Apppendix

Appendix Figure S1. OTUD1 deubiquitinases IREB2.	.2
Appendix Figure S2. OTUD1 promotes TFRC expression.	.4
Appendix Figure S3. Downregulation of OTUD1 is correlated with poor outcome of colorectal	
cancer	.6
Appendix Figure S4. OTUD1 augments host anti-tumor immunity	.7
Appendix Figure S5. OTUD1 promotes ferroptosis.	.9
Appendix Figure S6. OTUD1 promotes ROS accumulation1	1
Appendix Figure S7. Loss of OTUD1 impedes host anti-tumor immunity1	3
Appendix Table S1. The primers used for quantitative real-time PCR.	4

[Hs] Colon (SRA728025:SRS3454427)

OTUD1 expression

Α

В

Appendix Figure S1. OTUD1 deubiquitinases IREB2.

(A) t-Distributed stochastic neighbor embedding (t-SNE) plot of RNA-sequenced (scRNA-seq) single cells from human colon tissues (Left) and the expression of OTUD1 in different cell population (Right).

(**B** and **C**) *In vivo* ubiquitination assay of IREB2. HEK293T cells were co-transfected with indicated plasmids, treated with indicated reagents and subjected to immunoprecipitation with anti-FLAG antibody followed by western blot analysis.

Appendix Figure S2. OTUD1 promotes TFRC expression.

(A) Flow cytometric analysis of TFRC expression in mock and OTUD1 expressing CT26 cells with Hemin (100 μ M) and AFC (50 μ M) treatment. Gray shaded curve indicates isotype-matched control antibody.

(**B**) Flow cytometric analysis of TFRC expression in wild-type (WT) and $OTUD1^{-/-}$ NCM460 cells with DFO (100µM) treatment. Gray shaded curve indicates isotype-matched control antibody.

(C) Flow cytometric analysis of TFRC expression in wild-type (WT) or *Ireb2^{-/-}* CT26 cells with or without OTUD1 overexpression treated with AFC (50 μ M). Gray shaded curve indicates isotype-matched control antibody.

Appendix Figure S3. Downregulation of OTUD1 is correlated with poor outcome of

colorectal cancer.

(A) Violin plot of *OTUD1* mRNA levels in colorectal cancers at different clinical stages.

Appendix Figure S4. OTUD1 augments host anti-tumor immunity.

(A) Flow cytometric analysis of TFRC expression in mock (n = 4 tumors), OTUD1 (n = 6 tumors) and OTUD1^{C320S} (n = 5 tumors) expressing CT26 tumors. Gray shaded curve indicates isotype-matched control antibody.

 (\mathbf{B}) Flow cytometric analysis of TFRC expression in mock or OTUD1 expressing LLC tumors.

Gray shaded curve indicates isotype-matched control antibody.

(C) Flow cytometric analysis of CD8⁺ T cells, CD4⁺ T cells isolated from mock, OTUD1 and OTUD1^{C320S} expressing CT26 tumors in BALB/c mice.

(**D** and **E**) Flow cytometric analysis of CD8⁺ T cells, CD4⁺ T cells (**D**) and PD-1 expression in T cells (n = 6 mice) (**E**) isolated from mock and OTUD1 overexpressing LLC tumors. Gray shaded curve indicates isotype-matched control antibody.

С

Α

Appendix Figure S5. OTUD1 promotes ferroptosis.

(A) Histogram of propidium iodide (PI) in wild-type (WT) and $OTUD1^{-/-}$ NCM460 cells treated by H₂O₂.

(B) Histogram of propidium iodide (PI) in mock and OTUD1 expressing CT26 cells treated by

 H_2O_2 and cell death inhibitors.

(**C**) Histogram of propidium iodide (PI) in mock, OTUD1 or OTUD1^{C320S} expressing CT26 cells treated by ferroptosis activators.

(**D**) Histogram of PI in wild-type (WT) and $OTUD1^{-/-}$ NCM460 cells treated by ferroptosis activators.

Appendix Figure S6. OTUD1 promotes ROS accumulation.

(A) Intracellular ROS levels in mock, OTUD1 and OTUD1^{C320S} overexpressing CT26 cells treated with Erastin (10 μ M), AFC (50 μ M) or H₂O₂ (100 μ M) were detected by DCFDA staining. Gray shaded curve indicates isotype-matched control antibody. (B) Intracellular ROS levels in mock (n = 4 tumors), OTUD1 (n = 6 tumors) or OTUD1^{C320S} (n = 5 tumors) expressing CT26 tumors were detected by DCFDA staining. Gray shaded curve indicates isotype-matched control antibody. (C) Flow cytometric analysis of DCFDA in mock or OTUD1 expressing CT26 tumors with or without intratumoral injection of NP-VE. Gray shaded curve indicates isotype-matched control antibody.

(**D**)Tumor infiltrating CD4⁺ T cells and CD8⁺ T cells of mock or OTUD1 expressing CT26 tumors with or without intratumoral injection of NP-VE.

Appendix Figure S7. Loss of OTUD1 impedes host anti-tumor immunity.

(A) Flow cytometric analysis of TFRC expression in intestinal epithelial cells (IECs) from wild-type (WT) and $Otud1^{-/-}$ mice treated with AOM/DSS. Gray shaded curve indicates isotype-matched control antibody. (n = 4 mice).

(**B**) Intracellular ROS levels in colon tissues from wild-type (WT) or $Otud1^{-/-}$ mice treated with AOM/DSS (n = 4 mice) were detected by DCFDA staining. Gray shaded curve indicates isotype-matched control antibody. (n = 4 mice).

Primer name	Sequence (5'->3') -Forward	Sequence (5'->3') -Reverse
OTUD1	GATTCCCTGAGGCCTAGTATTT	CAGTTGTCGTACTCTGGGTTAG
TFRC	GGTGACCCTTACACACCTGGATT	TGATGACCGAGATGGTGGAA
IREB2	CTGCCGAGGATCTTGTGATTC	GGGTGTATTCTCAATCTGCGAA
GAPDH	ACCCACTCCTCCACCTTTGA	CTGTTGCTGTAGCCAAATTCGT

Appendix Table S1. The primers used for quantitative real-time PCR.