Supplementary Material

## Title page

Neutrophil degranulation interconnects over-represented biological processes in atrial fibrillation

Makiri Kawasaki<sup>†1</sup>, PhD, Eva R. Meulendijks<sup>†1</sup>, MSc, Nicoline W.E. van den Berg<sup>1</sup>, MD, Fransisca A. Nariswari<sup>1</sup>, MSc, Jolien Neefs<sup>1</sup>, MD, Robin Wesselink<sup>1</sup>, MSc, Sarah W.E. Baalman<sup>1</sup>, MD, Aldo Jongejan<sup>2</sup>, PhD, Tim Schelfhorst<sup>3</sup>, BSc, Sander R. Piersma<sup>3</sup>, PhD, Thang V. Pham<sup>3</sup>, PhD, Wim J.P. van Boven<sup>1</sup>, MD, Antoine H.G. Driessen<sup>1</sup>, MD, PhD, Connie R. Jimenez<sup>3</sup>, PhD, Joris R. de Groot\*<sup>1</sup>, MD, PhD.

<sup>1</sup>Amsterdam UMC, University of Amsterdam, Heart Centre; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands <sup>2</sup>Amsterdam UMC, University of Amsterdam, Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands <sup>3</sup>Amsterdam UMC, VU University Medical Centre, Cancer Centre Amsterdam, OncoProteomics Laboratory, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands <sup>†</sup>Both authors contributed equally to this study \*Corresponding author Supplementary Table 1. TOP 20 proteins most differentially expressed in the left atrial tissue of AF patients The list is sorted by the negative exponent of non-adjusted (non-adj) *p*-value (beta-binominal test). *N/A*, not applicable (not detected in non-AF samples). FC, fold-change. *NS*, not significant. (i/m)Q, Benjamini-Hochberg critical value.

#### Supplementary Figure 1. The image of the gel stained with Coomassie brilliant blue

The image of the gel after one-dimensional electrophoresis were fixated and stained with Coomassie brilliant blue overnight. L, ladder. F1-5, fraction 1-5. The dotted lines indicate the cutting line.

#### Supplementary Figure 2. Principal component analysis

(a) The result of principal component analysis (PCA) is shown in the dimension of PC1 (accounts for 28.6% of variance) and PC2 (24%). The blue and red dots represent non-AF patients (#1-3) and persistent AF patients (#4-6), respectively. (b) The distance between each patient is shown in a hierarchical unsupervised clustering. PCA was performed on R software<sup>54</sup> (version 3.5.3).

## Supplementary Figure 3. The result of GSEA analysis

The nodes represent significantly up-regulated (**a-f**) and down-regulated gene-sets (**g**) in AF (FDR-adjusted *p*-value<0.1). Each node size represents the number of proteins annotated in it, and the edge connects two gene-sets that share >40% components. The nodes with the biggest size among the cluster (a collection of nodes) are named (*italic lettering*). Since *Oxidative phosphorylation* and *carboxylic acid catabolic process* belong to the same branch of *cellular metabolic process*, they were grouped together in (**b**). Cellular component disassembly and mitochondrial translation share >40% components and therefore grouped together in (**c**).

### Supplementary Figure 4. The small-scale PPI of the leading edge in the up-regulated gene-sets in AF

(a, b) The PPI of each leading edge and their expression profile that were derived from *Cellular component* disassembly (a) and *Ion channel transport* and *Monovalent inorganic cation homeostasis* (b). Among each geneset, functionally grouped proteins are encircled with its corresponding *GO terms*. Small-scale PPI of *Response to oxidative stress* (c) and *Bicarbonate transport* (d) that are arisen from the leading edge in *neutrophil degranulation* and *oxidative phosphorylation*. Only the proteins with non-adjusted *p*-value<0.1 are displayed here. The color of the nodes and the edges represent the non-adjusted *p*-value (0-0.1) and the STRING combined score (0.4-1), respectively. The color scale of expression represents the z-score of normalized spectral counts of each protein (shown as its *gene name* in each heatmap). The heatmaps were generated using R software<sup>54</sup> (version 3.5.3).

Supplementary Figure 5. Full-length blots

(a) Full-length blots of the membrane immunoblotted with anti-Calnexin antibody (internal control) and anti-CAIII antibody. The right and left image are from the same membrane exposed for 90 seconds and 12 minutes, respectively. (b) Full-length blots of the membrane immunoblotted with anti-Calnexin antibody and anti-MYH10 antibody.

# Supplementary Table 1.

| Normalized spectral counts |             |                          |       |              |       |      |          |      |      |                              |                              |              |
|----------------------------|-------------|--------------------------|-------|--------------|-------|------|----------|------|------|------------------------------|------------------------------|--------------|
| Gene                       | MW<br>(kDa) | Sequence<br>coverage (%) | #1    | Non-AF<br>#2 | #3    | #4   | AF<br>#5 | #6   | FC   | -Log₁₀(p-value)<br>(non-adj) | -Log₁₀[(i/m)Q]<br>(FDR=0.25) | Significance |
| MPO                        | 73.9        | 42.9                     | 4.8   | 2.9          | 4.0   | 38.5 | 42.2     | 27.2 | 9.2  | 4.2                          | 4.1                          | Significance |
| CA3                        | 29.6        | 70                       | 0     | 0            | 0     | 4.2  | 3.9      | 2.1  | N/A  | 3.0                          | 3.8                          | NS           |
| LTF                        | 78.2        | 68.7                     | 6.7   | 3.9          | 5.0   | 79.1 | 66.7     | 29.3 | 11.2 | 2.8                          | 3.6                          | NS           |
| CTSG                       | 28.8        | 54.9                     | 1.9   | 1.0          | 1.0   | 11.4 | 10.8     | 5.2  | 7.1  | 2.7                          | 3.5                          | NS           |
| COMTD1                     | 28.8        | 16                       | 0     | 0            | 0     | 2.1  | 3.9      | 2.1  | N/A  | 2.7                          | 3.4                          | NS           |
| HIST1H1B                   | 22.6        | 35.4                     | 1.9   | 1.0          | 0     | 5.2  | 7.9      | 6.3  | 6.7  | 2.6                          | 3.3                          | NS           |
| ELANE                      | 28.5        | 25.5                     | 0     | 0            | 0     | 2.1  | 6.9      | 2.1  | N/A  | 2.4                          | 3.3                          | NS           |
| METTL7A                    | 28.3        | 22.1                     | 0     | 0            | 0     | 2.1  | 2.0      | 2.1  | N/A  | 2.3                          | 3.2                          | NS           |
| TIMM50                     | 39.6        | 28                       | 1.0   | 1.0          | 0     | 3.1  | 4.9      | 6.3  | 7.4  | 2.3                          | 3.1                          | NS           |
| NDUFA9                     | 42.5        | 39.8                     | 4.8   | 9.6          | 9.1   | 18.7 | 17.7     | 16.7 | 2.3  | 2.3                          | 3.1                          | NS           |
| MYH10                      | 229.0       | 47.7                     | 122.9 | 80.9         | 125.1 | 56.2 | 73.6     | 72.2 | -1.6 | 2.3                          | 3.1                          | NS           |
| EGLN1                      | 43.7        | 11.9                     | 0     | 0            | 0     | 3.1  | 1.0      | 2.1  | N/A  | 2.2                          | 3.0                          | NS           |
| PGD                        | 51.9        | 55.5                     | 6.7   | 3.9          | 3.0   | 10.4 | 13.7     | 13.6 | 2.8  | 2.2                          | 3.0                          | NS           |
| LCN2                       | 22.5        | 47                       | 1.0   | 0.0          | 0.0   | 5.2  | 3.9      | 2.1  | 11.7 | 2.2                          | 3.0                          | NS           |
| NCAM1                      | 80.3        | 27.3                     | 25.0  | 23.1         | 20.2  | 16.6 | 9.8      | 15.7 | -1.6 | 2.2                          | 2.9                          | NS           |
| NDRG2                      | 40.8        | 52                       | 7.7   | 6.7          | 6.1   | 16.6 | 13.7     | 15.7 | 2.3  | 2.2                          | 2.9                          | NS           |
| FDXR                       | 52.9        | 32.7                     | 0     | 3.9          | 4.0   | 9.4  | 6.9      | 10.5 | 3.4  | 2.1                          | 2.9                          | NS           |
| CAND1                      | 136.4       | 35.2                     | 15.4  | 12.5         | 13.1  | 10.4 | 5.9      | 5.2  | -1.9 | 2.1                          | 2.8                          | NS           |
| NDUFS2                     | 51.9        | 45.1                     | 25.0  | 37.5         | 32.3  | 51.0 | 54.0     | 49.1 | 1.6  | 2.1                          | 2.8                          | NS           |
| CA4                        | 35.0        | 22.1                     | 0     | 0            | 1.0   | 3.1  | 4.9      | 2.1  | 10.0 | 2.0                          | 2.8                          | NS           |

Supplementary Figure 1.







## Supplementary Figure 3.



## Supplementary Figure 4.



## Supplementary Figure 5.

