
S3 Appendix.

Summary. In this supplementary information, we analyse some of the existing models
of adherence from the literature in the context of our proposed framework.

The Plaisier model

Several models of MDA treatment programmes employ an adherence model developed
by Plaisier in the context of onchocerciasis control [8, 20]. The Plaisier model assigns a
propensity score for adherence to each individual which they then retain for the duration
of the MDA programme [14,15]. In the time-independent form, this model would be
characterised by us as a heterogeneous population, time-independent model with no
explicit individual dependence on past behaviour — though more recently developed
models include time dependent effects through coverage variability between rounds. In
the simplest model, the individual probability of adherence is given by U (1−c)/c, where
U is a uniform random number and c is expected probability of treatment and hence
the expected coverage. The model is therefore completely parameterized by the overall
expected coverage. The PDF for the adherence probability for this process is given by

π(p) =
c

1− c
p(2c−1)/(1−c) . (1)

The PDF of p rises monotonically from zero to one for all values of c > 0.5 and falls
monotonically for c < 0.5 (for c = 0.5, it is flat). Note that π(p) is a beta distribution:
π(p) = Beta[p; c/(1− c), 1]. For this distribution, the mean failure run length is hence
given by

E(n
F
) =

c

2c− 1
. (2)

Note that in this model, adherence failure run length becomes undefined at a coverage
of 50% or less. Additionally, one can show that the variance of this random variable
becomes undefined for values of coverage below 66%, suggesting that failure run lengths
in finite populations drawn from this distribution will exhibit extreme variability.

The probability of an individual being untreated across N rounds of MDA in this
model can also be calculated, giving

πun =

∫ 1

0

(1− p)NBeta[p; c/(1− c), 1] dp =
c

1− c
B[c/(1− c), N + 1] , (3)

where B(·, ·) is the beta function. Fig a shows the distribution of adherence
probabilities for 2 different coverage values and also the probability of an individual not
adhering with treatment across a 4-round MDA programme.

Note here that in order to fully implement the Plaiser model in our framework, the
additional variability in time through coverage would have to be added to our
description. This should be straightforward to do within our proposed formalism.

The Griffin Model

The adherence model used by Irvine et al [5] to model MDA adherence in the treatment
of lymphatic filariasis was originally created by Griffin et al in the context of
intervention strategies against malaria transmission [21]. The original Griffin model is
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Fig a. A) Probability of an individual with adherence drawn from the Plaisier distribution of not adhering with treatment
during a 4 round MDA programme. B) The probability distribution for adherence for coverages of 25% and 75%.

quite broad and deals with multiple simultaneous interventions and the correlations in
their uptake. It does not include conditional dependencies for an individual’s behaviour
and is therefore a heterogeneous population, time-independent, individually past
behaviour-independent model in its simplest form. Each individual in the population is
assigned a correlation parameter, ui, drawn from a normal distribution with mean u0
and variance σ2. These parameters are retained throughout the MDA programme. At
each round a MDA round, each individual draws a unit-variance normal deviate with
mean ui, z. Treatment is received if z < 0. The expected coverage is given by
φ(−u0/

√
1 + σ2), where φ is the standard normal cumulative probability function. This

leaves one free parameter to control the distribution of adherence probabilities across
the population.

The cumulative distribution of adherence probability, p, is given by

π(p) = φ[φ−1(p; 0, 1) + u0; 0, σ2] , (4)

giving a PDF

P (p) ∝ exp

[
−1− σ2

2σ2

(
φ−1(p) +

u0
1− σ2

)2
]
. (5)

The function φ−1(p; 0, 1) varies monotonically in the range (−∞,∞) with p. In Eq (5),
the parameter σ = 1 acts to discriminate between two functional forms. For σ < 1, the
distribution has a ‘normal’ shape with a single local maximum, while for σ > 1, the
distribution has asymptotes with local maxima at the p = 0 and/or 1. In this, it is very
similar, qualitatively, to the beta distribution (see Fig b).
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Fig b. Adherence probability distributions with A) σ = 1.2 and B) σ = 0.5 for mean coverages of 25% and 75%. The
probability distribution for adherence for coverages of 25% and 75%.

References
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