

Expanded View Figures

Figure EV1. Embryo attachment occurs normally in $Rb1^{d/d}$ mice.

- A H&E staining of implantation sites in $Rb1^{bf}$ and $Rb1^{d/d}$ mice at 09:00 h on day 5 of pregnancy. Scale bar = 100 μ m; arrowhead, embryo.
- B Immunostaining of COX2, a marker of embryo attachment reaction in the implantation sites of $Rb1^{f/f}$ and $Rb1^{d/d}$ mice at 09:00 h on day 5 of pregnancy. Scale bar = 100 μ m; arrowhead, embryo.
- C Uterine expression of Lif mRNA on day 4 of pregnancy was comparable between Rb1^{l/f} and Rb1^{d/d} mice (mean ± SEM, Student's t-test; n = 5 mice for each group).
- D Immunostaining of pSTAT3, a marker of activated LIF signaling in the implantation sites of $Rb1^{f/f}$ and $Rb1^{d/d}$ mice at 09:00 h on day 5 of pregnancy. Scale bar = 100 μ m; le, luminal epithelium; s, stroma; arrowhead, embryo.

Data information: le, luminal epithelium; s, stroma

Figure EV2. Normal expressions of ovarian Hsd3b1 mRNA and uterine estrogen receptor α (ER α), progesterone receptor (PGR), and FOXO1 proteins in Rb1^{d/d} mice.

- A Quantitative PCR demonstrated that ovarian expression of ovarian steroidogenic enzyme *Hsd3b1* mRNA was comparable between *Rb1^{l/f}* and *Rb1^{d/d}* mice on day 4 of pregnancy (mean ± SEM, Student's *t*-test; *n* = 5 mice for each group).
- B, C Immunohistochemistry demonstrated that uterine expression of ER α and PGR was comparable between $Rb1^{\ell/f}$ and $Rb1^{\ell/d}$ mice on day 4 of pregnancy. Scale bar = 100 μ m.
- D Immunohistochemistry demonstrated that uterine expression of FOXO1 was comparable between $Rb1^{f/f}$ and $Rb1^{d/d}$ mice on day 6 of pregnancy. Scale bar = 100 μ m; arrowhead, embryo.

Data information: le, luminal epithelium; s, stroma.

Figure EV3. Comparable uterine expressions of E_2 -responsive and P_4 -responsive genes in $Rb1^{\ell/f}$ and $Rb1^{d/d}$ mice on day 4 of pregnancy.

A, B Quantitative PCR demonstrated that uterine expression of E_2 -responsive (A) and P_4 responsive genes (B) was comparable between $Rb1^{f/f}$ and $Rb1^{d/d}$ mice on day 4 of pregnancy (mean \pm SEM, Student's t-test; n = 5 mice for each group).

- A Thymidine-induced cell cycle arrest in primary mouse epithelial cells. Mouse uterine epithelial cells were stained with propidium iodine, and cell fractions were quantified by flow cytometry.
- B, C Annexin V assay using a human endometrial epithelial cell line HEC151 showed that TNF α administration increases the expression of annexin V in growth-arrested HEC151 cells with thymidine treatment, but does not in the control cells (mean \pm SEM, Student's t-test). The assay was performed in duplicate for each group, and the examination was performed three times.
- D The expression of TNF receptor type 2 (TNFR2) was upregulated in growth-arrested HEC151 cells with thymidine treatment (mean \pm SEM, Student's t-test). Quantitative PCR was performed in quadruplicate for each group.

Figure EV5. RNA-seq analyses using uterine epithelium of Rb1^{f/f} and Rb1^{d/d} mice on day 4 of pregnancy.

- A Day 4 uteri were collected from *Rb1^{f/f}*, *Rb1^{d/d}*, P₄-primed *Rb1^{f/f}*, and P₄-primed *Rb1^{d/d}* mice. As for P₄-primed *Rb1^{f/f}* and *Rb1^{d/d}* mice, pre-implantation P₄ treatment (2 mg/mouse/day) was performed on days 2 and 3 of pregnancy. RNA-seq was performed using the uterine luminal epithelium dissected out by laser capture microdissection. The heatmaps depicted log₂ fold enrichment of differentially expressed genes (DEGs) among the uterine epithelium. Clusters were defined by k-means clustering. Each DEG has a log₂ fold change > |1| in at least one group comparing to others. Numbers shown in right indicate different gene clusters and numbers of DEGs in each cluster.
- B Gene regulatory systems in the gene cluster 6 in which the transcripts are poorly expressed in *Rb1^{d/d}* mice without P₄ supplementation compared with other groups were predicted in Enrichr by comparing our data with publicly available datasets as for transcriptional factors. DEGs in the cluster 6 were highly correlated with cell cycle-related TFs such as serum response factor (SRF) and E2F8.
- C GO terms analyses by Enrichr for the cluster 6 demonstrated that the genes related to epithelial differentiation and inhibition of cell proliferation are downregulated in the luminal epithelium of *Rb1^{d/d}* mice without P₄ treatment.
- D The heatmap of cell cycle-related genes in the luminal epithelium of *Rb1^{f/f}* and *Rb1^{d/d}* mice with and without pre-implantation P₄ treatment was demonstrated. Cyclin-dependent kinase inhibitors CDKN2A (p21) and CDKN2C (p18) were upregulated in *Rb1^{d/d}* mice with P₄ treatment compared with *Rb1^{d/d}* mice without P₄ treatment. Yellow, blue, and black indicate high, intermediate, and low gene expression, respectively.
- E Immunohistochemistry of CDKN2C (p18) protein in the uterus of $Rb1^{f/f}$ and $Rb1^{d/d}$ mice with and without P₄ treatment. Same as transcriptome analysis, CDKN2C staining was intense in the uteri of $Rb1^{f/f}$ and $Rb1^{d/d}$ mice with P₄ treatment compared with $Rb1^{d/d}$ mice without P₄ treatment. Scale bar = 100 μ m; le, luminal epithelium; s, stroma.

Е

D

Cell cycle related genes of uterine epithelium

Uterus (Day4) Rb1^{d/d} + P₄ Rb1^{f/f} Rb1^{d/d}

Figure EV5.