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1 Model description

We present here the system of equations that account for both household saturation of transmission
and household quarantining. As described in the main text, individuals may be susceptible (S), ex-
posed (E), with detectable infection (D), or undetectable infection (asymptomatic, U). Undetectable
infections are assumed to transmit infection at a reduced rate given by τ . We let superscripts denote
the first infection in a household (F ), a subsequent infection from a detectable/symptomatic house-
hold member (SD) and a subsequent infection from an asymptomatic household member (SU). A
fraction (H) of the first detected case in a household is quarantined (QF ), as are all their subsequent
household infections (QS).

Model equations

The full equations are given by

dSa
dt

= −
(
λFa + λSDa + λSUa + λQa

) Sa
Na

,

dEFa
dt

= λFa
Sa
Na
− εEFa ,

dESDa
dt

= λSD
Sa
Na
− εESDa ,

dESUa
dt

= λSU
Sa
Na
− εESUa ,

dEQa
dt

= λQS − εEQa ,

dDF
a

dt
= da(1−H)εEFa − γDF

a ,

dDSD
a

dt
= daεE

SD
a − γDSD

a ,

dDSU
a

dt
= da(1−H)εESUa − γDSU

a ,

dDQF
a

dt
= daHεE

F
a − γDQF

a ,

dDQS
a

dt
= daHεE

SU
a + daεE

Q
a − γDQS

a ,

dUFa
dt

= (1− da)εEFa − γUFa ,

dUSa
dt

= (1− da)ε(ESDa + ESUa )− γUSa ,

dUQa
dt

= (1− da)εEQa − γUQa ,
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with the forces of infection obeying

λFa = σa
∑
b

(
DF
b +DSD

b +DSU
b + τ(UFb + USb )

)
βNba,

λSDa = σa
∑
b

DF
b β

H
ba,

λSUa = σaτ
∑
b

UFa β
H
ba,

λQa = σa
∑
b

DQF
b βHba,

where βHba (with the subscript ba corresponding to transmission from age group b towards age group
a) is household transmission and βNba = βSba + βWba + βOba is all other transmission locations, comprising
school-based transmission (βSba), work-place transmission (βWba ) and transmission in all other locations
(βOba). σa corresponds to the age-dependent susceptibility of individuals to infection, da the age-
dependent probability of displaying symptoms (and hence being detected), and τ represents reduced
transmission of infection by undetectable individuals compared to detectable infections.

Amendments to within-household transmission

Given the novelty of the additional household structure that is included in this model, we clarify
in more detail here the action of this formulation. We give a simpler set of equations (based on a
standard SIR model) that contains a similar household structure; in particular, we take the standard
SIR model and split the infected class into those first infected within a household (IF ) and subsequent
infections (IS):

dS

dt
= −βHSIF − βOS(IF + IS)

dIF
dt

= βOS(IF + IS)− γIFS

dIS
dt

= βHSIF − γIS
dR

dt
= γ(IF + IS)

where the transmission rate is also split into within household transmission βH and all other trans-
mission βO (i.e out-of-household transmission). Again, we make the assumption that only the first
infection in any household generates infections within the household. We compare this to the SIR
model without this additional structure:

dS

dt
= −β̂HSI − β̂OSI

dI

dt
= β̂HSI + β̂OSI − γI

dR

dt
= γI

where we retain the split in transmission type.

The early growth rate of the two models are r̂ = β̂H + β̂O − γ for the simple SIR model, and r =

1
2

[
βO − 2γ +

√
βO2 + 4βOβH

]
for the household structured version. From this simple comparison,

it is clear that for the simple model the growth rate can remain positive even when control measures
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substantially reduce transmission outside the home (β̂O gets reduced), whereas in contrast for the
structured version there is always a threshold level of transmission outside the household (βOc =
γ2/(βH + γ)) that is needed to maintain positive growth.

For both the simple model given here and the full COVID-19 model, the inclusion of this addi-
tional household structure reduces the amount of within-household transmission compared to a model
without this structure — as only the initial infection in each household (IF ) generates secondary
within-household cases. It is therefore necessary to rescale the household transmission rate βH to
obtain the appropriate average within-household attack rate. For the full COVID-19 model, we find
that a simple multiplicative scaling to the household transmission (βH → zβH , z ≈ 1.3) generates a
comparable match between the new model and a model without this household structure – even when
age structure is included.

Relationship between age-dependent susceptibility and detectability

We interlink age-dependent susceptibility, σa, and detectability, da, by a quantity Qa. Qa can be
viewed as the scaling between force of infection and symptomatic infection. Taking a next-generation
approach, the early dynamics would be specified by:

R0Da = daσaβ
N
ba (Da + τUa) /γ R0Ua = (1− da)σaβNba (Da + τUa) /γ

where Da measures those with detectable infections, which mirrors the early recorded age distribution

of symptomatic cases. Explicitly, we let da = 1
κQ

(1−α)
a and σa = 1

kQ
α
a . As a consequence, Qa = κkdaσa;

where the parameters κ and k are determined such that the oldest age groups have a 90% probability
of being symptomatic (d>90 = 0.90) and such that the basic reproductive ratio from these calculations
gives R0 = 2.7.
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2 Public health measurable quantities

The main model equations focus on the epidemiological dynamics, allowing us to compute the number
of symptomatic and asymptomatic infectious individuals over time. However, these quantities are not
measured - and even the number of confirmed cases (the closest measure to symptomatic infections) is
highly biased by the testing protocols at any given point in time. It is therefore necessary to convert
infection estimates into quantities of interest that can be compared to data. We considered five such
quantities which we calculated from the number of newly detectable symptomatic infections on a given
day nDd.

1. Hospital Admissions: We assume that a fraction PD→Ha of detectable cases will be admitted
into hospital after a delay q from the onset of symptoms. The delay, q, is drawn from a distri-
bution DD→H

q (note that
∑

qD
D→H
q = 1.) Hospital admissions on day d of age a are therefore

given by

Ha(d) = PD→Ha

∑
q

DD→H
q nDd−q

2. ICU Admissions: Similarly, a fraction PD→Ia of detectable cases will be admitted into ICU
after a delay, drawn from a distribution DD→I

q which determines the time between the onset of
symptoms and admission to ICU. ICU admissions on day d of age a are therefore given by

ICUa(d) = PD→Ia

∑
q

DD→I
q nDd−q

3. Hospital Beds Occupied: Individuals admitted to hospital spend a variable number of days in
hospital. We therefore define two weightings, which determine if someone admitted to hospital
still occupies a hospital bed q days later (THq ) and if someone admitted to ICU occupies a

hospital bed on a normal ward q days later (T I→Hq ). Hospital beds occupied on day d of age a
are therefore given by

Ho
a(d) =

∑
q

Ha(d− q)THq +
∑
q

ICUa(d− q)T I→Hq

4. ICU Beds Occupied: We similarly define T Iq as the probability that someone admitted to ICU
is still occupying a bed in ICU q days later. ICU beds occupied on day d of age a are therefore
given by

ICUoa (d) =
∑
q

ICUa(d− q)T Iq

5. Number of Deaths: The mortality ratio PH→Deatha determines the probability that a hospi-
talised case of a given age, a, dies after a delay, q drawn from a distribution, DH→Death

d between
hospitalisation and death. The number of deaths on day d of age a are therefore given by

Deathsa(d) = PH→Deatha

∑
q

Ha(d− q)DH→Death
d

These nine distributions are all parameterised from individual patient data as recorded by the COVID-
19 Hospitalisation in England Surveillance System (CHESS) [1].

However, these distributions all represent a national average and do not therefore reflect regional
differences. We therefore define regional scalings of the three key probabilities (PD→Ha , PD→Ia and
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PH→Deatha ) and two additional parameters that can stretch (or contract) the distribution of times spent
in hospital and ICU. These five regional parameters are necessary to get good agreement between key
observations in all regions and may reflect both differences in risk groups (in addition to age) between
regions or differences in how the data are recorded between devolved nations. We stress that these
parameters do not (of themselves) influence the epidemiological dynamics, but do strongly influence
how we fit to the evolving dynamics.
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3 Key inferred parameters

We show the distribution of key parameters from the MCMC process in Fig A. We predict a moderate
α and low τ ; the moderate α translates into a sharp change in susceptibility with age (σa) but a more
steady change in the probability of symptoms. We also show the impact of restrictions (φ) for the ten
regions within the model.

Fig A: Key parameters inferred by the MCMC process. The top two figures show the frequency
distribution of α and τ which control the age-structured dynamics; the red line shows the uninformative prior
([0, 1] and [0.0.5] respectively. The middle row shows the results of the inferred α value, giving the distributions
of da and σa. The lower figure shows the impact of control measures φ in each of the ten regions. Throughout,
error bars give the 95% credible interval, the box is the 50% credible interval and the line is the median value.
(Predictions were produced on 23rd April, using data until 21st April).
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4 Modelling social distancing

Age-structured contact matrices for the United Kingdom were obtained from Prem et al. [2] and
used to provide information on household transmission (βHba, with the subscript ba corresponding to
transmission from age group b towards age group a), school-based transmission (βSba), work-place
transmission (βWba ) and transmission in all other locations (βOba). We assumed that the suite of social-
distancing and lockdown measured acted in concert to reduce the work, school and other matrices
while increasing the strength of household contacts.

We capture the impact of social-distancing by defining new transmission matrices (Bba) that represent
the potential transmission in the presence of extreme lockdown. In particular, we assume that:

BS
ba = qSβSba, BW

ba = qWβWba , BO
ba = qOβOba,

while household mixing BH is increased by up to a quarter to account for the greater time spent at
home. We take qS = 0.05, qW = 0.2 and qO = 0.05 to approximate the reduction in attendance
at school, attendance at workplaces and engagement with shopping and leisure activities during the
lock-down, respectively.

For a given compliance level, φ, we generate new transmission matrices as follows:

β̂Hba = (1− φ)βHba + φBH
ba

β̂Sba = (1− φ)βSba + φBS
ba

β̂Wba = (1− θ)
[
(1− φ)βWba + φBW

ba

]
+ θ

(
(1− φ) + φqW

)
((1− φ) + φqO)βWba

β̂Oba = βOba((1− φ) + φqO)2

As such, home and school interactions are scaled between their pre-lockdown values (β) and post-
lockdown limits (B) by the scaling parameter φ. Work interactions that are not in public-facing
‘industries’ (a proportion 1 - θ) were also assumed to scale in this manner; while those that interact
with the general populations (such as shop-workers) were assumed to scale as both a function of their
reduction and the reduction of others. We have assumed θ = 0.3 throughout. Similarly, the reduction
in transmission in other settings (generally shopping and leisure) has been assumed to scale with the
reduction in activity of both members of any interaction, giving rise to a squared term.
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5 QALY losses

The loss of quality adjusted life years (QALYs) due to deaths was based on the quality adjusted life
expectancy by age, and modified for the relative life-expectancy of individuals that die:

Fatal case QALY loss =
21∑
a=1

(D(a)× E(a)) ,

whereby D(a) is the number of deaths in age bracket a, and E(a) is the discounted quality adjusted
value of the remaining life expectancy, L(a), of individuals in age group a. This quality adjusted life
expectancy is given by:

E(a) =

L(a)∑
i=1

Qw(â+ i)

(1 + d)i

where Qw(a) is the age-specific quality of life weight at age a, â is the average age (in years) of an
individual in age-group a, and d the discount rate (set at 0.035, corresponding to 3.5% per annum);
the values of L(a) are rounded to full years.

For parameterising the age-specific quality of life weights, Qw, we obtained age-specific EQ-5D index
population norms estimates for England from two literature sources. We took childhood estimates
(which we used to cover 0–19 years of age) from Table 3 of [3], and values for those aged 20 and above
were sourced from Table 3.6 of [4]. A complete listing of age-specific quality of life weights values by
age is presented in Table A.

Table A: EQ-5D index population norms for England.

Age group
(yrs)

EQ-5D index
population norms scale

<20 0.948
20–24 0.929
25–34 0.919
35–44 0.893
45–54 0.855
55–64 0.810
65–74 0.773
75+ 0.703
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6 Additional tables

Table B: UK population aggregated to ten regions (rounded to nearest 10,000). For our interven-
tion scenario in which regional ICU occupancy triggered the reintroduction and relaxation of social distancing
measures within that region, the final column lists each of the regional ICU bed occupancy thresholds (equating
to 45 occupied ICU beds per one million population).

Region
Population
(millions)

Intervention trigger threshold
(ICU bed occupancy)

Wales 3.14 142
Scotland 5.44 245
Northern Ireland 1.88 85
East of England 6.20 280
London 8.91 401
Midlands 10.70 482
North East and Yorkshire 8.14 367
North West England 7.29 328
South East England 9.13 412
South West England 5.60 252
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7 Additional figures

Here we show the model fit to the available data on hospital bed occupancy, hospital admissions and
ICU bed occupancy, which are combined with the data on deaths (see main text Fig 2). It is clear
that due to their greater number fitting to hospital occupancy dominates the fitting process.
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Hospital Admissions

Fig B: Regional projections for hospital admissions per 100,000 with and without imposition of
lockdown. In each panel: filled markers correspond to observed data, solid lines correspond to the mean
outbreak over a sample of posterior parameters; shaded regions depict prediction intervals, with darker shading
representing stricter confidence (dark shading - 50%, moderate shading - 90%, light shading - 99%); dashed
lines illustrate the mean projected trajectory had no lockdown measures being introduced (predictions were
produced on 23rd April, using data until 21st April).
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Fig C: Regional projections for hospital occupancy per 100,000 with and without imposition of
lockdown. In each panel: filled markers correspond to observed data, solid lines correspond to the mean
outbreak over a sample of posterior parameters; shaded regions depict prediction intervals, with darker shading
representing stricter confidence (dark shading - 50%, moderate shading - 90%, light shading - 99%); dashed
lines illustrate the mean projected trajectory had no lockdown measures being introduced (predictions were
produced on 23rd April, using data until 21st April).
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Fig D: Regional projections for ICU bed occupancy per 100,000 with and without imposition
of lockdown. In each panel: filled markers correspond to observed data, solid lines correspond to the mean
outbreak over a sample of posterior parameters; shaded regions depict prediction intervals, with darker shading
representing stricter confidence (dark shading - 50%, moderate shading - 90%, light shading - 99%); dashed
lines illustrate the mean projected trajectory had no lockdown measures being introduced (predictions were
produced on 23rd April, using data until 21st April).
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