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Abstract:  
 

Snakebite causes more than 1.8 million envenoming cases annually and is a major cause of death in the 

tropics especially for poor farmers. While both social and ecological factors influence the chance encounter 

between snakes and people, the spatio-temporal processes underlying snakebites remain poorly explored. 

Previous research has heavily focused on statistical correlates between snakebites and ecological, 

sociological, or environmental factors, but the human and snake behavioral patterns that drive the spatio-

temporal process have not yet been integrated into a single model. Here we use a bottom-up simulation 

approach using agent-based modelling (ABM) parameterized with datasets from Sri Lanka, a snakebite 

hotspot, to characterise the mechanisms of snakebite and identify risk factors. Spatio-temporal dynamics of 

snakebite risks are examined through the model incorporating six snake species and three farmer types 

(rice, tea, and rubber). We find that snakebites are mainly climatically driven, but the risks also depend on 

farmer types due to working schedules as well as species present in landscapes. Snake species are 

differentiated by both distribution and by habitat preference, and farmers are differentiated by working 

patterns that are climatically driven, and the combination of these factors leads to unique encounter rates 

for different landcover types as well as locations. Validation using epidemiological studies demonstrated 

that our model can explain observed patterns, including temporal patterns, and relative contribution of bites 

by each snake specie. Our predictions can be used to generate hypotheses and inform future studies and 

decision makers. Additionally, our model is transferable to other locations with high snakebite burden as 

well.  
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Introduction  
 

Globally, five million people are bitten by snakes every year, resulting in approximately 94,000 deaths out 

of 1.8 million envenoming cases, and up to 400,000 morbidities [1,2]. Most of this burden occurs in the 

tropics of south east Asia and Sub Saharan Africa [2]. Despite its impacts, snakebite is still considered a 

neglected tropical disease that is concentrated among the poorest of the poor [2,3], and this  may have 

contributed to the lack of funding and scientific research on snakebite relative to other disease of similar or 

lesser burden [3–5]. In 2017 snakebite was declared a neglected tropical disease by the World Health 

Organization [3], which prompted the scientific community to increase efforts for combating this disease, 

including the development of a global snake bite strategy and roadmap [6].  

Several past studies have hypothesized on the importance of overlap between snake and human activities 

as a cause of snakebite patterns (e.g. [7,8]). However, previous research on snakebite has relied heavily on 

correlative models, that statistically relate bite data (e.g., from hospital admissions) to a range of social and, 

less often, environmental variables to identify key risk factors [9]. Such studies include those which 

incorporate climatic factors such as precipitation, humidity, and mean temperature [4,10–12], social factors 

including human population density, poverty, and farming activities [4,11,13–16], and ecological factors 

such as snake activity or distribution information [10,13,17,18]. For example, Yañez-arenas et al., (2016) 

show a correlation between snake distributions and bites, and Akani et al., (2013) matched patterns of snake 

activity with agricultural activity of local farmers across different months to reveal correlation with 

snakebite occurrences. However, no studies have yet taken a mechanistic socio-ecological approach that 

integrates both human and snake distributions and behaviors to investigate the ways in which snakebite 

epidemiology is simultaneously shaped by ecology, climate, and landscape characteristics.  

Agent based modelling (ABM) is a bottom up approach for modeling complex and adaptive systems. ABMs 

are comprised of collections of individuals (agents) that are programmed to display behavioral traits, while 

their interactions with each other generate phenomena at a higher level [19–22]. ABM is used both for 

representing the internal dynamics of complex systems, and discovering emergent patterns that may be 

found in those systems [23,24]. Spatially explicit social-ecological dynamics are increasingly modelled 

using an ABM approach (e.g.: [21,25,26]), such as those involving land use and land cover change 

[25,27,28]. ABM has also been used for modelling ecological epidemiology, including zoonotic disease 

transmission across landscapes (e.g.: [29]), mosquito behavior in models for malaria transmission [30], 

rabies transmission among foxes [31], and the spread of foot and mouth disease [32]. With snakebite sharing 

many socio-ecological characteristics with zoonotic diseases [9], ABM is an ideal and novel approach to 

investigate the epidemiology of snakebite from a mechanistic perspective (see Figure 1).  

Sri Lanka is a global snakebite hotspot [2]. It has been estimated that nationally there are more than 80,000 

snakebites a year, 30,000 of which involve envenoming. Due to high quality health systems, only around 
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400 of these result in deaths annually [11]. Nevertheless, morbidity is considerable and the total annual 

economic burden on households of snakebite envenoming in Sri Lanka amounts to almost $4 million, while 

it costs the public health system around $10 million per year [33]. Sri Lanka is home to over a hundred 

snake species, as well as nine medically important land snake species, including: Daboia russelii, Naja 

naja, Bungarus caeruleus, Bungarus ceylonicus, Echis carinatus, Hypnale hypnale, [34]. Many of these 

species also contribute to an extensive burden in neighboring regions in South Asia [35]. Previous studies 

have shown that the frequency of snakebites in Sri Lanka is spatially correlated with climatic, geographic, 

and socio-economic factors, such as ethnicity, age, occupation, and income [11], with bites occurring 

seasonally (primarily in the months of November-December, March-May and August) [7]. Snakebite 

incidence is broadly congruent with the geographical patterns of snake species occurrence across the island 

[36]. 

In this study, we integrate socio-ecological factors associated with snakebites in Sri Lanka into a single 

model by constructing an ABM simulation based on detailed datasets of snake distributions, snake 

behaviors, landscape characteristics, and farmers’ behavioral patterns. Sri Lanka provides an ideal case 

study for modeling snakebite mechanisms in this way, as not only is it a global hotspot of snakebite, it also 

provides highly reliable snakebite incidence data and has a high volume of accumulated medical research 

from which the model can be developed and validated [7,11,34,36]. We developed a spatially explicit ABM 

to analyze the spatio-temporal overlap between the different medically important snake species and farmers 

of different crops in Sri Lanka, and integrated climate and landcover as drivers of human-snake interaction 

across different affected landscape, in order to create a predictive model that can inform both future research 

as well as decision makers.  
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Figure 1: Modeling approach: Our model simulates daily and seasonal cycles. A day is represented as 24 

time steps. 1. Farmer agent: Farmer agent has its own daily/seasonal activity schedule according to farmer 

types (rice, tea, rubber). It owns its piece of crop land. Farmer agent commutes from its home location to 

its field. It moves inside of her crop area. 2. Snake activity layer: Snake activity level is determined by the 

snake species, crop types (habitat types) and precipitation. Snake species determines its distribution 

probability, habitat preferences, daily/seasonal activity schedule and attack rate. 3. Precipitation cycle: 

Precipitation affects snake activity and farmer’s activity.   

 

Materials and Methods 

Ethics statement  
Our research has been reviewed by the ethics review committee of the faculty of medicine, university of 

Kelaniya, reference number p/22512/2018. Our study included permission of consent by all participants 

who were interviewed during the field work.  
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1. Agent based modeling 
Agent based modelling (ABM) is a bottom up approach for modeling complex and adaptive systems using 

autonomous agents, where decisions by individuals is used for explaining macro level phenomenon [19–

22]. ABM is used both for explaining complex phenomenon that are not easily reducible to differential 

equations, and discovering emergent patterns and phenomenon found in those systems, as well as study the 

internal dynamics of these system [23,24]. ABM has been extensively used in different field of study for 

modeling complex phenomenon, such as social, political, and economical science [23]. There are now 

multiple programs used for ABM, including NetLogo [37], Repast [38], as well as the SpaDES package in 

R.  Recently, spatially explicit social-ecological dynamics are increasingly modelled using an Agent-based 

modeling approach (e.g.:[21,25,26,39]). It is commonly used for modelling social behavior including 

modeling land use and land cover change [25,27,28], as well as zoonotic disease transmission across 

landscape (e.g.: [29]). 

We used Netlogo [37] to develop a spatially explicit model that represents the dynamics of snakebites 

among farmers (S1 Figure 1-2). The model simulates real landscapes in the Study Area (see above), each 

of which is represented by a 2x2 km study location comprised of a matrix of 10x10m grid cells. We 

simulated 17 study locations in total.  

For the design and analysis of our model we used pattern oriented modelling (POM) [40,41]. This approach 

emphasizes use of multiple patterns at different hierarchical scales for calibration and validation in order to 

reduce uncertainty in model structure and paraments. This approach allows us to examine not only large 

scale phenomena (such as macro level epidemiological observations), but also probe the dynamics and 

intricacies of the mechanism(s) that may be hidden or unobservable by just examining the different patterns 

individually.  

The pattern oriented modelling protocol is comprised of four steps [40]: 1) aggregate known biological data 

regarding a system and use it to construct a model that is related to a hypothesis and is theoretically capable 

of reproducing previously observed patterns; 2) determine the parameter values of the system; 3) compare 

systematically between the independently observed data and those patterns predicted by the model, which 

may involve iteratively improving the model by removing certain parameters or choosing combinations of 

parameters that are more plausible or better represent observed patterns; and 4) look for secondary 

predictions in the model, which are different from the original patterns to which the model was compared 

during the third step of the process.  

For each one of the locations studied, the model uses a range of input data (see below) to simulate the 

movement and interactions of different ‘agents’ among cells for a fixed duration of time. We used a discrete 

time series comprised of both months and hours. Each month is condensed to 24 timesteps which are 

representative of individual hours of the daytime, and the simulation is performed across the 12 months of 

the year, comprising of 288 timesteps in total. Parameters and variables in the simulation are recorded and 
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updated both hourly and monthly, depending on the agent (snake seasonal activity and farmers’ working 

schedules update at the beginning of each month; snake daily activity is updated at the beginning of each 

hour, see below).  

There are two types of agents in the model: farmers and snakes. Farmers are able work in multiple land 

cover classes, depending on seasonal needs (see ‘Recording Farmer Characteristics’ below). Farmers have 

a state variable of working schedule, which includes the land cover type they should be farming, time of 

day they begin to work, and the number of hours they will spend working in that land cover class. Using 

the work schedule, the farmers move between the land cover they are farming and their home.  

Each snake agent is characterized by a set of ecological and behavioral traits, including: species, daily 

activity, habitat preference, aggressiveness, and seasonal activeness. Each species is given a set of 

probabilities for movement between land cover classes depending on the land association factor (see “Snake 

distribution and behaviour” below) and number of patches for each land cover class (see “Remote sensing 

dataset” below).  

The influence of the environment on agent activity is represented by climatic variables (precipitation and 

number of non-rainy days (see “Climate dataset” below)).  

 

 

2. Study area and spatial data 
We focused our modelling effort on the district of Ratnapura in the wet zone of Sri Lanka, which is 

characterized by high precipitation (see Figure 2). This district has a great diversity of crop types, including 

tea, rubber, coconut, as well as rice cultivation albeit practiced here on a smaller scale in comparison to 

other zones of Sri Lanka due to topographic conditions [42–44]. Within the district, we focused our research 

on four different divisions (Eheliyagoda, Balangoda, Kalawana, and Embilipitiya) that represented the 

variation in crop types within the district, and at  each division level we ran simulations on between 4-5 

locations, with 17 locations in total (see Figure 3).  
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Figure 2: Ecoregions of Sri Lanka [45]. Annual precipitation of the Ratnapura district (Bioclim variable 

12; [46]). The four different divisions (Eheliyagoda – northwest, Kalawana – southwest, Balangoda – 

northeast, and Embilipitiya - southeast) used in analyses are marked. The Ratnapura district borders on 

the highlands in the center of the country, the dry zone in the south east, and is part of the wet zone in its 

center and west. 

 

Landcover - The main attribute of each cell in the model is its landcover type (Rice, Tea, Forest, Rubber, 

Home). We used Sentinel-2 remotely sensed images from 2017 to produce vegetation type classification 

maps (Tile T44NMN and relative orbit numbers R119 & R076), which were chosen based on quality of 

images and percentage of cloud cover. Tiles were downloaded from the USGS earth explorer portal and 

were processed using the SNAP program and the Sen2cor plugin [47]. After removing cloud cover, the tiles 

were merged into a single tile before classification. 

We classified the images into five different landcover types giving importance to major crop types and 

vegetation in the district: forest, rubber, tea, paddy, and water bodies, with a resolution of 10 x 10m (Figure 

3). The classification was made using two different supervised classification algorithms: support vector 

machine (SVM) and maximum likelihood (ML), with 100 training polygons for each land cover type. We 

used spectra from 4 different bands and NDVI index for classification (band number 2 – Blue, band number 
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3 – green, band number 4 – red, and band number 8 – near-infra red), with band numbers 4 and 8 used for 

calculation of the NDVI index. We obtained an overall accuracy of 83.2% and kappa coefficient of 0.68 

for the SVM classification and an accuracy rate of 80.7% and kappa coefficient of 0.66 for the ML 

classification (see accuracy assessment in S2 Tables 1-2). The classification was later supplemented with a 

home class, where homes were randomly assigned in each study location in proportion to the population, 

with a fixed population size of 200 farmers for each simulation.  

Climate - We used monthly precipitation (mm) from the climate research unit dataset [48] downscaled to a 

resolution of 1km2, using the Delta method [46,49]. For each one of the locations modelled, we extracted 

the raster values and used them in our model as integer values for each month. In addition, we estimated 

the number of non-rainy days per month from past literature [50]. 
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Figure 3: Classification map using support vector machine (SVM). A) Classification map for the 

Ratnapura region created using a SVM classification and sentinel 2 satellite imagery. The Ratnapura district 

border is marked on the map (black line), and the four divisions where we conducted field work and ran 

simulations are marked (black dots, see also Figure 2). Variation in landcover types can be observed 

between locations, with B) the north east (Balangoda) having a mixture of all landcover types, C) the north 

west (Eheliyagoda) containing a high concentration of rubber plantations, D) the south east (Embilipitiya) 

containing a high concentration of rice farming, and E) the south west (Kalawana) containing many tea 

plantations next to forests.  

 

3. Human agent characteristics 
Farmer activity – The characteristics and behavior of farmers in the study area (see above) was first 

characterized via a community survey conducted during two weeks in July 2019. We visited four different 

divisions in the district of Ratnapura, and in each one we interviewed 10 farmers (40 in total) of different 

crops: with 22 engaged in rice farming, 22 in tea farming, and 10 in rubber (some farmers tend multiple 

crops). Each farmer was asked to answer a set of questions related to work schedules, including: planting 

season, harvest season, hour of starting work, hour of finishing work, seasonal rotation of crops, as well as 

size of plot. We also asked farmers about previous encounters with snakes, including location, and season 

when snakes were encountered . Our final farming dataset included a list of parameters that defined the 

farming behavior in the model (see Table 1). 
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Table 1: A complete list of parameters used in the model for all agent types. Each of the parameters 

is either an input for the snake behavior submodel, farmer behavior submodel, or a global variable (climate 

and landcover).  

 

Model Parameter Value  Source  

Farmers  Farmer type Rice, Rubber, Tea Field work  

Farmers  Land type work index 0-110 Field work 

Farmers Starting hour 4-9AM Field work 

Farmers Number of hours 
worked 

4-14 Field work 

Farmers Percentage of 
population working as 
farmers 

30-70% Government reports 

Snake Point process models  0-3*10^-8 Martin et al 2019 

Snake Seasonal activity 
probability 

0-1  Literature  

Snake Daily activity patterns 0-.5 Literature 

Snake Aggressiveness  1-10  Local herpetologists 
questionnaire  

Snake  Land association 
factor 

0-2.429 Calculated from snake 
data  

Land cover  Type of land cover Rice, Tea, Rubber, 
Forest, Water, Home 

Remote sensing 

Climate Mean monthly 
precipitation 

21-1054 Climate Research Unit 

Climate Number of rainy days 10-25 literature 
 

 

Based on the results of the survey, we allowed farmer agents in the model to have the option of moving 

among up to three different landcover types, and to choose between different working schedules on each 

landcover type. To take into account the seasonal variation of labour requirements according to the various 

cropping cycles, we first developed a labor index: 

(1)  𝐼𝑖𝑗 =
(247×𝐹𝑖𝑗)÷𝐴𝑖

30÷𝐷𝑖𝑗
 

where Iij is the labor index for landcover i during month j for 1 square kilometer of that landcover, Fij is the 

number of farmers needed at landcover i during month j for the size of landcover owned by a specific 

farmer, Ai is the size of landcover i in acres, and Dij is the number of days per month that land cover i is 

farmed during month j, and 247 is used to convert acres (the measurement farmers used when answering 

the questionnaire) into square kilometers.  

A mean value of Iij was calculated using the different index values obtained by the farmers and was 

distributed between the months according to the working schedule described by the farmers in the 
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interviews. For the rubber landcover the index was calculated for a single day, and then multiplied by the 

estimated number of non-rainy days that occur in that specific month, since rubber farmers cannot work in 

the rain due to technical limitations of rubber harvesting methods. 

In the model, the probability of each farmer attending each landcover type is then calculated at the beginning 

of each month: 

(4)  𝑊𝑖𝑗 =
𝑆𝑗×𝐼𝑖𝑗

𝑊𝑚𝑎𝑥
× 𝑃  

where Wij is the number of farmers that are going to work in month i in landcover type j, Sj is the size of 

landcover type j in a simulation, Iij is the labor index for month i and landcover j (from eq 1), Wmax is the 

maximum value of W possible for the location being simulated, and P is the farmer population size of the 

location being simulated. Once a farmer is assigned a certain landcover for month i, they will only work on 

that specific landcover during that month. 

The farmers are then assigned a random number from a uniform distribution composed of the possible 

number of hours farmers work in the field for that specific landcover, based on what was reported by the 

farmers interviewed during the field work (S2 Table 4). For the starting hour, the farmers choose a random 

value out of a normal distribution composed of the possible starting hours for that specific landcover, based 

on what was reported by the farmers during the field work (S2 Table 5).  

  

4. Snake agent characteristics 
Distribution and abundance - We used Poisson point process models (PPMs) to represent potential 

abundance of snakes for each species [51]. We interpreted these models as representing the relative carrying 

capacity and a proxy for potential abundance for each species in each one of the locations modelled in our 

simulation. In order to calibrate our model’s snake population size, we used previous research in which the 

species Hypnale hypnale was systematically surveyed to estimate the number of individuals per square 

kilometer of forest habitat [52]. This provided a link between PPM outputs and measured snake abundance 

in forest landscapes, which we then applied to other species and habitat types according to relative model 

weights following a habitat preference analysis (see below). This method resulted in abundance estimates 

up to 900 individuals per species per 2x2km tile (= up to 225 snakes per species per km2).  

Habitat preferences - Preference of landscape for each snake species was defined by a land association 

factor, calculated using the data points that were used to create the species distribution models. Using chi-

square tests, the likelihood of a snake species being found on a specific land cover versus the probability 

that it would be found there at random was calculated (Martin et al., unpublished). For this calculation we 

used land cover maps produced by Erinjery et al. (unpublished). 
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Activity and behaviour – We incorporated several different measures of snake activity and behavior into 

the model, including seasonal activity patterns, daily behavioural habits, movement preferences among 

available habitats, and aggressiveness.  

In the model, we assumed that there are a fixed number of snakes for each species present on a tile based 

on the PPM maps and population size estimate. Changes in activity levels throughout the year were defined 

according to observed seasonal activity in the tropics [53–55], and according to observations made on 

Hypnale spp [52]. At each monthly update a certain percentage of the snakes from each species becomes 

active according to the level of precipitation measured (see section 4), as calculated by: 

 (2)   𝐴𝑖 =
𝑃𝑖

𝑃𝑚𝑎𝑥
    

where Ai is the activity factor for month i , and Pi is the precipitation level for month i, and Pmax is the max 

level of precipitation for the region.   

The snake daily activity is determined probabilistically according to the snake activity patterns, with each 

species being pre-defined as either diurnal, nocturnal, crepuscular, or cathemeral [56]. A probability 

distribution was designed for each of the different daily activity patterns by identifying hours of sunrise and 

sunset, and setting the distributions in relation to those hours.  All snakes were defined to have a baseline 

probability of 0.1 (10% chance) for being active even in hours when they are biologically defined as 

inactive, e.g. nocturnal snakes during daytime, in order to capture the full scope of encounter probability as 

described by epidemiological surveys (see below).   

The probability of snakes moving to a specific landcover type is calculated using the amount of landcover 

type available and the attraction of the snake to that specific landcover type (see S2 Table 6 for the land 

association factor). The probability of each species moving to any type of landcover type was defined by a 

transition rule as: 

(3)  𝑀𝑖𝑗 =
𝑃𝑗𝐿𝑖𝑗

𝑃1𝐿𝑖,1+⋯+𝑃𝑛𝐿𝑖,𝑛
 

where Mij is the probability of an individual of snake species i to move to land cover type j, Pj is the number 

of cells of land cover j, and Lij is the landcover association factor between snake species i and landcover j. 

After calculating the transition rule, a random number is drawn to decide what landcover the snake will 

move to.  

 

5. Snakebites  
Agents are tracked within the model locations and their encounters (occurring in the same grid cell at the 

same time) recorded. The probability of a snakebite occurring during an encounter is calculated by taking 

into account the varying propensities of each species to attack during an encounter. We incorporated 
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aggressiveness by way of an aggressiveness index, which is a ranking of between 1-10 (1= docile, 10= very 

aggressive) as determined by local herpetologists (Table 2). The probability of a snakebite occurring is 

therefore calculated as:  

(5)  𝑃𝑖 =
𝐴𝑖

𝐴𝑚𝑎𝑥
   

where Pi is the probability of snake species i causing a snakebite when there is a human-snake interaction, 

Ai is the aggressiveness index for snake i, and Amax is the maximal value for aggressiveness. When humans 

and snakes meet on the same cell, a random number is drawn between 0-1, and if it is smaller than the value 

obtained from the calculation then a snakebite occurs. 

 

Table 2: Snake behavior profiles for each species, as reported by local expert herpetologists. These 

profiles were integrated into the snake agent behavior variables, with the aggressiveness index and dial 

activity directly integrated into the model, and zonation is given as a broad description while the habitat 

preference factor was used in order to define snake behavior.  

 

Species Common name Aggressiveness Daily activity Zonation  

Daboia russelli  Russell’s viper 8 Nocturnal Terrestrial 

Echis carinatus Saw scaled viper 10 Cathemeral Terrestrial 

Hypnale hypnale Hump nosed 

viper 

10 Nocturnal Semi-arboreal   

Hypnale zara Hump nosed 

viper 

10 Nocturnal Semi-arboreal   

Hypnale napa Hump nosed 

viper 

10 Nocturnal Semi-arboreal   

Bungarus caeruleus Common krait 2 Nocturnal Terrestrial 

Bungarus ceylonicus Ceylon Krait 1 Nocturnal Terrestrial 

Naja naja Cobra 5 Cathemeral/ Crepuscular Semi-aquatic  

 

 

 
 

6. Model evaluation 
 

We evaluated our model in two different ways: hypothesis testing (verification) and validation. For 

validation we used the “multiple patterns” methodology in order to check for consistency between the 

model and the observed data. This was done to make sure we were not overfitting the model, and to make 

sure it represented the general dynamics of the system [41,57].  For the hypothesis testing we examined the 

process representation to make sure our model represented both the micro and macro level phenomenon 
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correctly, and that the system properly represented the dynamics and mechanism(s) that it is supposed to 

be representing. For validation we used the model formulations that were chosen during model selection. 

In addition, for the variables that were tested during the sensitivity analysis we chose variable values that 

were parameterized using the analysis output in order to make sure the values were above a threshold that 

allowed emergent patterns to appear in our system. For the full description of model selection and sensitivity 

analysis see S3.  

Validation  

For external validation we chose multiple patterns on which there was already research conducted in Sri 

Lanka, such as temporal patterns of snakebites [7], the relative risk of snakebite between locations [11], 

and biting snake species composition among bite victims as inferred from hospital records [36]. This was 

done in accordance with the POM protocol [41], which suggests that multiple patterns be assessed and the 

fit between the model predictions and these patterns evaluated (as opposed to comparing results to a single 

statistic or a single pattern). This is supposed to prevent overfitting of the model to an expected output, or 

falsely representing the model by using only one output parameter, and to make sure that the model can 

represent the dynamics of the system that it is attempting to represent.  

Hypothesis testing 

We checked for consistency of process representation, following the spatial and temporal patterns of the 

snake and farmer agents, and snakebites. We did this for the distribution of snakebites across both the 

months of the year and across the hours of the day. We then checked when peak snakebites were occurring 

and their relationship to the movement patterns of the agents. This allowed us to make sure that the system 

was properly representing both the micro level (agents’ movements) and the macro level (snakebite 

distribution) and the relationship between them.  

Hypothesis generation 

The POM protocol also suggests looking for secondary predictions that emerge from the model and using 

them later for further validation if observations become available, and if not then using them to prompt 

further research in the field [40]. We checked for the following secondary predictions: monthly and daily 

patterns by snake species, by division, and by landcover type.  
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Results 
 

Validation 
Overall, the model performed well in differentiating between high and low risk locations. The results are 

based  simulation runs for 45 different locations across the entire district of Ratnapura, with high and low 

defined as above or below the median snakebite risk for all locations simulated. Predictions of the ABM 

showed a significant difference in prediction between locations where snakebite risk was above the median 

of all locations simulated and those where snakebite risk was below the median using Welch two sample t-

test  (t = -5.5391, df = 39.198, p-value < 0.001) (S1 Figure 1).  

 

The model also effectively predicted the relative contribution of different species to overall snakebite 

patterns as derived from hospital surveys [36], both in divisions 1-3 which were locatated in the wet zone  

(Eheliyagoda, Balangoda, and Kalawana), and divions 4 (Emptilipitiya) which was located in the 

intermediate zone (Table 3 & Figure 4). The number of cobra bites was overestimated in our model in all 

locations. Additionally, in contrast to the hospital survey our model did not include non-venomous species, 

so an over estimation is to be expected to a certain extent.  

 

 

 

Table 3: The average predicted proportion of bites from different snake species across four different 

locations. The first three divisions (Balangdoa, Eheliyagoda, Kalawana) belong to the wet zone of Sri 

Lanka, while the fourth region (Embilipitiya) belongs to the intermediate zone of Sri Lanka. 

 

 

Wet zone (1-3) Model prediction Hospital data 

Hump nosed viper 51-57% 65% 

Russell’s viper 21-24% 25% 

Cobra 23-26% 5% 

Non-venomous species  5% 

Intermedia zone (4) Model prediction Hospital data 

Russell’s viper 39% 50% 

Hump nosed viper 16% 30% 
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Common Krait 10% 10% 

Cobra 33% 5% 

Non-venomous species  5% 

 

 

Figure 4: The average predicted proportion of bites from different snake species across four 

different locations. The first three divisions (Balangdoa, Eheliyagoda, Kalawana) belong to the wet zone 

of Sri Lanka, while the fourth region (Embilipitiya) belongs to the intermediate zone of Sri Lanka.  

 

The model was also successful in predicting the temporal patterns of snakebite in Sri Lanka reported 

previously. Snakebite has been reported as having three peaks in general throughout the year (November–

December, March–May, August), although there are regional variations [7]. The ABM predicted the 

possibility of different main peaks of snakebites through the year, including a large peak in March-May 

(Balangoda, Eyeliyagoda, Kalanawa, Embilipitiya), a second peak around August (Balangoda, Kalanawa), 

and a third peak in November-December(Balangoda, Eyeliyagoda, Kalanawa, Embilipitiya) (Figure 5).  
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Figure 5: Snakebites per farmer across different months.  Results are based on 30 simulation runs for 

each location across 4 divisions representing snakebite patterns across the year.   

 

Hypothesis testing 
The model performed well in representing the micro level (agent movement) and its relation to the macro 

level (snakebite distribution), with a clear pattern of spatial-temporal overlap between snakes and farmers 

as the cause of snakebites (Figure 6). The highest frequency of snakebite during the year occurred when 

both farmers and snakes were present and active on the different landcover types, although bite frequency 

differed among landcover types. On tea plantations, snakebites are simulated to follow snake activity 

closely as the activity level of farmers is highly consistent throughout the year (Figure 6A & 6D). Since the 

level of snake activity is defined by the amount of precipitation, the snakebites patterns follow seasonal 

rainfall (Figure 6A & 6D). For rice paddies, snakebite peaks occur at different time periods – either in 

April-May (peak snake activity), in August (peak farmer activity), or November (a combination of both) 

(Figure 6B & 6E). This reflects seasonal variability of rice farmers’ behaviors, which have a different 

activity peak from snakes (Figure 6B & 6E). On rubber plantations, snakebites are a mixture of both snake 

and farmer activity as well, with the highest peak in bites occurring when snakes are most active in April-

June (Figure 6C & 6F).  
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Figure 6: Spatio-temporal overlap between farmers and snakes for each land cover type. Values 

represent the mean number of farmers, snakes, and bites for 660 simulation runs across all locations. Each 

graph in the first row follows the monthly spatio-temporal overlap between farmers and snakes for A) tea 

B) rice, and C) rubber, and each graph in the second row follows the snakebite pattern that emerges out of 

the spatio-temporal overlaps for D) tea E) rice, and F) rubber .  

 

Distinct patterns of spatio-temporal overlaps on the daily level are also evident. For the tea landcover, peak 

activity tends to follow a bimodal pattern with peaks occurring in both late afternoon and early morning 

(S1 Figure 2A). This pattern reflects the working pattern of tea farmers that tend to start working early 

during the day, but also follow long working hours, which results in farmers meeting snakes both when 

snakes are active early morning, and when snakes are active during late afternoon. For the rice land cover, 

snakebites have the highest probability of occurring during late afternoon when farmers and snakes have 

high overlap, but may also occur in the early morning during peak activity months (S1 Figure 2B). This 

pattern reflects the working pattern of rice farmers that tend to start later during the day, but work for long 

hours, there for increasing the chances of encounter while snakes are active later in the day. For rubber, 

snakebites have the highest probability of occurring during the early hours of the morning (S1 Figure 2C). 

This pattern reflects the working pattern of rubber farmers that tend to start working early in the day when 

snakes are active, but also have short working hours, so a second snakebite peak later in the day does not 

occur.  

 

Hypothesis generation 
A secondary prediction of our model was that the monthly burden of snakebites varies across locations, 

(Figure 7). Our model predicted that in drier locations the peak in bites occurs earlier in the year during 

February-April, whereas wetter locations tend to have a higher peak in bites during the month of May 

(Figure 7). The different patterns cannot be traced to a single factor but is likely caused by a combined 
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effect of land cover and climatic differences, and the interaction between snakes, farmers, and their 

environment between these locations (see S1 Figures 3-7). This prediction also suggests that there may be 

significant temporal differences in snakebites between the wet, dry, and intermediate zones in Sri Lanka.  

Another secondary prediction from our model estimates that the monthly distribution of snakebites varied 

between species, with a different pattern for each species (Figure 7). These different patterns are not caused 

by snake activity alone, but by a combination of snake habitat preference, snake activity, and the seasonal 

patterns of farmers on different landcover types. 

 

 

 

Figure 7: Secondary predictions A) the yearly distribution of snakebites for different divisions. Each 

division showed a distinct pattern of snakebite, with the largest peak of the year varying between March 

and May. B) The yearly distribution of snakebites for different species. Each species showed different 

snakebite peaks through the year, with the largest peak occurring between February and May.  
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Discussion 
 

Snakebite affects poor and rural populations that are exposed to venomous snakes, yet few studies have 

attempted to decompose spatial and temporal patterns and predict risk on the basis of social-ecological 

causative mechanisms. Here we develop a mechanistic model to examine snakebite dynamics by simulating 

snake-human encounters in rural agricultural communities using an agent-based model (ABM). Our 

simulation represents the farmer-snake interactions that are driving snakebite patterns in Sri Lanka, a bite 

hotspot country within the highly affected South Asian region. While it has been previously shown that 

snakebites can have strong spatial and temporal patterns [11,36], and different studies have explored these 

patterns on local scales [58,59], our model provides a unique mechanistic perspective regarding the 

emergence of these patterns from basic ecological principals regarding species interactions on a more local 

scale. Results showed that the model performed well in simulating snakebite occurrences across spatial and 

temporal scales, including daily and seasonal patterns, biting species assemblages, and bite incidence 

variation among locations (Figure 4-6 and S1 Figure 1-7).  

The results suggest that the risks of snakebite depend on factors influencing the behaviors of both farmers 

and snakes, including landcover, precipitation, and the interaction between humans and snakes (Figure 6-

7). Our model also concurs with previous research showing that seasonal precipitation patterns dictate 

patterns of snakebites by influencing the activities of both snakes and farmers (Figure 6) [4,11]. We further 

discovered that different crop types result in distinct work schedule in relation to daily human activities and 

rainy seasons, greatly altering overall risk profiles of snakebites for each crop (Figure 6 E-G). Additionally, 

the composition of snake species is different among various crop types (SI 1 Figure 7), leading to complex 

social-ecological interactions that in turn contribute to snakebite risk [13].  

Our model suggests greater resolution on the composition of species delivering bites is essential in order to 

better resolve snakebite risks in future (Figure 4). Previous research has supported the idea that following 

the ecology and behavior of each species would give a better understanding of both the mechanism driving 

bite patterns for individual snake species [17], and for different types of landcover (e.g.: [60]). Our model 

provides a mechanistic explanation for the ways snake ecology and human behavior combine to result in 

species specific snakebite patterns. For example, in our study system, although two species (Russell’s vipers 

and Hump nosed vipers) show similar seasonal activity patterns, a stronger preference for rice paddies for 

one of the species (Russell’s vipers) and a stronger preference for rubber plantations in the other species 

(Hump nosed vipers) results in very different temporal patterns of encounter. Understanding the overall 

pattern of snakebite therefore requires understanding of the specific ecology of each species (Figure 7B).  

Such differences in an example of why predicted snakebite patterns vary considerably between locations, 

since spatial heterogeneity of famer types and snake species create fine scale differences in encounter risk, 

a prediction which concurs with previous research [11,12,36,61]. In our study, this difference between 
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locations was in practice caused by a combination of factors, including different distributions of key 

landcover types and climatic conditions, which in turn affect either snakes or famers or both. For example, 

the division of Embilipitiya, which is located in the intermediate climatic zone of Sri Lanka, had a less 

suitable environment for Hump-nosed vipers and a high concentration of rice paddies, resulting in a 

snakebite pattern different, including overall risk, temporal patterns of risk and biting species composition, 

to those found in the sites in the wet zones (Figures 4-5 & 7).  

Broader applications of our approach are highly feasible. Since our model describes the socio-ecological 

mechanisms of snakebites rather than deriving correlative estimates of risk, it would be possible to re-

parameterize the model with data from other regions to generate baseline snakebite risk predictions at any 

spatial or temporal scale pending availability of suitable data types. Other studies have already invoked 

similar mechanisms to explain observed patterns of risk in rural communities outside of Sri Lanka (e.g.: 

[13,16]), and as such our model has strong potential for applications in other areas across the tropics. For 

example, locations outside of Sri Lanka that include some of the same venomous snakes species have shown 

yearly temporal distributions of snakebites that contrast with those observed inside of Sri Lanka [15,16,62], 

which provides a strong avenue for hypothesis generation and testing of the model in different systems. 

Further afield, other studies have similarly reported land-use specific risks (e.g. rubber in Liberia and rice 

in the Philippines) [63,64]. Transferring the model to these regions could shed further light on the 

combinations of factors that underpin different snakebite patterns among different locations, again a 

potentially fruitful avenue for hypothesis generation or validation. 

While our model represented some of the most important snake behavior factors relevant to snakebite, there 

are other elements that we did not address, primarily due to data limitations. These include reproduction 

phenology and its association with climate [4], seasonal variability in landcover preferences [52], or 

species-specific feeding strategies. Similarly, we have not captured all the behavioral traits of farmers, such 

as differences in farming practices between small and large plantations, seasonal crop rotations [65], and 

additional crop types (e.g., small gardens, cinnamon, banana, coconut) [43], adaptive characteristics that 

represent farmers’ planning strategies over multiple years, or specific behaviors relating to snakebite 

epidemiology, such as health seeking behavior or the use of protective measures (e.g., boots) [66]. 

Nevertheless, our model has demonstrated the importance of integrating both human and snake behavior 

into a single model and has shown that integrating even a few essential characteristics can have strong 

explanatory value for predicting patterns of snakebite.   

Snakebite is an ongoing concern in Sri Lanka, and across southern Asia and much of the tropical and 

subtropical developing world. The World Health Organization has launched a strategic plan to reduce 

snakebite injuries and mortality by 50% by the year 2030, yet it has been suggested that one of the key 

barriers to preventing snakebite is the lack of good quality research to help direct effort [35]. Here we 

explored fine scale spatially explicit predictions by developing a novel mechanistic model to explain 
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snakebite risks based on snake behaviors (e.g. snake activities and distributions) and farmer behaviors (e.g. 

work schedules for different landcover types). Our approach is based on clear, general mechanisms and 

strong socio-ecological theory and is therefore highly transferrable to other systems, where the risks of 

snakebite are similarly associated with occupational characteristics, environmental conditions and snake 

ecological traits [8,16,18,67–69]. Our model, once implemented with local dataset, can examine the local 

socio-ecological drivers of snakebites and predict spatial and temporal snakebite patterns, as well as 

generating hypotheses and testing the efficacy of policy intervention. The insights gained in this study will 

help to focus future efforts to collect relevant data and resolve key mechanisms underlying snakebite risk, 

which should help advance management planning and the direction of scarce management resources.  
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Supporting information 1 – Additional Results 
 

 

 

Figure 1: Model output of mean snakebite risk for locations with high and low snakebite occurrence 

values estimated by Ediriweera et al 2016. Results are based on 30 simulation runs for 45 different 

locations across the entire district of Ratnapura, with high and low defined as above or below the median 

snakebite risk for all locations. 
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Figure 2: The daily spatial temporal overlap of farmers and snakes. The values are an average of 660 

simulation runs. Each graph follows the daily spatio-temporal overlap between farmers and snakes that 

cause the emergence of snakebites patterns for A) tea B) rice, and C) rubber. 
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Figure 3: A secondary prediction of bitting hour between different divisions. our model shows that 

different divisions are going to have different daily distributions of snakebites.  
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Figure 4: A secondary prediction of snakebite occurrence hour in different landcover types. our 

model shows that different landcover types are going to have different daily distributions of snakebites 

across the hours of the day.  

 

 

Figure 5: A secondary prediction of species biting hour. Our model shows that different species of 

snakes are going to have different distributions of snakebites across the day.  
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Figure 6: A secondary predictions monthly distribution of bites by landcover. Our model shows that 

the different landcovers are going to have different patterns of snakebites distribution across the year.  
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Figure 7: A secondary predictions of species biting on each landcover. Our model shows that the 

different landcovers are going to have different compositions of snake species causing snakebites.  
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Supporting information 2 – Supporting Materials 

 

 

Figure 1: Model outline. Columns represent the different subprocesses in the model, rows represent the 

different units of scheduling, and colours represent the different agents and inputs/outputs of the model. 

Lines between boxes represent the relationship between the agents and variables. Climate and landcover 

affect the agents’ behaviours across space and time, and this generates the spatio-temporal overlap 

between snake and humans that drive snakebite patterns.   
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Figure 2: Model structure. The model structure represented through UML class diagram. The attributes 

and operations of each class are simplified in order to represent the entire process and the relations 

between classes.  
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Overall Accuracy = (53684/64481)  83.2555%   

Kappa Coefficient = 0.6847   

Class    Commission      Omission           Commission             Omission   

 (Percent) (Percent)             (Pixels)             (Pixels)   

Rubber         43.58         87.05             659/1512               5732/6585   

Water 0.59           0.00               43/7265                  0/7222   

Forest 16.43          3.68               7556/45990           1469/39903   

Rice 13.39          29.14             654/4885               1740/5971   

Tea 39.03          38.67             1885/4829             1856/4800 

 

Class    Prod. Acc.     User Acc.           Prod. Acc.            User Acc.   

 (Percent)       (Percent)             (Pixels)             (Pixels)   
 

Rubber 12.95           56.42             853/6585                853/1512   

Water 100.00         99.41            7222/7222              7222/7265   

Forest 96.32           83.57            38434/39903          38434/45990   

Rice 70.86           86.61             4231/5971               4231/4885   

Tea 61.33           60.97             2944/4800               2944/4829   
 

   

Table 1: accuracy assessment for support vector machine classifications 

 

Overall Accuracy = (52041/64481)  80.7075%   

Kappa Coefficient = 0.6664   

Class Commission      Omission           Commission             Omission   

 (Percent)     (Percent)             (Pixels)             (Pixels)   

Rubber 57.38         81.97             1598/2785            5398/6585   

Water 0.12          0.00                 9/7231                   0/7222   

Forest 11.86         10.88              4783/40344          4342/39903   

Rice 14.34         33.96              660/4603              2028/5971   

Tea 56.63         14.00              5390/9518             672/4800   

 

Class Prod. Acc.     User Acc.           Prod. Acc.            User Acc.   

 (Percent)     (Percent)             (Pixels)             (Pixels)   

Rubber 18.03          42.62            1187/6585              1187/2785   

Water 100.00         99.88            7222/7222              7222/7231   

Forest 89.12          88.14            35561/39903          35561/40344   

Rice 66.04          85.66            3943/5971               3943/4603   

Tea 86.00          43.37             4128/4800              4128/9518  

   

 Table 2: accuracy assessment for maximum likelihood classifications 
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Month Rice  Tea Rubber 

Jan 12.16 80.8 5.2*R 

Feb 72.96 80.8 0 

Mar 99.39 80.8 5.2*R 

Apr 84.5 80.8 5.2*R 

May 33.8 80.8 5.2*R 

Jun 16.9 80.8 5.2*R 

Jul 52.2 80.8 5.2*R 

Aug 110.06 80.8 5.2*R 

Sep 50.28 80.8 5.2*R 

Oct 13.26 80.8 5.2*R 

Nov 79.68 80.8 5.2*R 

Dec 38.72 80.8 5.2*R 

 

Table 3: The mean index value for labour needed to farm a square kilometre of each one of the landcover 

types. The index value for rice varies through the year and is based on both the labour needed and the 

likelihood to work on the landcover at a specific month. The mean value for tea is equal between all months 

since seasonality doesn’t affect labour in tea plantations. The value for rubber is dependent on the mean 

value of the index and on R which represents number of non-rainy days during a specific month.  

 

 

 

Hours Rice Tea Rubber 

3 0 0 1 

4 1 1 0 

5 1 1 2 

6 0 3 2 

7 1 2 3 

8 1 8 0 

9 5 2 0 

10 1 3 1 

11 5 1 0 

12 2 0 0 

13 1 1 0 

14 0 0 0 

15 0 0 0 

16 0 0 0 

17 1 0 0 

18 1 0 0 

 

Table 4: The table represents the different possible number of hours worked on the different landcover 

types as reported by farmers during our field work. 
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Hours rice tea rubber 

4 0 0 1 

5 0 1 4 

6 5 2 3 

7 10 12 1 

8 4 6 0 
 

Table 5:  The table represents the different possible start hours for the different landcover types as 

reported by farmers during our field work. 

 

 

Specie Forest Rubber Rice Home Tea 

Hypnale 
hypnale 

0.929 0.976 0.348 2.472 1.387 

Naja naja  .653 .895 1.352 5.209 .387 

Daboia russelii 0.573 0.953 1.440 5.599 0 

Bungarus 
ceylonicus  

0.825 1.087 0 24.92 1.27 

Bungarus 
caeruleus 

0.722 1.012 1.289 4.277 0 

Trimeresurus 
trigonocephalus 

1.051 0.947 0.235 2.269 0.777 

Echis carinatus 0.391 0.408 2.429 4.585 0 

 

Table 6: The land association factor between different snake species and landcover types, based on 

Martin et al. 2019 unpublished.  
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Supporting information 3 – Technical Evaluation  
 

Model selection:  
For model selection we removed models that gave unrealistic representations of the system we are 

modeling, including non-realistic proportions of snakebites between species and unlikely months for 

snakebite peaks. If a certain mathematical formulation of our model caused the loss of a pattern that was 

previously observed on the macro level, then it was not used for later analysis.  

We checked the structure of the model by comparing different relationships between variables and 

outcomes. More specifically, we checked for the possible relationship between the aggressiveness index 

and the propensity of snakes to bite, and the different possible relationships between precipitation and snake 

activity. This allowed us to make sure our modeling method was sensible before checking for the sensitivity 

of our model to changes in variable magnitude. The different relationships were observed through the yearly 

distribution of bites, the daily distribution of bites, the attack assemblage of species causing the bites, and 

the total number of bites.   

1. The aggressiveness index was collected as ordinal data, a ranking of the propensity to bite of the 

different snake species. For this index, in addition to the linear relationship between the 

aggressiveness index and the propensity to bite as described above, we checked two additional 

mathematical relationships: a concave relationship represented by √𝑎𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠, where 

snakes with a low score would be more affected by the index while snake species with high scores 

would show similar behavior; and a convex relationship represented by (aggressiveness)2, where 

snakes with a high score would be more affected by the index and snakes with low scores would 

show more similar behavior. 

2. We also checked three different relationships between precipitation and snake activity, a linear 

relationship as described above, where snake activity is directly proportional to precipitation; a 

concave (decelerating) relationship represented by  √
𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛

𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥
, and a convex (accelerating) 

relationship that was represented by (precipitation/precipitationmax)2.  

Sensitivity analysis  
 

We then conducted a sensitivity analysis against four different variables for which we had insufficient data 

or no data at all. Our sensitivity analysis helped identify which variables were the most influential on the 

simulation output. During the sensitivity analysis we used a linear relationship between the aggressiveness 

index and the propensity to bite for the sake of simplicity and saving computation time.  

The variables used for the sensitivity analysis were:  
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1. After the model selection step, we chose to conduct additional sensitivity analysis for both a linear 

relationship and a concave relationship between precipitation and snake seasonal activity, but not 

for a convex relationship because it produced unrealistic patterns in the model selection step. For 

the two possibilities we checked the effects of different strengths of association between the 

precipitation and activity as:  

a.  (precipitation / precipitationmax)x with x = 0.1, 0.25, 0.5, for the concave relationship. 

b.  (x + precipitation)/(x + precipitationmax), with x = 100, 500, 900 For the linear relationship. 

2. We originally defined the baseline dial activity levels of snakes with a probability of being active 

at p = 0.1. For the sensitivity analysis we checked a baseline probability of activity with a value of 

p = 0, 0.2 and 0.3 for all species except for cathemeral snakes, which were kept at a probability of 

0.1 across all times of day.  

3. The labour index value was collected during the field work and represented the expected number 

of people working in a 1 km2 area for each landcover. This index was used as an input for the 

algorithm that decides how farmers allocated their time to different land cover types according to 

seasonal needs. For the sensitivity analysis we checked the lowest and the highest value of the 

index.  

4.  Since our snake population size was calibrated using previous research, for the sensitivity analysis 

we checked for different population sizes. We changed the factor that was used for scaling up the 

PPM models by values that ranged between 1x1010 and 9x1010 .  

The results of the sensitivity analyses were monitored with several different model outputs: frequency of 

bites in different landcovers, frequency of bites across snake species, daily distribution of bites, monthly 

distribution of bites, number of bites per location, and total number of bites per simulation run.  

 

Results 
The most-probable relationships between the aggressiveness index and the propensity of snakes to bite were 

convex and linear, based on the aggressiveness index (see Figures C.1-4). The most probable relationships 

between snake seasonal activity and rainfall were linear and concave (decelerating) (see Figures C.5-8).  

In the sensitivity analysis, for the precipitation signal strength  we found a threshold value with which a 

yearly pattern of snakebites is transformed (see Figures C.10, C.14). For population size a significant 

threshold was observed when the PPM models were scaled up by a value of 1x1010 under which our model 

no longer showed any significant pattern (see Figures C.26). For the labour index and the baseline activity, 

we kept the values as they were originally defined (see Figure C.17-24), since we did not find any significant 

thresholds. 
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Figure 1: Our simulation was executed 30 times for each functional relationship at each one of the locations modelled. 

Changing the functional relationships for the aggressiveness index and propensity to bite had only a small effect on 

the percentage of snakebites occurring on each landcover type, but had a large effect on the percentage of bites caused 

by each one of the species, with a convex functional relationship showing an increased number of Hump nosed viper 

bites, and a decreased number of Cobra bites. 

 

 

Figure 2:  Changing the functional relationships between the aggressiveness index and the propensity to bite had an 

effect on the daily distribution of snakebites, with the early morning snakebite peak becoming much large when a 

concave relationship was defined. For the yearly distribution of snakebites there was change in magnitude but not in 

pattern.  
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Figure 3: Changing the functional relationships between the aggressiveness index and propensity to bite had a only a 

moderate effect on the geographical patterns of snakebites, where each one of the divisions showed similar patterns 

when the functional relationship changed. 
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Figure 4: Changing the functional relationships had some effect on the total number of bites, with the mean number 

of snakebites remaining similar, but for the convex relationships there was a lower mean and less variance in 

comparison with the linear, and concave.  

 

 

Figure 5: Our simulation was executed 30 times for each functional relationship at each one of the locations modelled. 

Changing the functional relationships influenced the percentage of snakebites occurring on each landcover type with 

the convex relationship causing less snakebites on rice paddies and more snakebites on rubber plantations.  There was 

also an effect on the percentage of bites caused by each one of the species, with a convex functional relationship 

showing an increased number of Hump nosed viper bites, and fewer Russell’s viper bites. 

 

Figure 6: Changing the functional relationships influenced the distribution of bites both on the daily level and on the 

monthly level. On the daily level there was only a change in magnitude, with the concave relationship showing a 

higher number of snakebites through the different hours of the day. On the monthly level there was also a change in 

pattern. While the linear and convex relationships showed similar patterns across the year, the concave relationship 

showed a different patter, with a much larger peak between February and May, and a second large snakebite peak at 

the month of August.    
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Figure 7:  Changing the functional relationships between precipitation and snake seasonal activity levels influenced 

the different locations modelled at the different divisions in different ways, meaning that the different functional 

relationships had an effect on the geographical distribution of snakebites.  
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Figure 8: Changing the functional relationships between precipitation and the snake seasonal activity influenced the 

total number of snakebites. The convex relationship showed a smaller mean of snakebites across different simulations, 

and less variation in the number of snakebites as well. The concave relationship showed a high mean than the other 

two, and much more uncertainty in model outcomes.   

 

 

 

Figure 9: Our simulation was executed 30 times for each relationship intensity at each one of the locations modelled 

according to the following posibilites: (precipitation / precipitationmax)x with x = 0.1, 0.25, 0.5,. The different 

signal strengths between a concave precipitation function precipitation and snake seasonal activity had only a small 

effect on the percentage of snakebites occurring on each landcover type, and the percentage of snakebites caused by 

each one of the snake species.  

 

Figure 10: The different relationships intensities between a concave precipitation function and snake seasonal activity 

had a strong effect on the temporal distribution of snakebites. On the daytime level the differences only amounted to 

change in magnitude as the signal was strengthened. On the monthly level we observed change in pattern as well, 

when after a certain reduction in signal strength we lose some of the distinct yearly snakebite patterns such as a 

snakebite peak between March and May.  

 



 

48 
 

 

Figure 11: The different relationship intensities between a concave precipitation function and snake seasonal activity 

tended to effect different regions in similar ways. An increase in intensity of signal had the same effect regarding 

number of snakebites across all locations that we modelled.  
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Figure 12: The different relationship intensities between a concave precipitation function and snake seasonal activity 

showed that an increase in intensity causes an increase in total number of snakebites. The distribution of snakebites 

around the mean remained relatively similar regardless of the intensities. 

 

 

Figure 13: Our simulation was executed 30 times for each signal strength at each one of the locations modelled 

according to the following possibilities: (x + precipitation)/(x + precipitationmax), with x = 100, 500, 900. Changing 

the signal strength had only a small effect on the percentage of snakebites occurring in each landcover type, and only 

minor effects on the percentage of bites caused by each on the of the snake species.  

 

Figure 14: Changing the signal strength had an effect both on the daily distribution of snakebites and on the monthly 

distribution of snakebites. With a weak and medium signal, the snakes were mostly active regardless of precipitation, 

so snakebite patterns tended to follow the working patterns of the farmers, while with the strong and linear signals 

snakes were only active when precipitation was high, and in these two cases snakebite patterns tended to be more 

influenced by snake activity.  
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Figure 15: changing the signal strength tended to effect different regions in similar ways across different divisions.  

 

 

Figure 16: Changing the signal strength factor influenced the total number of snakebites both on the mean and the 

variance of snakebites per farmer.   
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Figure 17: Our simulation was executed 30 times for each activity baseline at each one of the locations modelled with 

the following possibilities for baseline activity: p = 0, 0.1, 0.2 and 0.3 for all species except for cathemeral snakes, 

which were kept at a probability of 0.1 across all times of day. Changing the baseline activity probability had only a 

small effect on the percentage of snakebites on each landcover type but had some effect on the percentage of bites 

caused by each one of the snake species. A lower baseline probability tended to result in a higher proportion of 

Russell’s viper bites, while a higher baseline level increased the proportion of bites caused by Cobras.  

 

Figure 18: Changing the baseline activity probability had a very strong effect on the distribution of snakebites across 

the day. A high baseline probability caused a shift of snakebite peak later into the day. Lower baseline activity levels 

tended to generate a bimodal peak pattern with one large peak in the morning and a second large peak at late afternoon. 

Changing baseline activity caused a change in magnitude for the yearly distribution of snakebites, but not in pattern.  
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Figure 19: Different baseline probabilities tended to effect different divisions in similar ways. An increase in baseline 

probability had the same effect regarding the relative number of snakebites across all divisions that we modelled.  
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Figure 20: The different baseline probabilities showed that an increase in value would cause an increase in total 

number of snakebites. The distribution of snakebites around the mean also changed, with a larger variance for higher 

baseline probability levels, meaning that the uncertainty levels were increase as well.  

 

 

 

Figure 21: Our simulation was executed 30 times for each intensity value at each one of the locations modelled, where 

we checked the lowest and highest index values in addition to the mean value. Changing the index influenced the 

percentage of bites that occurred on the different landcover types.  The higher index values that were used caused 

more snakebites on the rice landcover. Rice had the largest difference between the lowest index value and the highest 

index values, and this was most likely driving the variation in output. The species of snakes causing snakebites only 

showed a moderate variation between index values.   

 

 

Figure 22: Changing the index value had almost no effect on the patterns of snakebites both on the daily level and a 

moderate effect on monthly level, with minor differences in the August peak between the different index values.  
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Figure 23: Changing the work index values had only small differences in the total number of snakebites on the division 

level.  

 

Figure 24: Changing the work index values had not difference in the total number of snakebites. In this output 

measurement our system showed robustness to the variation in values that we collected during our field work. 
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Figure 25: Our simulation was executed 30 times for each population factor at each one of the locations modelled, 

where changed the factor that was used for scaling up the PPM models by values that ranged between 1x1010 and 

9x1010. Different population sizes had only a minor effect on either the percentage of snakebites on each landcover 

type and the percentage of bites caused by each one of the snake species.  

 

Figure 26: changing the population size had a change in magnitude in the number of snakebites across days, and across 

months. Below a certain population size the monthly pattern of snakebites stopped showing a distinct yearly pattern 

where there are distinct major peaks in snakebites, as well as distinct peaks in the daily distribution of snakebites.     
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Figure 27: The different population sizes effect the different divisions in distinct ways. While all divisions showed a 

linear increase in number of snakebites as the snake population was increased, the rate of increase between regions 

was different.  
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Figure 28: Different population sizes tended to increase the mean number of snakebites, but also increase the variance 

in number of snakebites per farmer. The larger population sizes had a larger uncertainty level regarding number of 

bites per farmer.  

 

 

 



 

 

 

 



 

 

 

  



 

 

 

 

 

 




