
S1 Appendix.

Summary. In this supplementary information we derive the key mathematical
expressions which are used and referred to in the main text.

Time-independent Markov model

Assuming that the conditional probabilities β and γ are constant, the time-independent
Markov model may be mapped to the following recursion relation

pn = βpn−1 + (1− γ)(1− pn−1) . (1)

As in the main text, defining the system state vector as

pn =

(
pn

1− pn

)
, (2)

we may rewrite Eq (1) above in the form pn = Mpn−1 where we have defined the
following transition matrix

M ≡
(

β 1− γ
1− β γ

)
. (3)

The eigenvalues and eigenvectors of M are given by

λ′ = 1 , v′ =
1

2− γ − β

(
1− γ
1− β

)
≡
(

q
1− q

)
, (4)

λ = β + γ − 1 , v =

(
−1
1

)
. (5)

where v′ is normalised to sum to 1. Given that |λ| < 1 in all realistic circumstances, it
is clear from this description that v represents the equilibrium of the system over
multiple rounds with λ defining the rate of relaxation towards it. When λ = 0, the
model becomes a history-independent model in which the next round is dictated solely
by its probability at that round.

In order to study the dynamics in more detail, we apply the following transformation

pn → p̃n = pn(β + γ − 1)1−n , (6)

to the relation given by Eq (1), such that

p̃n = p̃n−1 + (1− γ)(β + γ − 1)1−n . (7)

Through explicit summation, Eq (7) is solved by

p̃n − p̃1 =

n∑
n′=2

(p̃n′ − p̃n′−1) =

n∑
n′=2

(1− γ)(β + γ − 1)1−n
′
. (8)

By reapplying the inverse transformation p̃n → pn to Eq (8) and identifying
p̃1 = p1 = α, we obtain the following solution to Eq (1)

pn = α(β + γ − 1)n−1 +

n∑
n′=2

(1− γ)(β + γ − 1)n−n
′

= α(β + γ − 1)n−1 +
1− γ

β + γ − 2

[
(β + γ − 1)n−1 − 1

]
. (9)
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Fig a. The probability of receiving treatment in the n-th round given by the
Markovian model solution in Eq (9) for a range of γ values. The other probabilities
have been fixed to α = 0.5 and β = 0.5.

Equivalently, satisfying the dual to Eq (1) in terms of the probability of non-treatment
in the n-th round 1− pn, solutions to Eq (9) must also satisfy

1− pn = (1− α)(β + γ − 1)n−1 +
1− β

β + γ − 2

[
(β + γ − 1)n−1 − 1

]
. (10)

In Fig a we illustrate the dynamics of the system using Eq (9) with range of parameter
values chosen for γ. Notice, in particular, that the system exhibits oscillation before
relaxing to a steady state when γ is chosen such that the eigenvalue λ = β + γ − 1 < 0.

For another way of calculating the expected lengths of repeat adherence E(n
T

) or
non-adherence E(n

F
) of an individual (as computed in the main text), given that they

begin with the same choice in the first round, one need only fix (α = β, γ = 1) or
(α = 1− γ, β = 1) and take moments with Eq (9), respectively, such that

(α = β, γ = 1) ⇒ E(nT) =

∞∑
n=0

n

(
1− pn

pn−1

)
pn−1

=

∞∑
n=0

n(1− β)βn−1 =
1

1− β
(11)

(α = 1− γ, β = 1) ⇒ E(n
F
) =

∞∑
n=0

n

(
1− 1− pn

1− pn−1

)
(1− pn−1)

=

∞∑
n=0

n(1− γ)γn−1 =
1

1− γ
. (12)

Time-dependent Markov model

Consider the choice matrices with elements CT
nn′ and CF

nn′ corresponding to the
conditional probabilities of treatment and non-treatment in round n given treatment
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and non-treatment in round n′, respectively, such that

pn =

n−1∑
n′=1

[
CT

nn′pn′ + CF
nn′(1− pn′)

]
. (13)

When the only nonzero elements of the choice matrices in Eq (13) are along the their
lower diagonals, i.e., such that only CT

nn−1 = βnn−1 6= 0 and CF
nn−1 = 1− γnn−1 6= 0,

the system is described by a time-dependent Markov process with recursion relation

pn = βnn−1pn−1 + (1− γnn−1)(1− pn−1) . (14)

Following a similar argument to the one used in solving the homogeneous Markov case,
we may obtain an implicit solution to Eq (14). Using the transformation

pn → p̃n =
pn∏n

n′=2(βn′n′−1 + γn′n′−1 − 1)
, (15)

we once again substitute into the relation given by Eq (14), yielding

p̃n = p̃n−1 +
1− γnn−1∏n

n′=2(βn′n′−1 + γn′n′−1 − 1)
, (16)

where Eq (16) is solved by the explicit summation

p̃n − p̃1 =

n∑
n′′=2

(p̃n′′ − p̃n′′−1) =

n∑
n′′=2

1− γn′′n′′−1∏n′′

n′=2(βn′n′−1 + γn′n′−1 − 1)
. (17)

Using the corresponding inverse transformation to Eq (16) we hence obtain a solution to
Eq (14), which is given by

pn = α

n∏
n′=2

(βn′n′−1+γn′n′−1−1)+

n∑
n′′=2

(1−γn′′n′′−1)

n∏
n′=n′′

(βn′n′−1+γn′n′−1−1) . (18)

General choice matrices: non-Markovian models

The most general set of causal adherence models described by Eq (13) have choice
matrices which take the form

CT =


0 0 0 . . .

CT
nn−1 0 0 . . .

CT
nn−2 CT

n−1n−2 0 . . .
...

...
...

 CF =


0 0 0 . . .

CF
nn−1 0 0 . . .

CF
nn−2 CF

n−1n−2 0 . . .
...

...
...

 , (19)

where ‘non-Markovian’ behaviour in the n-th round clearly corresponds to a past
behaviour dependence between rounds which exceeds the immediate last round, i.e.,
CT,F

nn−m 6= 0 where m > 1.
Notice that all of the adherence models that we have identified in this work may be

categorised by various constraints on the elements of the choice matrices introduced in
Eq (13). For completeness and reference, these are

1. Past behaviour-independent adherence that is time-independent: ∀n > 1 only
CT,F

nn−1 6= 0, CT
nn−1 = CF

nn−1 = c and p1 = c, giving one degree of freedom
multiplied by the number of independent bins for population-level heterogeneity.
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2. Past behaviour-independent adherence that is time-dependent: ∀n > 1 only
CT,F

nn−1 6= 0, CT
nn−1 = CF

nn−1 = cn and p1 = c1, giving n degrees of freedom
multiplied by the number of independent bins for population-level heterogeneity.

3. Markovian past behaviour-dependent adherence that is time-independent: ∀n > 1
only CT,F

nn−1 6= 0, CT
nn−1 = β, CF

nn−1 = 1− γ and p1 = α, giving 3 degrees of
freedom multiplied by the number of independent bins for population-level
heterogeneity.

4. Markovian past behaviour-dependent adherence that is time-dependent: ∀n > 1
only CT,F

nn−1 6= 0, CT
nn−1 = βnn−1, CF

nn−1 = 1− γnn−1 and p1 = α, giving 2n− 1
degrees of freedom multiplied by the number of independent bins for
population-level heterogeneity.

5. Non-Markovian past behaviour-dependent adherence that is time-dependent:
∀n > 1 and ∀n′ < n only CT,F

nn′ 6= 0 and p1 = α, giving 1 + n(n− 1) degrees of
freedom multiplied by the number of independent bins for population-level
heterogeneity.

Likelihoods and Bayesian evidence

Let the data now correspond to a set of n-vectors D = {X} where each individual’s
adherence or non-adherence behaviour in the n-th round is recorded, such that
Xn = T,F. Using Eq (13) the full generalisation of the likelihood (which supports all of
the possible adherence models, becomes

L(D|θ) =
∏
∀Xn∈D

n∏
n′=1

{
n′−1∑
n′′=1

[
CT

nn′1Xn′=T + CF
nn′1Xn′=F

]}
, (20)

where 1A denotes an indicator function which takes value unity when condition A is
satisfied, else it vanishes.

The large number of available degrees of freedom in Eq (20) motivates a systematic
approach to inferring the choice matrix components from a given set of data. We elect
to consider models which isolate the many degrees of freedom by constructing scenarios
where past behaviour-dependent adherence only occurs for a single round and is
temporally dependent on only one other round — all other degrees of freedom are hence
set to those corresponding to time-dependent past behaviour-independent adherence, i.e.
CT

nn′ = CF
nn′ = cn. The likelihood for this more restricted set of models — which we

denote as Lnn′(D|θ), where nn′ corresponds to the pair of rounds chosen to be
dependent on each other in time — may be obtained by rewriting Eq (20) in the
following form

Lnn′(D|θ) =

(1− CT
nn′)

Zn′n
TF (CT

nn′)
Zn′n

TT (1− CF
nn′)

Zn′n
FF (CF

nn′)
Zn′n

FT

∏
∀n′′ 6=n

c
Nn′′
n′′ (1− cn′′)N−Nn′′ , (21)

where we have defined
Zn′n
AB ≡

∑
{∀X |Xn′=A, Xn=B}

NX , (22)

where the data D = {NX} has now been compressed into the set of numbers of people
who track the same behaviour as X, i.e., for 3 rounds, this forms the set of the
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following numbers of people: NTTT, NTTF, NTFT, etc. The Bayesian evidence integral
corresponding to Eq (21) with a choice of flat prior π(θ) ∝ 1 is therefore

Enn′ =

∫ 1

0

(1− CT
nn′)

Zn′n
TF (CT

nn′)
Zn′n

TT

∫ 1

0

(1− CF
nn′)

Zn′n
FF (CF

nn′)
Zn′n

FT dCT
nn′dC

F
nn′

×
∏
∀n′′ 6=n

[∫ 1

0

c
Nn′′
n′′ (1− cn′′)N−Nn′′dcn′′

]

=
Γ(Zn′n

TF + 1)Γ(Zn′n
TT + 1)

Γ(Zn′n
TT + Zn′n

TF + 2)

Γ(Zn′n
FF + 1)Γ(Zn′n

FT + 1)

Γ(Zn′n
FF + Zn′n

FT + 2)

×
∏
∀n′′ 6=n

Γ(Nn′′ + 1)Γ(N −Nn′′ + 1)

Γ(N + 2)
. (23)

Some non-Markovian past dependence may be captured by the likelihood defined in
Eq (21), however their Bayesian evidence may need to be compared with equivalent
Markovian models which also generate decaying long-term correlations of a particular
form. Using the same formalism as Eq (21), the time-dependent Markov model has the
following likelihood

L(D|θ) =

αNT(1− α)NF

∏
∀n≥2

(1− CT
nn−1)Z

n−1n
TF (CT

nn−1)Z
n−1n
TT (1− CF

nn−1)Z
n−1n
FF (CF

nn−1)Z
n−1n
FT ,

(24)

and, hence, yields the following Bayesian evidence

E =

∫ 1

0

αNT(1− α)NFdα
∏
∀n≥2

∫ 1

0

(1− CT
nn−1)Z

n−1n
TF (CT

nn−1)Z
n−1n
TT

×
∫ 1

0

(1− CF
nn−1)Z

n−1n
FF (CF

nn−1)Z
n−1n
FT dCT

nn−1dCF
nn−1

=
Γ(NT + 1)Γ(NF + 1)

Γ(N + 2)

∏
∀n≥2

Γ(Zn−1n
TF + 1)Γ(Zn−1n

TT + 1)

Γ(Zn−1n
TT + Zn−1n

TF + 2)

Γ(Zn−1n
FF + 1)Γ(Zn−1n

FT + 1)

Γ(Zn−1n
FF + Zn−1n

FT + 2)
.

(25)

Eqs (24) and (25) may also be used to obtain the likelihood of the time-independent
Markov model

L(D|θ) =

αNT(1− α)NFβ
∑
∀n≥2 Zn−1n

TT (1− β)
∑
∀n≥2 Zn−1n

TF γ
∑
∀n≥2 Zn−1n

FF (1− γ)
∑
∀n≥2 Zn−1n

FT ,
(26)
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and the Bayesian evidence of the same model

E =

∫ 1

0

αNT(1− α)NFdα

∫ 1

0

β
∑
∀n≥2 Zn−1n

TT (1− β)
∑
∀n≥2 Zn−1n

TF dβ

×
∫ 1

0

γ
∑
∀n≥2 Zn−1n

FF (1− γ)
∑
∀n≥2 Zn−1n

FT dγ

=
Γ(NT + 1)Γ(NF + 1)

Γ(N + 2)

Γ
(∑

∀n≥2 Z
n−1n
TF + 1

)
Γ
(∑

∀n≥2 Z
n−1n
TT + 1

)
Γ
[∑
∀n≥2

(
Zn−1n
TT + Zn−1n

TF

)
+ 2
]

×
Γ
(∑

∀n≥2 Z
n−1n
FF + 1

)
Γ
(∑

∀n≥2 Z
n−1n
FT + 1

)
Γ
[∑
∀n≥2

(
Zn−1n
FF + Zn−1n

FT

)
+ 2
] . (27)
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