-HAT1 for histone H3 acetylation and succinylation were 1.58 ± 0.05 nM s⁻¹ (mean ± S.D.) and 1.75 ± 0.07 nM s⁻¹, respectively. The *V*max values of Flag-HAT1 (T188A) for histone H3 acetylation were 1.56 ± 0.05 nM s⁻¹ and 0.68 ± 0.04 nM s⁻¹, respectively. The data were presented as means ± S.D. from three independent experiments (n=3). N = 3 biological replicates. Data were presented as mean ± SD. Student's *t*-test, ****P*<0.001; ns, no significance.

E, F. Histone H3 was immunoprecipitated from PANC1 and HuCCT1 cells depleted endogenous HAT1 and in the cells reconstituted expression of HAT1 or HAT1 mutant (T188A). The levels of succinylation, acetylation, histone H3, HAT1, and β -actin were analyzed by Western blot analysis in the cells.

G. Histone H3 was immunoprecipitated from HepG2, HAT1 KO Clone 1 HepG2, and HAT1 KO Clone 1 HepG2 cells reconstituted expression of HAT1 or HAT1 mutant (T188A). The levels of succinvlation, acetylation, butyrylation, crotonylation, propionylation, histone H3, HAT1, and β -actin were analyzed by Western blot analysis.

Appendix Figure S7. HAT1 catalyzes histone H3K122 succinylation for epigenetic regulation

A. The diagram showed the succinylated histone sites identified in the succinylation quantitative proteomics.

B. The diagram showed the ratios of histone succinylation sites targeted by HAT1 in the succinylation quantitative proteomics.

C. The levels of histone H3K122 succinylation, histone H3K122 acetylation, histone H3K27 acetylation, histone H3, HAT1, and β -actin were determined by Western blot analysis in HepG2, HAT1 knockout (KO) Clone 2 HepG2 cells, and in the cells reconstituted expression of HAT1 or HAT1 mutant (T188A).

D. The levels of histone H3K122 succinylation, histone H3K27 acetylation, histone H3, HAT1, and β -actin were examined by Western blot analysis in PANC1, and PANC1 cells depleted endogenous HAT1, or HuCCT1 and HuCCT1 cells depleted endogenous HAT1.

E. The levels of histone H3K122 succinylation, histone H3K27 acetylation, histone H3, HAT1, and β -actin were examined by Western blot analysis in PANC1, or HuCCT1 cells depleted endogenous HAT1, and in the cells reconstituted expression of HAT1 or HAT1 mutant (T188A).

F. HAT1-mediated histone H3K122 succinylation was analyzed by mixing purified HAT1, histone H3, and succinyl-CoA (2 μ M) with or without acetyl-CoA (2 μ M). Western blot analysis was performed with the indicated antibodies.

G. The H3K122succ-ChIP peaks and HAT1-ChIP peaks were identified by ChIP-seq in HepG2 cells. Venn diagram showed the overlap of H3K122 succinylation and HAT1 common occupied peaks.

H. The diagram showed the genomic distributions of ChIP-seq peaks for H3K122 succinylation and HAT1 in HepG2 cells.

Appendix Figure S8. Representative tracks of gene peaks from H3K122 succinylation ChIP-seq

A. The representative tracks of gene peaks from H3K122 succinylation ChIP-seq were showed.

Appendix Figure S9. HAT1 catalyzes histone H3K122 succinylation for gene expression regulation

A, B. The effect of HAT1 on histone H3K122 succinylation and histone H3K122 acetylation at the indicated gene promoters was determined by ChIP assay with an anti-H3K122 succinylation antibody and anti-H3K122 acetylation antibody, and quantitative PCR with primers of the promoter regions of CREBBP, BPTF and RPTOR in PANC1/HuCCT1 cells, PANC1/HuCCT1 cells depleted endogenous HAT1, and PANC1/HuCCT1 cells depleted endogenous HAT1 and reconstituted expression of HAT1 or HAT1 mutant (T188A). N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ****P*<0.001; ns, no significance.

C, D. The mRNA levels of CREBBP, BPTF, and RPTOR were measured by RT-qPCR in PANC1/HuCCT1 cells, PANC1/HuCCT1 cells depleted endogenous HAT1 and PANC1/HuCCT1 cells depleted endogenous HAT1 and reconstituted expression of HAT1 or HAT1 mutant (T188A). N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ***P*<0.01.

E. The levels of histone H3K122 succinylation, histone H3K79 succinylation, histone H3K9 acetylation, histone H3, KAT2A, and β -actin were assessed by Western blot analysis in

HepG2 and HepG2 cells depleted endogenous KAT2A. The levels of histone H3K79 succinylation, histone H3K27 acetylation, histone H3, HAT1, and β -actin were assessed by Western blot analysis in HepG2 and HepG2 cells depleted endogenous HAT1.

Appendix Figure S10. The interaction analysis of HAT1-modulated succinylation

A. The interaction analysis showed that HAT1-mediated succinylation targeted glycolysis.

Appendix Figure S11. HAT1-mediated non-histone succinylation specifically targets glycolysis

A, B. The decrease of glucose and increase of lactate in culture medium were measured by ELISA assays in PANC1/HuCCT1 cells, PANC1/HuCCT1 cells depleted endogenous HAT1, and PANC1/HuCCT1 cells depleted endogenous HAT1 and reconstituted expression of HAT1 or HAT1 mutant (T188A). N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ***P*<0.01.

C-F. The relative amounts of indicated metabolites were quantified by ELISA assays in PANC1/HuCCT1 cells, PANC1/HuCCT1 cells depleted endogenous HAT1 and reconstituted expression of HAT1 or HAT1 mutant (T188A). N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ***P*<0.01; ns, no significance.

Appendix Figure S12. HAT1 modulates succinylation of PGAM1

A. PGAM1 was immunoprecipitated from HepG2, HAT1 KO Clone 2 HepG2, and HAT1 KO

Clone 2 HepG2 cells reconstituted expression of HAT1 or HAT1 mutant (T188A). The levels of succinylation, PGAM1, HAT1, and β -actin were analyzed by Western blot analysis in the cells.

B. PGAM1 was immunoprecipitated from PANC1/HuCCT1, PANC1/HuCCT1 cells depleted endogenous HAT1, and PANC1/HuCCT1 cells depleted endogenous HAT1 and reconstituted expression of HAT1 or HAT1 mutant (T188A). The levels of succinylation, PGAM1, HAT1, and β -actin were analyzed by Western blot analysis in the cells.

C. ENO1 or PKM was immunoprecipitated from HepG2, HAT1 KO HepG2, and HAT1 KO HepG2 cells reconstituted expression of HAT1 or HAT1 mutant (T188A). The levels of succinylation, ENO1 or PKM, HAT1, and β -actin were analyzed by Western blot analysis in the cells.

D. The relative enzyme activity of PGAM1, ENO1, and PKM was measured by the enzyme activity assays in the indicated tumor cells. N = 3 biological replicates. Data were presented as mean ± SD. Student's *t*-test, **P*<0.05; ***P*<0.01.

E. PGAM1 was immunoprecipitated from HepG2, HAT1 KO Clone 1 HepG2, and HAT1 KO Clone 1 HepG2 cells reconstituted expression of HAT1 or HAT1 mutant (T188A). The levels of succinvlation, acetylation, butyrylation, crotonylation, propionylation, PGAM1, HAT1, and β -actin were analyzed by Western blot analysis.

F. The effect of HAT1 on histone H3K122 succinylation and histone H3K122 acetylation at PGAM1 promoter was determined by ChIP assays with anti-H3K122 succinylation antibody and anti-H3K122 acetylation antibody, and followed by quantitative PCR with primer of the promoter region of PGAM1 in WT HepG2 cells, HAT1 KO HepG2 cells and HAT1 KO

HepG2 cells reconstituted expression of HAT1 or HAT1 mutant (T188A). N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ns, no significance.

G. The mRNA levels of PGAM1 were measured by RT-qPCR in HepG2 cells, HAT1 KO HepG2 cells, and HAT1 KO HepG2 cells reconstituted expression of HAT1 or HAT1 mutant (T188A). N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ns, no significance.

Appendix Figure S13. HAT1 is able to directly succinylate PGAM1

A, B. The decrease of 2-PG and increase of 3-PG were measured by ELISA assays in PANC1/HuCCT1 cells, PANC1/HuCCT1 cells depleted endogenous HAT1 and reconstituted expression of HAT1 or HAT1 mutant (T188A). N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ***P*<0.01.

C. HAT1-catalyzed PGAM1 acylation was analyzed by *in vitro* acylation assays using Western blot analysis after mixing purified HAT1, PGAM1, and succinyl-CoA/butyryl-CoA.

D. HAT1-catalyzed PGAM1 acylation was analyzed by *in vitro* acylation assays using
Western blot analysis after mixing purified HAT1, PGAM1, and succinyl-CoA/crotonyl-CoA.
E. HAT1-catalyzed PGAM1 acylation was analyzed by *in vitro* acylation assays using
Western blot analysis after mixing purified HAT1, PGAM1, and succinyl-CoA/
propionyl-CoA.

F. HAT1-catalyzed PGAM1 succinvlation was analyzed by mixing purified HAT1 and

succinyl-CoA, and purified PGAM1 or PGAM1 mutant in the *in vitro* succinylation assays. Western blot analysis was performed with indicated antibodies.

Appendix Figure S14. HAT1 succinylates PGAM1 to enhance glycolysis

A. The purified HAT1, PGAM1, and succinyl-CoA were mixed in the *in vitro* succinylation assays. And the relative PGAM1 activity was measured by the PGAM1 activity assays *in vitro*. N = 3 biological replicates. Data were presented as mean ± SD. Student's *t*-test, ***P*<0.01.

B. The relative activity of PGAM1 and PGAM1 mutant (K to E) were analyzed by the PGAM1 activity assays *in vitro*. N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ***P*<0.01.

C. The efficiency of PGAM1 shRNAs was validated by Western blot analysis in 293T cells transfected with indicated shPGAM1. Three shRNAs targeting PGAM1 mRNA were designed, among which shPGAM1-2 showed the strongest knockdown efficiency and was used in the following experiments.

D, E. The decrease of glucose and increase of lactate in the culture medium and the relative amounts of 2-PG and 3-PG were analyzed by ELISA assays in PANC1/HuCCT1 cells depleted endogenous PGAM1 and reconstituted expression of PGAM1 or PGAM1 mutant (K99R). N = 3 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ***P*<0.01.

Appendix Figure S15. HAT1-mediated succinylation displays critical roles in tumor

growth

A-E. PANC1 cells, PANC1 cells depleted endogenous HAT1, and PANC1 cells depleted endogenous HAT1 and reconstituted expression of HAT1 or HAT1 mutant (T188A), were subcutaneously injected into athymic nude mice (N=6).

A, B. Photographs showed the tumors from the nude mice. Tumor volumes and average tumor weight were calculated. N = 6 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ****P*<0.001.

C. Immunohistochemical analysis of the indicated tumor sections was performed with an anti-Ki67 antibody. The images represented the results of six tissue slides.

D. Western blot analysis was performed with the indicated antibodies. Representative images of triplicate experiments were shown.

E. The relative amounts of 3-PG and 2-PG were determined by ELISA assays in the tumor tissues. N = 6 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ***P*<0.01.

Appendix Figure S16. The succinylation of PGAM1 plays a crucial role in tumor growth

A-E. PANC1 cells depleted endogenous PGAM1 and reconstituted expression of PGAM1, or PGAM1 mutant (T188A) were subcutaneously injected into athymic nude mice (N=6).

A, B. Photographs showed the tumors from the nude mice. The average tumor weight and

tumor volumes were calculated. N = 6 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ****P*<0.001.

C. Immunohistochemical analysis of the indicated tumor sections was performed with an anti-Ki67 antibody. The images represented the results of six tissue slides.

D. Western blot analysis was performed with the indicated antibodies. Representative images of triplicate experiments were shown.

E. The relative amounts of 3-PG and 2-PG were determined by ELISA assays in the tumor tissues. N = 6 biological replicates. Data were presented as mean \pm SD. Student's *t*-test, ****P*<0.001.

Appendix Figure S17. Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones in liver cancer

A model of succinylation mediated by HAT1. As a writer, HAT1 affects Ksucc levels on various proteins, including histones and non-histones, which is involved in multiple cellular pathways of physiology and pathology. For histones, HAT1 is a novel histone succinyltransferase and enhances epigenetic regulation and gene expression profiling by catalyzing histone H3K122 succinylation. For non-histones, HAT1 facilitates glycolysis through catalyzing the succinylation of PGAM1 on K99 in tumor cells. Functionally, HAT1-mediated succinylation is essential for the progression of liver cancer.

Α	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24
HAT1	1	-		-	-	-	1	-	-	-		-	
β-actin	1	-	-	19-61	-		-						and the second s
	#25	#26	#27	7 #28	3 #29	9 #30 :	#31 #	¥32 :	#33	#34	#35	#36	#37 #38 #39 #40 #41 #42 #43 #44 #45 #46 #47 #48
HAT1	1	-	-	-	-	-			-		-	-	
β-actin	1	-		-			-	-	-	-	-	-	

в

SgRNA1 Site	TCCCTAGGCTGACATGACATGTAGAGGCTTT			
Clone#3	TCCCTAGGCTGACATGACA ···· GTAGAGGCTTT	-1bp		
(Clone 1)	TCCCTAGGCTGACATGACATGGCTAGAGGCTTT	+2bp		
SgRNA1 Site	TCCCTAGGCTGACATGACATGTAGAGGCTTT			
Clone#20	TCCCTAGGCTGACATGA ···· TAGAGGCTTT	-4bp		
(Clone 2)	TCCCTAGGCTGACATGACATTGTAGAGGCTTT	+1bp		
SgRNA2 Site	TGGA gctacgctctttgcgaccgt<mark>agg</mark>ctac	Indels		
Clope#34	TGGA gctacgctctttgcgactgacgtagg ctac	+2bp		
	TGGA gctacgctctttgcga<mark>t</mark>ccgtagg ctac	+1bp		

Yang G, et al. Appendix Figure S1

Yang G, et al. Appendix Figure S2

в

Yang G, et al. Appendix Figure S4

С

KEGG pathway

D

Protein domain

KEGG painway				Zecore/ log10/Fisher's exact test p value))	Protein	Protein aomain			Zecore/ legt0/Eicher's exact test a value))
				zseore(logit(lisher's exact test p value))					
D		Un nor	milated	-1.5 -1 -0.5 0 0.5 1 1.5	Down-r	eoulated	Up-re	gulated	-1.5 -1 -0.5 0 0.5 1 1.5
Down-re	eguiaiea	Op-reg	guiuteu	Pathways in cancer		Donn reginates		0.1	
Q1	Q2	Q3	Q4	Fluid shear stress and atherosclerosis	QI	Q2	Q3	Q4	1
				Longevity regulating pathway - multiple species		_			Aldehyde/histidinol dehydrogenase
				Legionellosis					Aldehyde dehydrogenase domain
				Th17 cell differentiation					Aldehyde dehydrogenase N-terminal domain
				Prion diseases					S100/CaBP-9k-type, calcium binding, subdomain
				IL-17 signaling pathway					Aldehyde dehydrogenase, C-terminal
				Histidine metabolism					S-100
				Ascorbate and aldarate metabolism					Crontonase, C-terminal
				Pentose phosphate pathway					Heat shock protein 70kD, peptide-binding domain
				PI3K-Akt signaling pathway					Heat shock protein 70kD C-terminal domain
				Arginine and proline metabolism		_			Heat shock protein Hsp90 N-terminal
				Thyroid bormone synthesis					Histidine kinase-like ATPase C-terminal domain
				Tuberculosis					Thisradovin like feld
				Glycolysis / Glyconeogenesis					
	_			Prostate cancer					Nucleotide-binding alpha-beta plait domain
				Lysine degradation					GroEL-like equatorial domain
				Tryptophan metabolism					GroEL-like apical domain
				Pyruvate metabolism					Calreticulin/calnexin, P domain
				beta-Alanine metabolism					Acyl-CoA oxidase/dehydrogenase, central domain
				Butanoate metabolism					Acyl-CoA dehydrogenase/oxidase, N-terminal
				Fatty acid elongation					Acyl-CoA dehydrogenase/oxidase, N-terminal and middle domain
				Glyoxylate and dicarboxylate metabolism					Acyl-CoA dehydrogenase/oxidase C-terminal
				Biosynthesis of amino acids					ATP-grasp fold, subdomain 1
				Fatty acid degradation					SuccinvI-CoA synthetase-like
				Fatty acid metabolism					ATP-citrate lvase/succinvl-CoA ligase
				Valine, leucine and isoleucine degradation				_	NAD(P)-binding domain
				Carbon metabolism				-	ATB-grosp fold subdomain 2
				Metabolic pathways					Thisless O terminal
				Propanoate metabolism					Thiolase, C-terminal
				Citrate cycle (TCA cycle)					I hiolase, N-terminal
				Estragon signaling pathway					Thiolase-like
				Antigen processing and presentation					Disulphide isomerase
				Necrontosis					Histone H2A, C-terminal domain
				Parkinson disease					NOPS
				Viral carcinogenesis					Class I glutamine amidotransferase-like
				Systemic lupus erythematosus					Histone H2A/H2B/H3
				Alcoholism					Histone-fold

Yang G, et al. Appendix Figure S11

Yang G, et al. Appendix Figure S15

1.0-0.5 0

3-PG

2-PG

C Ki67 shPGAM1 + PGAM1 shPGAM1 + PGAM1 (K99R)

shRNAs	Target sequence (5'-3')	
shHAT1-1	GCGTGTTATTGAACGACTTGC	
shHAT1-2	GGTCTAAAGATCCTGTTATAC	
shHAT1-3	GCTACAGACTGGATATTAA	
shPGAM1-1	TTTCTGCTTTATTGAGACCGG	
shPGAM1-2	ATGTTGCTGTAGAAAGGATGG	
shPGAM1-3	CCATCCTTTCTACAGCAACAT	
shKAT2A-1	CGTGCTGTCACCTCGAATGA	

Appendix Table S1: target sequences of shRNAs

Appendix Table S2: Primer list

Gene	Forward and reverse primer (5'-3')						
PCR							
CREBBP mRNA	TGAGAACTTGCTGGACGGAC						
	CACTGAGGCTGGCCATGTTA						
BPTF mRNA	CCCAGGTGGTGATGAAGCAT						
	TTCTGACACCGATCACAGCC						
RPTOR mRNA	TCTGTCGGCATCTTCCCCTA						
	CCAGCTCGCTGTCCACTG						
PGAM1 mRNA	TTGAATACAGCGACCCAGTGG						
	CTATCGATGTACAGCCGAATGGTG						
GAPDH	ACCAACTGCTTAGCCC						
	CCACGACGGACACATT						
CREBBP promoter	CTAGTGTCACGAGGTAGGGC						
	GGAATGGCCTCTGCAGGTTA						
BPTF promoter	TCAGGGTTGAGTCGCTGTGA						
	AGAGAGACAAGCCCCCTGAA						
RPTOR promoter	ACAAGAGGCTTGCCTCCAC						
1	CCGACAGACCAAACCTCCTC						
PGAM1 promoter	CACCTCTCCAGTTACTAAATTCCAT						
-	CTGTTCTTCTCCGAGCCCCAATCAG						
Plasmid construction							
HAT1-WT	CGCGGATCCATGGCGGGATTTGGTGCTATGG						
	CCGCTCGAGTTACTCTTGAGCAAGTCGTTCA						
HAT1 (I186E)	GCTTCAGACCTTTTTGATGTGGTTTGAGGAAACTGCTAGCTTTATTGACGTGG						
	CCACGTCAATAAAGCTAGCAGTTTCCTCAAACCACATCAAAAAGGTCTGAAGC						
HAT1 (T188A)	GACCTTTTTGATGTGGTTTATTGAAGCTGCTAGCTTTATTGACGT						
	ACGTCAATAAAGCTAGCAGCTTCAATAAACCACATCAAAAAGGTC						
HAT1 (S190A)	TGATGTGGTTTATTGAAACTGCTGCCTTTATTGACGTGGATGATGAAAG						
	CTTTCATCATCCACGTCAATAAAGGCAGCAGTTTCAATAAACCACATCA						
HAT1 (M241K)	GCCACGTGTAAGTCAGAAGCTGATTTTGACTCCAT						
	ATGGAGTCAAAATCAGCTTCTGACTTACACGTGGC						
HAT1 (K249R)	TGATTTTGACTCCATTTCAAGCTCAAGGCCATGGTGC						
	GCACCATGGCCTTGAGCTTGAAATGGAGTCAAAATCA						
HAT1 (G251A)	TCCATTTCAAGGTCAAGCCCATGGTGCTCAACTTC						
	GAAGTTGAGCACCATGGGCTTGACCTTGAAATGGA						
HAT1 (G253A)	TTCAAGGTCAAGGCCATGCTGCTCAACTTCTTGAA						
	TTCAAGAAGTTGAGCAGCATGGCCTTGACCTTGAA						

HAT1 (A254E)	CAAGGTCAAGGCCATGGTGAACAACTTCTTGAAACAGTTC
	GAACTGTTTCAAGAAGTTGTTCACCATGGCCTTGACCTTG
HAT1 (E276A)	AGTTCTTGATATTACAGCGGCAGATCCATCCAAAAGCTATG
	CATAGCTTTTGGATGGATCTGCCGCTGTAATATCAAGAACT
HAT1 (S279A)	ATATTACAGCGGAAGATCCAGCCAAAAGCTATGTGAAATTACG
	CGTAATTTCACATAGCTTTTGGCTGGATCTTCCGCTGTAATAT
HAT1 (S281A)	CAGCGGAAGATCCATCCAAAGCCTATGTGAAATTACGAGACT
	AGTCTCGTAATTTCACATAGGCTTTGGATGGATCTTCCGCTG
HAT1 (F288A)	AAGCTATGTGAAATTACGAGACGCTGTGCTTGTGAAGCTTTGTCAAG
	CTTGACAAAGCTTCACAAGCACAGCGTCTCGTAATTTCACATAGCTT
PGAM1-WT	CGCGGATCCATGGCCGCCTACAAACTGGTG
	CCGCTCGAGTCACTTCTTGGCCTTGCCCTG
PGAM1 (K99E)	GGGTCTAACCGGTCTCAAAAAAGCAGAAACTGCTG
	CAGCAGTTTCTGCTTTTTTGAGACCGGTTAGACCC
CRISPR/Cas9	
HAT1-sgRNA-1	GACCGTAGGCTGACATGACATGTAG
	AAACCTACATGTCATGTCAGCCTAC
HAT1-sgRNA-2	GACCGGCTACGCTCTTTGCGACCGT
	AAACACGGTCGCAAAGAGCGTAGCC

Antibodies	Origin	Applications
HAT1	Proteintech 11432-1-AP	Western blot
HAT1	Abcam ab194296	IP, ChIP
H3	Abcam ab1791	Western blot, IP
Pan Kac	PTMBIO PTM-105	Western blot,
Pan Kac	Abcam ab21623	IP
Pan Ksucc	PTMBIO PTM-419	Western blot, IP
Pan Bu	PTMBIO PTM-301	Western blot, IP
Pan Pr	PTMBIO PTM-201	Western blot, IP
Pan Cr	PTMBIO PTM-501	Western blot, IP
H3K122succ	PTMBIO PTM-413	Western blot, ChIP
H3K79succ	PTMBIO PTM-412	Western blot
H3K27ac	Abcam ab4729	Western blot
H3K122ac	Affinity AF4362	Western blot, ChIP
PGAM1	Proteintech 16126-1-AP	Western blot, IP
ENO1	Proteintech 55237-1-AP	Western blot, IP
РКМ	Proteintech 25659-1-AP	Western blot, IP
IgG Polyclonal Antibody	Abcam ab6789	ChIP, IP
Flag tag Monoclonal Antibody	Sigma-Aldrich SAB4200071	IP
Ki-67 Polyclonal Antibody	Proteintech 27309-1-AP	IHC
His-Tag Monoclonal Antibody	Proteintech 66005-1-Ig	IP
β -actin Monoclonal Antibody	Sigma-Aldrich A2228	Western blot

Appendix Table S3: antibodies used in this study

Protein	Succinylation site	Stoichiometry in HepG2 cells (mean, %)	Stoichiometry in HAT1-knockout HepG2 cells (mean, %)
PGAM1	K99	62.0	47.1
PGAM1	K240	26.3	18.1
ENO1	K232	53.9	38.4
PKM	K310	20.7	13.0
PGK1	K352	21.2	12.7
GPI	K123	18.8	12.7
GAPDH	K226	9.4	6.0
TPI	K178	49.5	40.7

Appendix Table S4: Stoichiometry of succinylation on glycolytic enzymes