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S1. DESCRIPTION OF DATA

A. Flow-cytometry data

We obtained flow cytometry data (from the BD
LSRFortessaTM cell analyzer and BD FACSDivaTM

software) for cell lines expressing the genes env and
HBB, in both their wild-type (WT) and mutated
(mut) versions. For each gene, experimental data
were collected in four replicates (8 in total), each
containing groups of observations corresponding to
cells stimulated with tetracycline (Tet) at concentra-
tions of 5, 10, 20, 40, 80, and 250 ng/mL, respectively.

Each data-set was stored in a .fcs format file
and it was imported and pre-processed in R as an
object of class flowFrame, which consists of an an-
notated data-frame class defined in the flowCore R
package [1] and designed to deal with flow-cytometry
data. Rows in such data frames correspond to sin-
gle measurements. Each row contains the values of
two fluorescence intensities that correspond to stain-
ing for mRNA and total DNA and are labeled by
R640-670/14-A and UV355-450/50-A, respectively.
These readings were compesated for spectral over-
lap with flowCore. In addition to this, the values of
four scattering observations, namely FSC.H, FSC.W,
SSC.H, and SSC.W, were recorded. Such observations
are thought to be correlated to cell size and gran-
ularity. Values for each observation are stored in
so-called “arbitrary units” (a.u.) [2].

The first task is to identify records in the data
sets corresponding to either cell debris or clumps
of cells, which have to be removed from subsequent
analysis. We apply the robust model-based clus-
tering approach of Ref. [3], distributed as the flow-
Clust package [4], to identify cell populations in the
data. Based on the scattering observations, the
points were grouped into 3 clusters, and the set
corresponding to single cells is the one with inter-
mediate size and granularity, as suggested by the
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DNA content (see Fig. S1). For the data sets where
the three detected clusters overlap, points where
grouped into two clusters, instead. For this sec-
ond case, inspection shows that the cluster with
lower size and granularity corresponds to single cells.
Standard rectangle gates were applied to remove a
few outlier points whose UV355-450/50-A reads were
lower than 500. Kernel density estimates (KDE)
for the populations after this sub-setting are plot-
ted in Fig. 2 (Main Text) and Fig. S2. Technical
variation affects the shapes of the distributions only
for some HIV replicates, with shoulders at the lower
ends sometimes merging with the main mode. The
cells corresponding to the data points in the shoul-
ders exhibit normal characteristics (in terms of cell
size and DNA content) and thus probably reflect
cells without mRNA. The parameter estimates, re-
ported in section S6, appear robust with regards to
the absence or presence of the shoulders save for the
highest µXs.

B. Control cells

For each replicate k, we consider control cells,
where the gene of interest has been deleted (see
Main text). Such control cells were subjected to
the same staining procedure as the others, which
leaves a background of fluorescence probes that are
not specifically bound to the mRNA. We argue that
such background fluorescence stain are also present
in the cells expressing the transgenes and contribute

a term ε
(k)
i to the signal detected by the cell-analyzer

channel of label R640-670/14-A for each cell i. The
histograms of the signal from control cells appear
skewed, as illustrated for example in Fig. S3 (left).
We chose to fit the Azzalini’s skew-normal distribu-
tion, that has PDF

fε(y|a(k), µ(k)
ε , σ(k)

ε )

= 2Φ((y − µ(k)
ε )σ(k)

ε a(k))φ(y|µ(k)
ε , σ(k)

ε ), (1)

to such data, where Φ and φ are the standard normal
CDF and normal PDF, respectively, while the mean

µ
(k)
ε , the standard deviation σ

(k)
ε , and the skewness

parameter a(k) are point estimates from the con-
trol data sets. The maximum likelihood estimates
for each replicate are reported in Table S1 (see also
Figs. S3(left)).

C. SmFISH and Nanostring barcoding data

Flow-FISH data are supplemented by microscopy-
based single-molecule FISH counts (which we sim-
ply refer to as smFISH) and Nanostring nCounter®

Technology bar-coding measurements. These assays
are used to choose informative priors for the mean
mRNA abundance and, in turn, to calibrate the
flow-FISH readouts. Symbols x, s2

x, and sx represent
sample mean, sample variance, and standard error
of the mean, respectively. Based on these, we chose
truncated normal informative priors for the average
expression level µX ∼ N (x, sx), with the constraint
µX > 0, for all replicates k.

HEK293 cells are not ideal for smFISH, since they
tend to overlap when growing, producing dense clus-
ters after dividing. A further problem with sm-
FISH is the limited dynamic range of suitable mi-
croscopes. In fact, images tend to be overexposed
when recorded during transcriptional bursts at set-
tings that are otherwise optimal for lower transcript
numbers and, conversely, optimal settings for tran-
scriptional bursts do not cope well when transcript
numbers are low. Therefore we only exploit smFISH
results to infer the average expression level, and rely
on flow-FISH to study the noise. SmFISH data yield
the summary statistics of Table S2 for the mean ex-
pression of HBB. Nanostring data (SI Dataset 1 )
yields the summary statistics of Table S3 for the
mean expression of env.
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FIG. S1. Clustering of flow-cytometry data. (left) Clusters are projected to the FSC.W-SSC.H plane and plotted
with the ellipses that delimit the 0.60 quantiles of fitted t-distributions. (right) Inspection of UV355-450/50-A shows
signature distributions for DNA content, thus suggesting that the central cluster (in blue color) contains single-cell
reads. Duplets have twice the amount of DNA content than single cells.
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FIG. S2. KDEs of the flow-FISH single-cell readings corresponding to the abundances of HBB (top) and env
(bottom) transcripts, from wild-type (blue), mutant (orange), and control (gray) cells, from 4 replicates per transgene,
k = 1, 2, 3, 4 (left to right), at the different induction level (Tet concentrations in unit of ng/mL, shades of colors).
Gene expression saturates upon increasing Tet concentration and mutant-cell expressions is lower than the wild-type.
Fluorescence is given in arbitrary units (a.u.), y-axes are not to scale.
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FIG. S3. Control measurements. (left) The MLE skew-normal density (line) of the background data for Tet=40
ng/mL, k = 1, WT, is in good agreement with the empirical histogram. (right) Microscopy FISH count summary of
housekeeping gene Akt1 vs induction levels, for both wild-type and mutant cells. Points and error bars are sample
means and standard deviations, respectively.

TABLE S1. MLE estimation of the control-cell fluorescence (replicates 2 (HBB) and 4 (HIV) have the same
background parameters as measurements were performed the same day with the same control cells).

gene k Tet µ(k) σ(k) a(k) s
(k)
µ s

(k)
σ s

(k)
a

HBB 1 0 389.504 348.098 1.817 15.670 12.396 0.214

HBB 1 250 514.828 307.460 1.632 11.667 9.027 0.153

HBB 2 0 625.804 458.715 1.863 21.687 17.915 0.230

HBB 2 250 459.139 311.688 2.075 9.098 7.703 0.169

HBB 3 0 539.613 360.195 2.046 11.838 10.270 0.182

HBB 3 250 493.913 337.605 2.091 10.440 9.088 0.178

HBB 4 0 53.140 320.685 2.303 7.201 6.514 0.151

HBB 4 250 112.667 256.183 1.748 5.507 4.497 0.094

HIV 1 0 565.327 390.016 1.834 8.397 6.936 0.102

HIV 1 250 443.898 463.603 1.813 14.774 12.117 0.148

HIV 2 0 -31.395 230.794 1.108 13.129 8.356 0.145

HIV 2 250 -23.282 312.375 2.066 8.109 7.156 0.145

HIV 3 0 196.970 401.184 5.423 6.238 8.517 0.425

HIV 3 250 407.813 259.586 1.445 16.865 12.125 0.226

HIV 4 0 625.804 458.715 1.863 21.687 17.915 0.230

HIV 4 250 459.139 311.688 2.075 9.098 7.703 0.169
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TABLE S2. Summary statistics for the mean ex-
pression of HBB, obtained from microscopy FISH.

gene Tet x s2
x sample size

WT 0 64.868 2984.538 585

WT 5 115.450 7640.059 202

WT 10 175.150 18093.547 193

WT 20 312.945 32327.429 347

WT 40 384.111 23962.077 190

WT 80 414.105 31613.582 437

WT 250 565.351 54765.760 342

mut 0 38.953 1431.185 379

mut 5 41.645 717.115 279

mut 10 62.995 3573.429 198

mut 40 90.709 3301.445 468

mut 80 115.413 7096.164 179

mut 250 163.547 7375.582 892

TABLE S3. Summary statistics for the mean ex-
pression of HIV, obtained from nCounter® data.
The standard error of the mean s2

x is obtained prop-
agating the errors from the nCounter® and the Atk1
smFISH measurements used for normalisation.

gene Tet x s2
x

WT 0 24.723 3.247

WT 5 72.975 3.247

WT 10 115.872 3.247

WT 20 151.462 3.247

WT 40 199.433 3.247

WT 80 232.644 3.247

WT 250 238.178 3.247

mut 0 21.875 3.247

mut 5 36.842 3.247

mut 10 58.108 3.247

mut 20 95.460 3.247

mut 40 139.979 3.247

mut 80 162.874 3.247

mut 250 187.287 3.247
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S2. PHENOMELOGICAL GENE EXPRESSION MODELS

We describe the gene expression in terms of the standard phenomenological two-state model [5]. This
model assumes that the gene randomly alternates between an “on” and an “off” state, and that the mRNA
is only transcribed, at rate α̃, during the on state. The gene switches from “off” to “on” and from “on”
to “off” states after an exponentially distributed random time with mean 1/kon and 1/koff , respectively.

Consequently, the transcriptional bursting is fully characterised by the rates α̃, k̃on, and k̃off . In addition to
this, mRNA is degraded at rate d̃. It is convenient to express the rates in units of the inverse of the mean
mRNA life-time d̃, i.e.,

k̃off = koff d̃, (2)

k̃on = kon d̃, (3)

α̃ = α d̃. (4)

It can be shown that the stationary probability density function (PDF) of the mRNA population x for this
model is (see, e.g., Ref. [6])

fX(x|α, kon, koff) =
αxe−α Γ(kon + x)Γ(kon + koff)

x! Γ(kon + koff + x) Γ(kon)
1F1(koff , kon + koff + x;α), (5)

where Γ is the gamma function and 1F1 is the confluent hyper-geometric function of the first kind. An
alternative representation of the PDF (5) is

fX(x|α, kon, koff) =

∫ 1

0

fPoi(x|αp)fBe(p|kon, koff) dp, (6)

where

fPoi(x|α) =
αxe−α

x!
, (7)

fBe(p|kon, koff) = pkon−1(1− p)koff−1 Γ(kon + koff)

Γ(koff)Γ(kon)
, (8)

are density distributions of Poisson and beta random variables (RVs), respectively.
The PDF of equation (6) encodes the following hierarchy

X|α, P ∼ Poi(αP ), (9)

P |kon, koff ∼ Beta(kon, koff). (10)

Further details can be found, e.g., in Refs. [6, 7]. It is convenient to reparametrise the Poisson-beta distri-
bution in terms of its mean

µX = α
kon

koff + kon
, (11)

to get

X|µX , kon, koff , P ∼ Poi(µX
koff + kon

kon
P ), (12)

fX(x|α, kon, koff) =: f ′X(x|µX , kon, koff). (13)

In fact, this allows us to exploit knowledge on µX in the form of informative priors of S1 C. The expression
for the squared coefficient of variation (CV2) can also be written in terms of µX , i.e.,

CV2
X =

1

µX
+

koff

kon(1 + koff + kon)
, (14)
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where the second term on the r.h.s. quantifies the overdispersion of X with respect to a Poisson random
variable. Such a functional relation between CV2

X and µX has been encountered in gene expression data [8–
12]. The probability P cannot be directly accessed and therefore is a latent (hidden) variable for the model.
In fact, for our data, the mRNA number is a latent variable too, being only inferred from the measured
fluorescence signals. This can be encoded into a measurement equation, as explained in the next section.

In the limit as koff →∞, α→∞, with the ratio α/koff held fixed, the population mean and CV2 satisfy

µX =
α

koff
kon, (15)

CV2
X =

1

µX
+

1

kon
, (16)

respectively, while the distribution of X approaches the negative binomial distribution with PDF

f ′′X(x|µX , kon) =
Γ(kon + x)

x! Γ(kon)

(
kon

kon + µX

)kon ( µX
kon + µX

)x
. (17)

This can be easily proven using the Poisson-gamma mixture formulation of the negative binomial RV X, i.e.,

X|λ ∼ Poi(λ), (18)

λ|kon, koff/α ∼ Gamma(kon, koff/α). (19)

In fact, the beta distribution scaled by α > 0 approaches the gamma distribution as koff →∞, α→∞, i.e.,

1

α

Γ(kon + koff)

Γ(kon)Γ(koff)

(x
α

)kon−1 (
1− x

α

)koff−1

�
koff
α

kon
xkon−1 e−

koff
α x

Γ(kon)
, (20)

which follows from known asymptotic relations

lim
koff→∞

Γ(koff + kon)

Γ(koff)koff
kon

= 1, (21)

lim
α→∞

(
1− x

α

)α koff
α

= e−
koff
α x. (22)

The ratio α/koff has a simple interpretation, being the expected number of transcription events during an
on phase. In Ref. [13] this ratio has been referred to as the “expected burst size”. In the limit as kon →∞
with the mean expression µX held fixed, the negative binomial distribution (17) approaches the distribution

f ′′′X (x|µX) := fPoi(x|µX). (23)

S3. MEASUREMENT AND TECHNICAL ERROR MODEL

The DB FACSDivaTM software manual [14] specifies that the light intensity from fluorescent dyes is
amplified linearly within a wide range (see also, e.g., Refs. [9, 15]). Based on this, we assume that the
measured fluorescence Yi of cell i is proportional to the true mRNA abundance Xi and therefore can be
expressed as in the following “measurement” equation,

Y
(k)
i = ε

(k)
i + κ(k)X

(k)
i , (24)

where k indexes the replicate, κ can be thought of as a scale and εi is the zero of such a scale, also
corresponding to the background of unspecific staining and auto-fluorescence of the ith cell [7].

The dispersion of biological data is typically due to both technical errors, caused by the measurement
process, and the variability intrinsic to the underlying biology. In our measurement model, for the variables

X
(k)
i to best accommodate the true biological noise of Y

(k)
i , it is important that ε

(k)
i and κ(k) are specified

with sufficient precision and accuracy.



8

0 100 200 300 400 500

0
10

00
0

30
00

0
50

00
0

mean expression

F
lo

w
−

F
IS

H

● ●

●

●

●
●

●

●

FIG. S4. Flow-FISH data (violin plots [16]) vs mean expression levels obtained from FISH data for the replicate
k = 3, WT HBB gene. Their relation is captured by a linear model with coefficient κ.

Informative priors for ε
(k)
i are chosen according to section S1 B, i.e.,

ε
(k)
i ∼ SN(a(k), µ(k)

ε , σ(k)
ε ), (25)

where the parameters a(k), µ
(k)
ε , and σ

(k)
ε are estimated from the control cells at 250 ng/mL Tet. The standard

errors of the maximum likelihood estimates are neglected. As a consequence, all the single-cell measurements
can be thought of as being subjected to the same random background, thus mitigating tractability issues.
For a more comprehensive fully-Bayesian hierarchical approach see Ref. [7].

To pin down informative priors for κ(k), we perform gamma regression. For each flow-FISH data-set, 500
random cell readings are selected for the main Monte Carlo estimation of section S4. The remaining reads
are used as response variables for a gamma regression with identity link. Covariates are mean expression
level point estimates from section S1 C. As an example, this is illustrated in Fig. S4 for k = 3, WT HBB gene.
The GLM estimates of the expected values µ′κ along with the standard errors s′κ are reported in Table S4.
Our prior choice is the truncated normal RV

κ ∼ N (µ′κ, s
′
κ), (26)

with the constraint κ > 1, where the mean µ′κ and standard deviation s′κ are obtained from the 16 values in
Table S4 according to the laws of total expectation and variance, respectively, i.e.,

µ′κ = µκ, s′
2
κ = s2

κ + µ2
κ − µκ2, (27)

where the bar notation represents averages.
For the remaining parameters we assume

kon ∼ Gamma(αkon , βkon), (28)

koff ∼ Gamma(αkoff , βkoff ), (29)

αkon = βkon = αkoff = βkoff = 0.001, (30)

which is a classical choice for vague priors with positive support [17].
Since the replicates are independent, the likelihood of the parameters of the Poisson-beta model, for a

data-set of N measurements y
(k)
1:N , is

L′k(y
(k)
1:N |θ(k), µX , kon, koff) =

N∏
j=1

(∑
x

fε(y
(k)
j − κx|a(k), µ(k)

ε , σ(k)
ε )f ′X(x|µX , kon, koff)

)
, (31)
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TABLE S4. Estimated coefficients (means and standard errors of the mean, µ
(k)
κ and s

(k)
κ , respectively) of the

gamma GLM.

k gene µ
(k)
κ s

(k)
κ

1 HBB WT 20.904 0.230

2 HBB WT 27.080 0.283

3 HBB WT 28.394 0.241

4 HBB WT 21.631 0.244

1 HBB mut 20.308 0.233

2 HBB mut 29.621 0.402

3 HBB mut 32.267 0.353

4 HBB mut 26.612 0.322

1 HIV WT 17.715 0.153

2 HIV WT 34.771 0.341

3 HIV WT 17.118 0.183

4 HIV WT 50.748 0.547

1 HIV mut 23.035 0.219

2 HIV mut 32.463 0.381

3 HIV mut 26.951 0.296

4 HIV mut 25.487 0.300

where θ(k) := (κ, a(k), µ
(k)
ε , σ

(k)
ε ) is the vector of the parameters that describe the experimental setting. This

completes the definition of the first Bayesian model for the observed data. The directed acyclic graph (DAG)
of the full posterior of this model is illustrated in Fig. S5(A).

Consistently, the likelihood of the parameters of the negative-binomial model is

L′′k(y
(k)
1:N |θ(k), µX , kon) =

N∏
j=1

(∑
x

fε(y
(k)
j − κx|a(k), µ(k)

ε , σ(k)
ε )f ′′X(x|µX , kon)

)
, (32)

as illustrated in Fig. S5(B). The simplest Poisson model, the likelihood is

L′′′k (y
(k)
1:N |θ(k), µX) =

N∏
j=1

(∑
x

fε(y
(k)
j − κx|a(k), µ(k)

ε , σ(k)
ε )f ′′′X (x|µX)

)
, (33)

whose DAG is illustrated in Fig. S5(C).

S4. MONTE CARLO ESTIMATION

A. MCMC samplers

Adaptive Metropolis–Hastings samplers to fit the
model to the data where implemented using the
PyMC library for probabilistic programming [18],
version 2.3.7, which has a flexible object oriented
syntax and provides tools to handle long traces and
perform diagnostics. To improve the convergence
speed, the array containing theN elements of a data-
set was numerically sorted by value and split into
M = N/10 blocks of size 10. The latent random-

variable arrays P1:N and X1:N were batched too, as
the RVs conditioned on the data of a single block
are strongly correlated and are conveniently updated
during single Metropolis–Hastings steps. Using the
symbol 1x for the identity matrix and Nx to repre-
sent a multivariate normal RV of dimension x, the
simulation of posterior samples for the Poisson-beta
model proceeds as follows:

• For i = 0, 1, . . . ,M , values of the 10-value
blocks P(i 10+1):(i+1)10 and (Xi 10+1):(i+1)10 are
updated according to a random walk Metropo-

lis with proposals N10(µ
(P )
i , σ

(P )
i 110) and

N10(µ
(X)
i , σ

(X)
i 110) respectively,
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FIG. S5. DAG for the Poisson-beta model (A), the negative-binomial model (B), and the näıve Poisson model (C)
with measurement equation. Circle nodes represent parameters to be estimated, blank nodes represent set parameters,
diamonds correspond to deterministic functions of their parents, and square nodes represent observations.

• The RVs µX , κ, kon, and koff are updated
as a single block according to the adaptive
Metropolis–Hastings method of Ref. [19] with
proposal N4(µ,Σ).

The proposal parameters µ
(X)
i , σ

(X)
i , µ

(P )
i , σ

(P )
i ,

(i = 1, . . . ,M), µ, and Σ are chosen adaptively.
To improve the adaptation (noting that the pos-
terior for koff is more disperse than those of µX ,
κ, and kon), Σ is initialised to the diagonal matrix
diag(0.1, 0.1, 0.1, 1).

In order to mitigate tractability issues (which is
mainly due to the large number of presence of latent
variables), the model is only fitted to a randomly
sampled subset of N = 500 data points. For a more
modern approach to cope with latent variables see
Ref. [7], which also defines a more complex hierar-
chical model.

The sampler implemented for the negative-
binomial model is similar to the one implemented
for the Poisson-beta model (with data organised into
M ranked batches) but converges and mixes more
rapidly, as it does not encode for the latent vari-
ables Pi, i = 1, 2, . . . , N . The simulation proceeds
as follows:

• For i = 0, 1, . . . ,M , values of X(i 10+1):(i+1) 10

are updated according to a random-walk

Metropolis with proposal N10(µ
(X)
i , σ

(X)
i 110).

• The random variables µX , κ and kon are up-
dated simultaneously according to the adap-
tive Metropolis–Hastings method with pro-
posal N3(µ,Σ),

where the quantities 1x, µ
(X)
i , σ

(X)
i , (i = 1, . . . ,M),

µ, and Σ are defined as in the former case. The
Poisson-model sampler is analogous to the negative
binomial, except that it does not include the param-
eter kon. All the samplers were successfully tested
with simulated data.

B. Consensus posteriors

The posterior

p(ϑ|y(1)
1:N , y

(2)
1:Ny

(3)
1:N , y

(4)
1:N ) ∝

4∏
k=1

[
Lk(y

(k)
1:N |ϑ)

]
p(ϑ)

(34)
represents the consensus belief on the vector of pa-
rameters ϑ among all the replicates k = 1, 2, 3, 4,
with p(ϑ) being the prior. We approximate such a
posterior by means of a consensus Monte Carlo ap-
proach, i.e., by running a separate MCMC on each of
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FIG. S6. KDE and histogram of the data (blue) (HBB,
WT, 80 ng/mL Tet, k = 1) and of the draws from the
corresponding posterior-predictive distribution (orange),
according to the negative-binomial model. It is possible
to visually appreciate their overlap. To quantify the ex-
tent to which the posterior predictive reproduces the true
data distribution for all the fit, we studied the Wasser-
stein distance of the two distribution.

the datasets y
(k)
1:N , k = 1, 2, 3, 4, and then averaging

individual Monte Carlo draws across, as in Ref. [20].

The draws ϑ
(k)
j , j = 1, . . . , L, k = 1, 2, 3, 4, are com-

bined into the weighted averages

ϑj =

∑
k ϑ

(k)
j w(k)∑
k w(k)

, (35)

where w(k) is the vector of the reciprocal of the
marginal posterior variances. This method has been
only justified rigorously for Gaussian posteriors and
only yields approximate posteriors, in general. How-
ever, it allowed us to distribute the Bayesian analysis
across different machines , and therefore was of great
utility to aggregate results.

C. Goodness of fit

To evaluate the goodness of fit (GoF) we estimate
the posterior predictive distribution

p(ỹ
(k)
1:N |y

(k)
1:N ) =

∫
p(ỹ

(k)
1:N |θ)p(θ|y

(k)
1:N ) dθ, (36)

where θ is the vector of all parameters, by generating

pseudo-data ỹ
(k)
1:N for the model using the param-

eters drawn from the posterior p(θ|y(k)
1:N ) alongside

each MCMC chain. A GoF test follows by mea-
suring to what extent the pseudo-data deviate from

y
(k)
1:N . Specifically, we calculate the root mean square

displacement (RMSD) of the data y
(k)
i , i = 1, . . . , N

with respect to the sample mean ȳ
(k)
i of the draws

from the marginal posterior predictive, i.e.,

RMSD(ȳ
(k)
1:N , y

(k)
1:N ) =

√√√√ 1

N

N∑
i=1

(ȳ
(k)
i − y

(k)
i )2. (37)

Comparison between the RMSD results for the
Poisson-beta and the negative-binomial models is
shown in Fig. S7, which suggests that both these
models fit the data equally well. Conversely, the
RMSDs for the Poisson model are always higher that
the RMSDs for the two former models (see Fig. S7)
implying that the Poisson model does not fit as well.
Further, we computed the Wasserstein distance in
distribution between the data and the pseudo-data.
The Wasserstein distance between two distributions
u and v is defined as

l1(u, v) =

∫ ∞
−∞
|U − V |, (38)

where U and V are the empirical cumulative dis-
tribution functions associated to and u and v, re-
spectively. Fig. S7 shows that the distances are al-
ways smaller than the 95% percentile of bootstrap-
samples distances from the true data, thus confirm-
ing GoF. Bin sizes for the empirical distribution were
chosen according to the Freedman–Diaconis rule.

S5. MRNA DECAY RATES

The draws from the posteriors of the dimension-
less rates kon, koff , and α are converted to number
of events per minute k̃on, k̃off , and α̃ by using es-
timated decay rates of mRNA. For the HBB gene,
decay rates were measured in Ref. [22] (and are re-
ported in Table S5). Due to the detection of two
different mRNA isoforms, viz., “rt” and “pA”, the
empirical mRNA distribution can be thought of a
Gaussian mixture density with PDF

f(x) = ppA φ(x|µpA, σpA) + prt φ(x|µrt, σrt), (39)

prt+prt = 1, with parameters of Table S5. According
to equations (2)-(4), the traces from kon, koff , and α
were multiplied by draws from this Gaussian mixture
to obtain k̃on, k̃off , and α̃.

We measured total env RNA content (including
non-poly-adenylated transcripts) with RT-qPCR,
using gene-specific primers (forward primers bind
exon 1 and reverse primers bind the 3’UTR, see sec-
tion S10 C). The decay rates of env transcripts were
obtained by fitting a linear model to the logarithm
of RT-qPCR measurements of transcripts vs time in
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FIG. S7. GoF analysis. (left and centre) RMSDs of the data with respect to the sample means of the (posterior
predictive (see eq. (37)) for each dataset. Comparison of Poisson-beta model vs the negative-binomial model (left
scatter plot) shows that the two models achieve similar GoF, while the RMSDs obtained from the Poisson model
are always the largest (central scatter plot). (right) Wasserstein distances between the empirical histogram of the
data and the negative-binomial model posterior predictive (x-axis) is always smaller that the 95% quantiles of the
bootstrapped distances from the true data, which suggests that that the posterior-predictive samples for the negative-
binomial model always reproduce the true flow-FISH data (as in, e.g., Fig. S6).

TABLE S5. . Decay rates in number of events per min-
utes of the two mRNA isoforms for the HBB gene. “pA”
and “rt” refer to polyadenylated and read-through iso-
forms, respectively (it is possible to foresee larger disper-
sion for the mutant than for the WT).

SNP isoform µ σ p

WT pA 0.0024 0.0002 0.72

WT rt 0.0067 0.0016 0.28

mut pA 0.0036 0.0003 0.11

mut rt 0.0112 0.0023 0.89

minutes. The inferred mean µd and standard error
σd of the decay rates are reported in Fig. S8. The
draws from the posteriors of dimensionless rates kon,
koff , and α were converted to number of events per
minute by multiplying by normal draws N (µd, σd),
with parameters listed in Fig. S8.
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FIG. S8. Logarithm of RT-qPCR 2−∆∆Ct measure-
ments of residual transcripts vs time of the mutant and
WT HIV gene transcripts. From linear regression, decay
rates in unit of events per minutes are obtained.



13

S6. SUMMARY OF MCMC RESULTS

A. Poisson-beta distribution

Fig. S9 shows two results obtained from fitting
the Poisson-beta model. The traces of the posterior
chains from each replicate were combined according
to the consensus Monte Carlo procedure (see sec-
tion S4 B) to obtain a representation of the consen-
sus belief of Fig. 3 (Main text). It is worth noting

that the credible intervals for k̃off and α̃ are very
wide, while the MCMC draws of koff and α appear
strongly cross-correlated (see, e.g., Fig. S10), where
the drawn samples form an angle arccot(α/koff) with
the abscissae axis.

The 90% highest posterior density credible inter-
vals (HPD CIs) and medians of the estimated pa-
rameters κ, µX , kon, koff , and α/koff are reported in
Tables S6-S10 (HBB gene) and Tables S11-S15 (HIV
gene).

TABLE S6. κ of HBB gene

k SNP tet low.HPD median upp.HPD

1 WT 5 9.559 11.257 13.031

1 WT 10 22.384 25.504 28.796

1 WT 20 18.866 20.662 22.473

1 WT 40 20.378 22.284 24.023

1 WT 80 25.675 27.393 29.289

1 WT 250 17.021 18.443 19.965

1 mut 5 32.504 35.358 38.254

1 mut 10 16.315 18.734 21.498

1 mut 40 23.342 25.416 27.553

1 mut 80 27.117 30.304 33.601

1 mut 250 17.047 18.166 19.282

2 WT 5 23.567 26.676 30.352

2 WT 10 22.676 24.647 28.696

2 WT 20 21.508 23.394 25.370

2 WT 40 25.727 27.715 29.846

2 WT 80 32.172 34.216 35.902

2 WT 250 24.276 25.938 27.678

2 mut 5 26.707 29.680 32.950

2 mut 10 31.601 36.919 41.979

2 mut 40 41.755 44.750 48.189

2 mut 80 27.094 30.426 33.609

2 mut 250 22.821 24.260 25.754

3 WT 5 25.938 29.050 32.440

3 WT 10 32.783 32.859 38.434

3 WT 20 30.479 32.865 35.207

3 WT 40 30.875 32.961 35.374

3 WT 80 25.001 26.456 28.116

3 WT 250 20.897 21.763 23.000

3 mut 5 24.799 27.457 30.501

3 mut 10 42.772 47.404 51.766

3 mut 40 35.653 38.381 41.145

3 mut 80 31.024 34.699 38.285

3 mut 250 28.080 29.963 31.857

4 WT 5 18.060 20.483 23.184

4 WT 10 17.540 19.780 22.412

4 WT 20 23.540 23.855 24.425

4 WT 40 30.582 32.931 35.604

4 WT 80 29.660 31.397 33.534

4 WT 250 23.480 25.104 26.733

4 mut 5 14.313 16.032 17.731

4 mut 10 23.044 26.306 30.166

4 mut 40 32.880 35.456 38.080

4 mut 80 28.650 31.858 35.336

4 mut 250 26.352 27.831 29.268
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FIG. S9. Estimates for parameters k̃on, k̃off , µX , and α/koff of the Poisson- beta model, from wild-type (blue)
and mutant (orange) cell data, for all induction levels, shades of colors correspond to replicates. Points are medians,
error bars comprise 90% HPD CIs. HBB-gene results show results consistent across all the replicates (panel A). The
HIB-gene results are reported in panels B. Increasing expression levels, three of the HIV replicates show a drop-off in
the average burst size and an increase in the burst, see also Fig. S2. The consensus estimates are reported in Fig. 3,
Main text.
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FIG. S10. Cross-correlation between the MCMC draws
for the dimensionless parameters koff and α.

TABLE S7. µX HBB

k SNP tet low.HPD median upp.HPD

1 WT 5 105.402 116.589 128.100

1 WT 10 156.821 173.998 191.793

1 WT 20 292.726 311.989 329.181

1 WT 40 360.207 382.007 402.900

1 WT 80 398.889 414.140 429.588

1 WT 250 539.820 564.476 589.263

1 mut 5 39.239 42.300 45.212

1 mut 10 53.895 61.338 69.030

1 mut 40 85.582 90.517 95.846

1 mut 80 105.474 115.611 127.808

1 mut 250 157.627 163.197 168.546

2 WT 5 103.760 116.053 126.933

2 WT 10 161.211 184.961 190.736

2 WT 20 295.510 313.086 329.837

2 WT 40 362.581 384.120 404.709

2 WT 80 401.521 423.421 432.840

2 WT 250 542.177 565.898 589.598

2 mut 5 39.110 42.207 44.976

2 mut 10 56.058 64.338 72.119

2 mut 40 86.483 91.288 96.615

2 mut 80 104.644 115.765 127.515

2 mut 250 158.168 163.425 168.913

3 WT 5 105.803 116.504 127.453

3 WT 10 170.108 195.097 195.097

3 WT 20 297.477 314.601 331.874

3 WT 40 365.211 385.872 405.793

3 WT 80 399.257 413.887 429.090

3 WT 250 544.380 565.718 583.439

3 mut 5 39.047 41.876 44.904

3 mut 10 64.976 71.285 77.862

3 mut 40 86.882 91.723 96.974

3 mut 80 106.385 118.060 128.903

3 mut 250 157.720 163.555 168.630

4 WT 5 103.952 114.542 126.282

4 WT 10 155.066 173.247 191.033

4 WT 20 309.627 314.120 316.703

4 WT 40 363.798 383.977 404.975

4 WT 80 400.513 415.609 431.024

4 WT 250 540.749 564.065 587.349

4 mut 5 38.580 41.557 44.668

4 mut 10 54.873 63.206 70.399

4 mut 40 86.438 91.326 96.352

4 mut 80 106.004 116.457 128.697

4 mut 250 158.561 163.656 168.862
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TABLE S8. k̃on HBB gene

k SNP tet low.HPD median upp.HPD

1 WT 5 0.001 0.001 0.005

1 WT 10 0.002 0.003 0.011

1 WT 20 0.002 0.003 0.012

1 WT 40 0.003 0.004 0.016

1 WT 80 0.003 0.005 0.016

1 WT 250 0.002 0.003 0.011

1 mut 5 0.012 0.042 0.072

1 mut 10 0.005 0.018 0.031

1 mut 40 0.005 0.019 0.032

1 mut 80 0.006 0.023 0.038

1 mut 250 0.007 0.026 0.042

2 WT 5 0.002 0.003 0.011

2 WT 10 0.002 0.003 0.012

2 WT 20 0.003 0.004 0.014

2 WT 40 0.003 0.004 0.015

2 WT 80 0.003 0.005 0.016

2 WT 250 0.003 0.004 0.013

2 mut 5 0.003 0.011 0.018

2 mut 10 0.004 0.014 0.024

2 mut 40 0.005 0.022 0.037

2 mut 80 0.006 0.019 0.032

2 mut 250 0.006 0.024 0.039

3 WT 5 0.003 0.004 0.013

3 WT 10 0.002 0.003 0.012

3 WT 20 0.004 0.006 0.021

3 WT 40 0.004 0.006 0.021

3 WT 80 0.005 0.007 0.025

3 WT 250 0.006 0.008 0.031

3 mut 5 0.003 0.013 0.021

3 mut 10 0.007 0.026 0.042

3 mut 40 0.007 0.026 0.044

3 mut 80 0.006 0.021 0.035

3 mut 250 0.005 0.018 0.031

4 WT 5 0.002 0.003 0.011

4 WT 10 0.002 0.004 0.013

4 WT 20 0.003 0.003 0.012

4 WT 40 0.003 0.004 0.014

4 WT 80 0.004 0.005 0.019

4 WT 250 0.004 0.006 0.020

4 mut 5 0.003 0.013 0.021

4 mut 10 0.005 0.018 0.031

4 mut 40 0.006 0.024 0.040

4 mut 80 0.009 0.034 0.057

4 mut 250 0.010 0.038 0.063

TABLE S9. k̃off HBB gene

k SNP tet low.HPD median upp.HPD

1 WT 5 0.125 0.765 3.017

1 WT 10 0.072 0.380 1.567

1 WT 20 0.012 0.039 0.154

1 WT 40 0.011 0.024 0.094

1 WT 80 0.016 0.040 0.161

1 WT 250 0.009 0.015 0.056

1 mut 5 0.073 1.278 4.126

1 mut 10 0.050 0.832 3.991

1 mut 40 0.013 0.130 0.474

1 mut 80 0.031 0.375 2.323

1 mut 250 0.042 0.622 3.073

2 WT 5 0.083 0.468 1.868

2 WT 10 0.004 0.103 0.843

2 WT 20 0.011 0.052 0.334

2 WT 40 0.007 0.013 0.048

2 WT 80 0.010 0.016 0.057

2 WT 250 0.005 0.008 0.031

2 mut 5 0.024 0.496 2.425

2 mut 10 0.006 0.077 0.442

2 mut 40 0.011 0.050 0.095

2 mut 80 0.010 0.040 0.073

2 mut 250 0.012 0.127 0.909

3 WT 5 0.050 0.399 1.601

3 WT 10 0.013 0.030 0.343

3 WT 20 0.011 0.035 0.156

3 WT 40 0.010 0.022 0.104

3 WT 80 0.013 0.055 0.230

3 WT 250 0.027 0.097 0.495

3 mut 5 0.036 0.807 3.286

3 mut 10 0.033 0.440 2.258

3 mut 40 0.013 0.091 0.224

3 mut 80 0.011 0.044 0.084

3 mut 250 0.014 0.067 0.137

4 WT 5 0.180 0.813 3.140

4 WT 10 0.095 0.443 1.732

4 WT 20 0.013 0.019 0.101

4 WT 40 0.009 0.019 0.072

4 WT 80 0.020 0.068 0.265

4 WT 250 0.019 0.060 0.254

4 mut 5 0.122 1.271 3.884

4 mut 10 0.072 1.031 3.537

4 mut 40 0.020 0.149 0.768

4 mut 80 0.049 0.431 1.596

4 mut 250 0.037 0.844 3.754
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TABLE S10. α/koff HBB

k SNP tet low.HPD median upp.HPD

1 WT 5 180.624 213.178 250.384

1 WT 10 125.805 147.598 168.798

1 WT 20 216.330 261.287 314.761

1 WT 40 212.117 270.985 329.730

1 WT 80 214.432 257.880 304.762

1 WT 250 477.217 564.684 648.593

1 mut 5 9.080 10.960 13.174

1 mut 10 28.529 36.058 43.356

1 mut 40 44.662 57.687 71.459

1 mut 80 43.999 55.447 69.005

1 mut 250 59.522 70.628 84.777

2 WT 5 82.844 96.710 111.647

2 WT 10 118.521 142.328 186.000

2 WT 20 180.061 222.460 269.372

2 WT 40 256.229 310.385 368.848

2 WT 80 238.431 309.659 327.796

2 WT 250 481.478 561.546 649.773

2 mut 5 35.331 42.066 49.954

2 mut 10 38.750 55.886 71.052

2 mut 40 47.767 63.226 77.583

2 mut 80 72.672 93.342 115.105

2 mut 250 61.357 86.761 108.005

3 WT 5 69.549 81.039 94.196

3 WT 10 114.861 170.317 170.356

3 WT 20 124.441 164.157 206.865

3 WT 40 153.175 216.801 264.885

3 WT 80 141.653 180.708 226.265

3 WT 250 149.771 189.476 213.603

3 mut 5 29.455 35.547 42.080

3 mut 10 25.170 31.255 38.079

3 mut 40 34.828 47.958 60.944

3 mut 80 65.273 87.569 108.009

3 mut 250 95.857 119.091 143.867

4 WT 5 84.599 97.546 113.826

4 WT 10 104.599 123.292 142.147

4 WT 20 215.483 270.814 270.814

4 WT 40 249.124 305.273 366.964

4 WT 80 182.471 217.225 258.564

4 WT 250 234.660 281.937 339.927

4 mut 5 28.552 34.146 40.265

4 mut 10 30.453 37.481 44.636

4 mut 40 34.310 46.529 58.219

4 mut 80 30.063 38.528 47.509

4 mut 250 40.276 47.439 56.269

TABLE S11. κ HIV

k SNP tet low.HPD median upp.HPD

1 WT 5 8.727 9.937 11.325

1 WT 10 10.993 12.288 13.592

1 WT 20 16.932 18.302 19.718

1 WT 40 18.385 19.903 20.011

1 WT 80 16.735 17.896 18.957

1 WT 250 24.550 25.974 27.432

1 mut 5 16.621 19.959 23.859

1 mut 10 21.241 23.881 27.318

1 mut 20 22.935 25.057 27.444

1 mut 40 19.246 20.688 22.178

1 mut 80 26.489 28.430 30.467

1 mut 250 24.061 25.942 27.678

2 WT 5 15.392 17.512 19.808

2 WT 10 25.774 28.301 30.527

2 WT 20 36.093 38.649 40.924

2 WT 40 34.004 35.801 37.798

2 WT 80 30.599 31.966 33.382

2 WT 250 37.518 39.354 41.293

2 mut 5 21.794 25.773 29.947

2 mut 10 43.278 47.496 52.058

2 mut 20 21.203 23.231 25.227

2 mut 40 30.657 32.984 35.508

2 mut 80 19.609 21.327 22.957

2 mut 250 16.493 17.664 18.954

3 WT 5 10.456 12.000 13.644

3 WT 10 9.830 10.997 12.398

3 WT 20 29.612 31.544 33.564

3 WT 40 15.692 16.768 17.845

3 WT 80 16.705 17.712 18.798

3 WT 250 19.341 20.192 21.265

3 mut 5 33.804 38.444 42.521

3 mut 10 29.922 32.648 36.088

3 mut 20 25.741 28.254 30.406

3 mut 40 21.824 23.662 25.236

3 mut 80 21.917 23.597 25.190

3 mut 250 16.718 17.810 18.906

4 WT 5 34.743 38.418 42.457

4 WT 10 37.419 40.703 43.863

4 WT 20 42.950 46.185 49.408

4 WT 40 48.250 51.426 54.571

4 WT 80 54.240 57.360 60.494

4 WT 250 53.328 56.927 60.132

4 mut 5 25.447 29.942 34.647

4 mut 10 34.322 38.062 42.392

4 mut 20 28.296 30.815 33.340

4 mut 40 26.199 28.116 29.970

4 mut 80 20.818 22.328 23.790

4 mut 250 20.302 21.626 22.973
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TABLE S12. µX HIV gene

k SNP tet low.HPD median upp.HPD

1 WT 5 67.005 72.838 79.536

1 WT 10 109.810 115.686 121.952

1 WT 20 144.574 151.166 157.431

1 WT 40 194.485 198.005 203.512

1 WT 80 226.244 232.415 238.770

1 WT 250 231.469 238.032 244.048

1 mut 5 31.686 37.672 43.353

1 mut 10 52.227 58.303 64.193

1 mut 20 89.312 95.185 101.282

1 mut 40 133.357 139.395 145.681

1 mut 80 156.590 162.956 169.112

1 mut 250 180.919 187.275 193.192

2 WT 5 66.834 73.001 78.969

2 WT 10 110.155 116.385 122.115

2 WT 20 146.758 152.367 157.963

2 WT 40 193.705 200.206 205.751

2 WT 80 226.944 232.737 238.957

2 WT 250 233.022 238.787 244.544

2 mut 5 33.431 38.818 44.292

2 mut 10 58.085 63.467 68.566

2 mut 20 88.921 95.219 101.320

2 mut 40 133.678 140.521 146.283

2 mut 80 155.778 162.631 168.680

2 mut 250 180.361 186.879 193.168

3 WT 5 67.657 73.147 79.668

3 WT 10 110.114 115.655 121.652

3 WT 20 145.713 152.053 157.986

3 WT 40 192.742 199.274 205.308

3 WT 80 226.620 233.022 238.193

3 WT 250 232.351 238.150 244.483

3 mut 5 36.811 40.994 45.435

3 mut 10 55.191 60.551 64.555

3 mut 20 89.503 95.670 101.158

3 mut 40 133.490 139.695 145.130

3 mut 80 156.822 162.594 169.538

3 mut 250 180.569 186.922 192.906

4 WT 5 69.528 75.142 81.061

4 WT 10 111.093 117.156 122.570

4 WT 20 146.982 153.429 159.127

4 WT 40 195.212 201.345 207.570

4 WT 80 229.161 235.061 241.236

4 WT 250 234.182 240.462 246.342

4 mut 5 34.228 39.432 44.903

4 mut 10 54.750 60.567 66.025

4 mut 20 89.372 95.749 101.674

4 mut 40 133.614 139.938 146.017

4 mut 80 156.317 162.691 168.913

4 mut 250 180.968 186.969 193.373

TABLE S13. k̃on HIV gene

k SNP tet low.HPD median upp.HPD

1 WT 5 0.003 0.004 0.005

1 WT 10 0.003 0.004 0.005

1 WT 20 0.006 0.009 0.011

1 WT 40 0.009 0.012 0.016

1 WT 80 0.006 0.008 0.010

1 WT 250 0.009 0.012 0.015

1 mut 5 0.002 0.003 0.004

1 mut 10 0.003 0.004 0.005

1 mut 20 0.004 0.005 0.007

1 mut 40 0.007 0.009 0.011

1 mut 80 0.004 0.006 0.007

1 mut 250 0.004 0.005 0.007

2 WT 5 0.002 0.003 0.004

2 WT 10 0.004 0.005 0.007

2 WT 20 0.006 0.008 0.011

2 WT 40 0.008 0.012 0.015

2 WT 80 0.013 0.018 0.023

2 WT 250 0.010 0.014 0.019

2 mut 5 0.002 0.003 0.004

2 mut 10 0.004 0.005 0.006

2 mut 20 0.004 0.005 0.006

2 mut 40 0.004 0.005 0.007

2 mut 80 0.003 0.004 0.005

2 mut 250 0.004 0.005 0.006

3 WT 5 0.002 0.003 0.004

3 WT 10 0.002 0.003 0.004

3 WT 20 0.009 0.012 0.015

3 WT 40 0.007 0.010 0.012

3 WT 80 0.008 0.011 0.014

3 WT 250 0.008 0.011 0.014

3 mut 5 0.003 0.004 0.005

3 mut 10 0.003 0.004 0.005

3 mut 20 0.005 0.006 0.008

3 mut 40 0.005 0.006 0.008

3 mut 80 0.004 0.005 0.007

3 mut 250 0.006 0.008 0.010

4 WT 5 0.004 0.006 0.007

4 WT 10 0.004 0.006 0.007

4 WT 20 0.004 0.006 0.008

4 WT 40 0.005 0.007 0.009

4 WT 80 0.006 0.008 0.011

4 WT 250 0.004 0.006 0.008

4 mut 5 0.003 0.003 0.004

4 mut 10 0.004 0.005 0.006

4 mut 20 0.005 0.006 0.008

4 mut 40 0.005 0.007 0.009

4 mut 80 0.004 0.005 0.007

4 mut 250 0.006 0.008 0.010
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TABLE S14. k̃off HIV gene

k SNP tet low.HPD median upp.HPD

1 WT 5 0.144 0.881 2.155

1 WT 10 0.084 0.562 1.685

1 WT 20 0.229 0.744 1.857

1 WT 40 0.038 0.078 0.654

1 WT 80 0.015 0.031 0.060

1 WT 250 0.135 0.590 1.298

1 mut 5 0.073 0.454 1.354

1 mut 10 0.051 0.368 1.166

1 mut 20 0.018 0.140 0.616

1 mut 40 0.123 0.478 1.361

1 mut 80 0.014 0.024 0.042

1 mut 250 0.016 0.044 0.189

2 WT 5 0.103 0.570 1.574

2 WT 10 0.052 0.401 1.406

2 WT 20 0.023 0.151 0.667

2 WT 40 0.045 0.191 0.656

2 WT 80 0.047 0.204 0.605

2 WT 250 0.023 0.097 0.353

2 mut 5 0.022 0.201 0.769

2 mut 10 0.013 0.037 0.169

2 mut 20 0.007 0.011 0.017

2 mut 40 0.012 0.019 0.031

2 mut 80 0.009 0.014 0.021

2 mut 250 0.012 0.020 0.031

3 WT 5 0.068 0.611 2.029

3 WT 10 0.038 0.556 1.761

3 WT 20 0.096 0.582 1.690

3 WT 40 0.088 0.348 0.988

3 WT 80 0.037 0.374 1.164

3 WT 250 0.059 0.117 0.226

3 mut 5 0.015 0.120 0.623

3 mut 10 0.011 0.030 0.233

3 mut 20 0.015 0.088 0.720

3 mut 40 0.024 0.146 0.626

3 mut 80 0.010 0.017 0.026

3 mut 250 0.016 0.036 0.122

4 WT 5 0.103 0.649 1.825

4 WT 10 0.020 0.195 0.755

4 WT 20 0.014 0.038 0.156

4 WT 40 0.011 0.017 0.026

4 WT 80 0.017 0.036 0.091

4 WT 250 0.010 0.015 0.021

4 mut 5 0.037 0.288 0.992

4 mut 10 0.010 0.020 0.041

4 mut 20 0.011 0.020 0.035

4 mut 40 0.013 0.024 0.042

4 mut 80 0.007 0.010 0.014

4 mut 250 0.017 0.037 0.078

TABLE S15. α/koff HIV

k SNP tet low.HPD median upp.HPD

1 WT 5 67.863 83.165 98.742

1 WT 10 110.233 128.710 148.311

1 WT 20 66.024 75.388 86.230

1 WT 40 62.055 86.423 86.468

1 WT 80 125.449 163.587 197.794

1 WT 250 78.058 89.165 100.338

1 mut 5 31.371 40.575 50.588

1 mut 10 39.406 48.621 58.372

1 mut 20 53.780 65.401 80.227

1 mut 40 50.390 58.418 66.771

1 mut 80 102.514 128.589 150.897

1 mut 250 107.239 136.430 165.491

2 WT 5 78.383 92.406 106.888

2 WT 10 85.438 97.416 111.716

2 WT 20 69.807 83.687 101.449

2 WT 40 65.879 78.702 95.247

2 WT 80 49.412 61.013 75.818

2 WT 250 65.047 84.639 112.098

2 mut 5 34.809 44.291 54.536

2 mut 10 38.469 51.197 64.148

2 mut 20 82.526 102.341 124.937

2 mut 40 98.967 120.615 143.267

2 mut 80 152.628 182.466 213.368

2 mut 250 135.805 164.695 193.826

3 WT 5 95.847 112.554 131.718

3 WT 10 152.746 177.896 201.429

3 WT 20 50.485 58.166 66.866

3 WT 40 80.785 93.509 106.082

3 WT 80 87.801 99.460 133.676

3 WT 250 88.618 103.986 120.259

3 mut 5 28.936 36.907 43.947

3 mut 10 46.523 63.475 79.732

3 mut 20 44.259 56.383 76.276

3 mut 40 67.822 80.040 95.357

3 mut 80 114.493 141.460 169.534

3 mut 250 77.043 104.075 130.875

4 WT 5 50.970 59.826 68.217

4 WT 10 77.752 95.427 118.147

4 WT 20 99.153 128.960 158.025

4 WT 40 147.939 179.362 211.985

4 WT 80 113.452 149.386 180.708

4 WT 250 205.845 243.531 280.996

4 mut 5 33.166 41.173 49.774

4 mut 10 40.803 53.581 68.012

4 mut 20 53.655 70.015 87.576

4 mut 40 71.864 90.996 110.250

4 mut 80 132.897 162.495 192.626

4 mut 250 82.023 104.932 129.862
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B. Negative binomial distribution

In contrast to the Poisson-beta model, the
negative-binomial model directly encodes the ratio
α/koff as a single parameter, which is inferred with
rather narrow credible intervals. Parsimony suggests
that the negative-binomial model is a reasonable
choice for the genes considered here, as it encodes
for the most relevant kinetic parameters, viz., the
average burst size α/koff and the burst frequency
kon. Fig. S11 shows the parameters estimated from
the negative-binomial model. The traces of the pos-
teriors chains from each replicates were combined
according to the consensus Monte Carlo procedure
(see section S4 B) to obtain a representation of the
consensus belief in Fig. S12.

The 90% HPD CIs and medians of the estimated
parameters κ, µX , kon, and α/koff are reported in
Tables S16–S19 (HBB gene) and Tables S20–S23
(HIV gene).

TABLE S16. κ HBB

k SNP tet low.HPD median upp.HPD

1 WT 5 9.675 11.307 13.213

1 WT 10 22.041 25.232 28.377

1 WT 20 18.950 20.813 22.843

1 WT 40 20.381 22.383 24.447

1 WT 80 25.673 27.661 29.771

1 WT 250 17.300 18.830 20.649

1 mut 5 32.550 35.329 38.490

1 mut 10 16.072 18.688 21.615

1 mut 40 23.375 25.503 27.566

1 mut 80 27.251 30.309 34.188

1 mut 250 16.967 18.178 19.357

2 WT 5 23.578 26.572 29.961

2 WT 10 23.453 26.572 29.997

2 WT 20 21.562 23.610 25.909

2 WT 40 25.687 28.089 30.456

2 WT 80 31.358 33.931 36.457

2 WT 250 24.861 26.446 28.603

2 mut 5 26.626 29.697 33.019

2 mut 10 31.988 36.180 41.474

2 mut 40 40.925 44.272 47.412

2 mut 80 27.407 30.832 34.251

2 mut 250 22.856 24.409 26.037

3 WT 5 25.676 29.020 32.801

3 WT 10 32.162 35.936 39.914

3 WT 20 30.366 32.843 35.501

3 WT 40 30.841 33.200 35.696

3 WT 80 24.637 26.419 28.015

3 WT 250 20.441 21.780 23.367

3 mut 5 24.569 27.336 30.290

3 mut 10 42.637 47.605 52.771

3 mut 40 35.782 38.444 41.379

3 mut 80 31.078 35.045 38.636

3 mut 250 28.041 30.084 32.136

4 WT 5 17.636 20.198 23.004

4 WT 10 17.386 19.747 22.473

4 WT 20 21.240 23.109 25.149

4 WT 40 29.894 32.568 35.174

4 WT 80 29.411 31.375 33.856

4 WT 250 23.425 25.036 26.811

4 mut 5 14.236 15.954 17.716

4 mut 10 22.721 26.243 30.138

4 mut 40 32.983 35.546 38.257

4 mut 80 28.575 31.849 35.621

4 mut 250 26.358 27.852 29.440
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FIG. S11. Estimates for parameters k̃on, µX , and α/koff of the negative-binomial model, from wild-type (blue) and
mutant (orange) cell data, for all induction levels, shades of colors corresponds to replicates. Points are medians,
error bars comprise 90% HPD CIs. HBB-gene results show consistent results across all the replicates (panel A). The
HIV-gene results are reported in panels B. Results are consistent with the Poisson-beta model estimates (Fig. S9).
Increasing expression levels, three replicates show a drop-off in the average burst size and an increase in the burst
frequency, see also Fig. S2.
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FIG. S12. Consensus estimates of the parameters k̃on, µX , and α/koff from the negative-binomial model, from
wild-type (blue) and mutant (orange) cell data, for all induction levels. Points are medians, error bars comprise 90%
HPD CIs. HBB-gene results are in panel A, HIV-gene results are reported in panel B.
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TABLE S17. µX HBB

k SNP tet low.HPD median upp.HPD

1 WT 5 103.193 115.687 126.875

1 WT 10 157.904 175.269 194.327

1 WT 20 293.749 311.584 331.666

1 WT 40 357.077 382.068 402.882

1 WT 80 397.085 413.625 430.396

1 WT 250 537.710 562.996 589.504

1 mut 5 39.255 42.325 45.219

1 mut 10 53.368 61.634 69.735

1 mut 40 85.470 90.459 95.633

1 mut 80 103.857 115.778 127.620

1 mut 250 157.575 163.136 168.842

2 WT 5 104.884 115.671 127.339

2 WT 10 156.119 174.189 192.233

2 WT 20 292.999 311.784 331.770

2 WT 40 360.835 382.742 404.849

2 WT 80 397.159 414.805 430.893

2 WT 250 542.191 564.530 590.432

2 mut 5 39.031 42.105 45.158

2 mut 10 57.835 65.531 72.791

2 mut 40 86.987 92.086 96.961

2 mut 80 103.723 115.390 127.323

2 mut 250 157.508 163.312 168.777

3 WT 5 104.159 116.177 127.657

3 WT 10 163.259 179.811 197.030

3 WT 20 296.072 314.846 332.531

3 WT 40 363.753 384.298 406.525

3 WT 80 397.951 414.531 430.464

3 WT 250 538.464 564.609 588.360

3 mut 5 38.955 41.838 44.995

3 mut 10 63.927 70.558 77.724

3 mut 40 86.541 91.645 96.597

3 mut 80 105.958 117.686 129.102

3 mut 250 157.977 163.500 169.119

4 WT 5 103.541 114.909 127.623

4 WT 10 153.130 172.692 190.326

4 WT 20 292.635 312.606 330.812

4 WT 40 365.063 386.377 407.528

4 WT 80 399.614 415.485 432.185

4 WT 250 540.558 564.417 589.218

4 mut 5 38.556 41.557 44.534

4 mut 10 55.032 63.112 71.160

4 mut 40 85.960 91.252 96.281

4 mut 80 104.157 116.484 127.851

4 mut 250 157.935 163.479 169.027

TABLE S18. k̃on HBB

k SNP tet low.HPD median upp.HPD

1 WT 5 0.001 0.001 0.005

1 WT 10 0.002 0.003 0.011

1 WT 20 0.003 0.004 0.013

1 WT 40 0.004 0.005 0.018

1 WT 80 0.004 0.005 0.019

1 WT 250 0.002 0.003 0.013

1 mut 5 0.012 0.045 0.074

1 mut 10 0.005 0.019 0.032

1 mut 40 0.006 0.021 0.035

1 mut 80 0.007 0.025 0.041

1 mut 250 0.007 0.027 0.044

2 WT 5 0.002 0.003 0.011

2 WT 10 0.003 0.004 0.013

2 WT 20 0.003 0.004 0.015

2 WT 40 0.004 0.005 0.019

2 WT 80 0.004 0.006 0.022

2 WT 250 0.003 0.005 0.018

2 mut 5 0.003 0.011 0.019

2 mut 10 0.005 0.017 0.027

2 mut 40 0.008 0.031 0.051

2 mut 80 0.007 0.028 0.045

2 mut 250 0.007 0.028 0.046

3 WT 5 0.003 0.004 0.014

3 WT 10 0.003 0.004 0.015

3 WT 20 0.005 0.007 0.025

3 WT 40 0.005 0.007 0.026

3 WT 80 0.005 0.008 0.027

3 WT 250 0.006 0.009 0.034

3 mut 5 0.003 0.013 0.021

3 mut 10 0.008 0.027 0.045

3 mut 40 0.009 0.033 0.054

3 mut 80 0.009 0.030 0.050

3 mut 250 0.006 0.023 0.038

4 WT 5 0.002 0.003 0.011

4 WT 10 0.003 0.004 0.013

4 WT 20 0.003 0.004 0.015

4 WT 40 0.003 0.005 0.017

4 WT 80 0.004 0.006 0.021

4 WT 250 0.004 0.006 0.022

4 mut 5 0.003 0.013 0.023

4 mut 10 0.005 0.019 0.031

4 mut 40 0.008 0.028 0.045

4 mut 80 0.010 0.037 0.063

4 mut 250 0.011 0.041 0.065
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TABLE S19. α/kon HBB

k SNP tet low.HPD median upp.HPD

1 WT 5 175.298 206.600 246.085

1 WT 10 120.820 144.691 167.516

1 WT 20 190.560 217.633 249.246

1 WT 40 170.125 194.471 222.404

1 WT 80 181.291 206.076 232.972

1 WT 250 354.322 406.867 459.164

1 mut 5 8.579 10.098 12.020

1 mut 10 26.797 33.634 40.524

1 mut 40 38.121 44.326 50.962

1 mut 80 41.023 48.685 57.037

1 mut 250 56.503 64.628 73.724

2 WT 5 79.762 93.656 108.321

2 WT 10 104.729 123.788 143.569

2 WT 20 161.758 186.721 211.985

2 WT 40 160.712 183.674 208.313

2 WT 80 156.316 177.567 201.871

2 WT 250 258.811 295.198 334.765

2 mut 5 33.600 39.522 45.973

2 mut 10 34.079 40.868 48.606

2 mut 40 27.354 31.636 36.378

2 mut 80 36.745 44.057 51.733

2 mut 250 54.699 62.845 71.400

3 WT 5 66.198 78.414 90.605

3 WT 10 97.887 114.499 133.520

3 WT 20 102.297 117.574 133.503

3 WT 40 117.655 135.267 152.972

3 WT 80 120.396 137.453 155.178

3 WT 250 134.325 154.819 174.205

3 mut 5 28.241 33.741 39.190

3 mut 10 22.808 27.192 31.662

3 mut 40 25.141 29.293 33.804

3 mut 80 34.292 41.021 47.862

3 mut 250 66.549 75.912 86.434

4 WT 5 81.257 95.302 110.891

4 WT 10 100.651 119.384 138.147

4 WT 20 169.562 193.318 219.519

4 WT 40 187.460 214.568 244.764

4 WT 80 160.411 183.310 206.170

4 WT 250 204.957 232.671 264.311

4 mut 5 27.219 32.786 38.579

4 mut 10 29.960 35.848 43.176

4 mut 40 30.133 34.940 39.916

4 mut 80 27.685 33.007 38.815

4 mut 250 37.564 42.970 49.161

TABLE S20. κ HIV

k SNP tet low.HPD median upp.HPD

1 WT 5 8.683 9.925 11.355

1 WT 10 10.830 12.201 13.502

1 WT 20 16.946 18.291 19.696

1 WT 40 17.995 19.136 20.300

1 WT 80 16.814 17.998 19.187

1 WT 250 24.456 25.898 27.413

1 mut 5 16.450 19.977 23.853

1 mut 10 20.826 23.864 27.041

1 mut 20 22.626 24.912 27.281

1 mut 40 19.162 20.677 22.160

1 mut 80 26.548 28.642 30.929

1 mut 250 24.056 26.022 27.857

2 WT 5 15.406 17.501 19.880

2 WT 10 25.483 28.210 30.905

2 WT 20 36.121 38.563 41.320

2 WT 40 33.654 35.716 37.949

2 WT 80 30.499 32.001 33.633

2 WT 250 37.389 39.279 41.400

2 mut 5 21.886 25.819 30.735

2 mut 10 42.808 47.476 52.389

2 mut 20 21.292 23.474 25.662

2 mut 40 30.748 33.257 35.874

2 mut 80 19.858 21.585 23.433

2 mut 250 16.597 17.858 19.331

3 WT 5 10.305 11.911 13.704

3 WT 10 9.759 10.994 12.394

3 WT 20 15.478 16.882 18.327

3 WT 40 15.642 16.744 17.818

3 WT 80 16.849 17.904 19.029

3 WT 250 19.059 20.252 21.472

3 mut 5 33.159 38.139 43.447

3 mut 10 28.905 32.666 36.895

3 mut 20 25.677 28.163 30.685

3 mut 40 21.877 23.641 25.428

3 mut 80 22.105 23.864 25.581

3 mut 250 16.736 17.863 19.027

4 WT 5 34.330 38.261 42.130

4 WT 10 37.272 40.394 44.002

4 WT 20 43.020 46.210 50.115

4 WT 40 48.515 51.534 54.970

4 WT 80 54.224 57.441 60.923

4 WT 250 54.376 57.496 61.232

4 mut 5 25.398 29.929 34.621

4 mut 10 34.261 38.357 42.825

4 mut 20 28.323 31.007 33.655

4 mut 40 26.348 28.262 30.242

4 mut 80 21.116 22.690 24.363

4 mut 250 20.337 21.627 23.114
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TABLE S21. µX HIV

k SNP tet low.HPD median upp.HPD

1 WT 5 66.749 72.714 79.573

1 WT 10 109.215 115.559 121.995

1 WT 20 144.952 151.119 157.583

1 WT 40 192.656 199.155 205.249

1 WT 80 225.999 232.337 238.487

1 WT 250 232.122 238.168 244.560

1 mut 5 31.397 37.570 43.353

1 mut 10 52.305 58.144 64.224

1 mut 20 89.505 95.336 101.545

1 mut 40 133.432 139.663 146.087

1 mut 80 156.547 162.818 169.259

1 mut 250 180.854 187.190 193.263

2 WT 5 66.749 72.966 79.146

2 WT 10 109.748 115.981 122.719

2 WT 20 145.901 152.450 158.287

2 WT 40 193.656 199.980 206.311

2 WT 80 226.495 232.703 239.197

2 WT 250 232.607 238.913 244.831

2 mut 5 32.501 38.487 44.321

2 mut 10 58.006 63.477 68.941

2 mut 20 88.766 95.055 101.497

2 mut 40 133.898 140.390 146.663

2 mut 80 156.238 162.667 168.835

2 mut 250 180.541 186.876 193.151

3 WT 5 66.720 73.187 79.646

3 WT 10 109.464 116.001 122.177

3 WT 20 144.933 151.139 157.537

3 WT 40 192.762 199.160 205.284

3 WT 80 225.811 232.428 238.252

3 WT 250 231.709 237.918 244.421

3 mut 5 36.242 41.159 46.565

3 mut 10 53.945 59.653 65.693

3 mut 20 89.646 95.617 102.024

3 mut 40 133.566 139.776 146.113

3 mut 80 156.555 162.557 168.787

3 mut 250 180.705 186.932 193.327

4 WT 5 69.298 75.131 81.160

4 WT 10 111.288 117.514 123.639

4 WT 20 146.956 153.289 159.350

4 WT 40 194.908 201.289 207.621

4 WT 80 228.382 234.962 240.972

4 WT 250 234.384 240.198 246.468

4 mut 5 34.044 39.263 45.106

4 mut 10 54.421 60.168 65.966

4 mut 20 89.558 95.636 101.791

4 mut 40 133.322 139.929 146.100

4 mut 80 156.024 162.534 168.737

4 mut 250 180.686 187.024 193.207

TABLE S22. k̃on HIV

k SNP tet low.HPD median upp.HPD

1 WT 5 0.003 0.004 0.005

1 WT 10 0.003 0.004 0.005

1 WT 20 0.007 0.009 0.012

1 WT 40 0.010 0.014 0.018

1 WT 80 0.007 0.010 0.012

1 WT 250 0.009 0.012 0.016

1 mut 5 0.003 0.003 0.004

1 mut 10 0.003 0.004 0.006

1 mut 20 0.004 0.006 0.007

1 mut 40 0.007 0.009 0.011

1 mut 80 0.005 0.007 0.008

1 mut 250 0.005 0.006 0.008

2 WT 5 0.003 0.004 0.005

2 WT 10 0.004 0.005 0.007

2 WT 20 0.007 0.009 0.012

2 WT 40 0.009 0.013 0.016

2 WT 80 0.015 0.020 0.026

2 WT 250 0.011 0.016 0.021

2 mut 5 0.002 0.003 0.004

2 mut 10 0.004 0.006 0.007

2 mut 20 0.005 0.007 0.008

2 mut 40 0.005 0.006 0.008

2 mut 80 0.004 0.005 0.006

2 mut 250 0.005 0.006 0.008

3 WT 5 0.002 0.003 0.004

3 WT 10 0.002 0.003 0.004

3 WT 20 0.005 0.007 0.008

3 WT 40 0.007 0.010 0.013

3 WT 80 0.008 0.011 0.014

3 WT 250 0.009 0.012 0.016

3 mut 5 0.003 0.004 0.006

3 mut 10 0.003 0.004 0.005

3 mut 20 0.005 0.007 0.009

3 mut 40 0.005 0.007 0.009

3 mut 80 0.005 0.007 0.009

3 mut 250 0.007 0.009 0.011

4 WT 5 0.004 0.006 0.007

4 WT 10 0.004 0.006 0.007

4 WT 20 0.005 0.007 0.009

4 WT 40 0.007 0.009 0.012

4 WT 80 0.007 0.010 0.013

4 WT 250 0.006 0.008 0.010

4 mut 5 0.003 0.004 0.004

4 mut 10 0.005 0.006 0.008

4 mut 20 0.006 0.008 0.010

4 mut 40 0.007 0.009 0.011

4 mut 80 0.006 0.008 0.010

4 mut 250 0.007 0.009 0.011
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TABLE S23. α/kon HIV

k SNP tet low.HPD median upp.HPD

1 WT 5 65.123 80.224 96.055

1 WT 10 105.447 124.804 144.056

1 WT 20 62.196 72.693 82.359

1 WT 40 55.029 62.855 71.783

1 WT 80 91.968 105.675 120.244

1 WT 250 73.419 84.125 95.301

1 mut 5 30.097 38.894 48.835

1 mut 10 38.247 46.466 55.041

1 mut 20 50.656 59.480 68.448

1 mut 40 48.290 55.669 63.965

1 mut 80 75.487 87.423 99.612

1 mut 250 95.084 108.486 123.429

2 WT 5 76.105 89.902 104.946

2 WT 10 81.737 93.017 105.950

2 WT 20 65.181 74.363 83.731

2 WT 40 61.362 69.436 78.737

2 WT 80 44.884 51.005 57.922

2 WT 250 56.796 64.669 73.245

2 mut 5 33.159 41.584 50.823

2 mut 10 33.516 39.641 45.896

2 mut 20 43.426 51.414 59.328

2 mut 40 67.491 76.908 87.220

2 mut 80 101.936 115.771 132.951

2 mut 250 94.257 109.003 123.450

3 WT 5 92.776 109.735 130.017

3 WT 10 147.773 172.554 197.158

3 WT 20 88.084 100.818 114.809

3 WT 40 77.288 87.747 99.551

3 WT 80 80.400 91.796 103.421

3 WT 250 76.617 86.925 98.877

3 mut 5 27.222 32.985 39.572

3 mut 10 40.746 48.876 57.111

3 mut 20 41.247 48.004 54.827

3 mut 40 63.647 72.555 83.277

3 mut 80 72.747 84.254 95.213

3 mut 250 63.329 72.322 82.431

4 WT 5 49.732 58.001 66.871

4 WT 10 77.064 88.972 100.832

4 WT 20 85.802 97.901 110.523

4 WT 40 83.077 94.987 107.236

4 WT 80 87.612 99.737 112.167

4 WT 250 114.176 129.687 146.438

4 mut 5 32.124 39.552 47.867

4 mut 10 29.015 34.206 40.406

4 mut 20 35.600 41.423 47.690

4 mut 40 48.680 56.041 64.317

4 mut 80 64.269 73.738 84.134

4 mut 250 63.794 73.262 83.058
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TABLE S24. κ HBB

k SNP tet low.HPD median upp.HPD

2 WT 5 260.821 267.314 273.981

2 WT 10 270.677 277.100 284.186

2 WT 20 298.204 304.307 311.348

2 WT 40 305.802 312.765 319.762

2 WT 80 321.045 327.146 334.050

2 WT 250 338.221 345.124 349.512

2 mut 5 165.515 172.460 179.105

2 mut 10 192.112 198.697 206.055

2 mut 40 183.042 189.718 196.109

2 mut 80 185.722 192.343 199.121

2 mut 250 178.993 185.852 192.476

TABLE S25. µX HBB

k SNP tet low.HPD median upp.HPD

2 WT 5 11.310 11.728 12.148

2 WT 10 16.261 16.814 17.355

2 WT 20 23.646 24.285 25.005

2 WT 40 33.593 34.477 35.487

2 WT 80 42.511 43.591 44.589

2 WT 250 42.719 43.602 44.549

2 mut 5 7.300 7.704 8.128

2 mut 10 11.689 12.224 12.753

2 mut 40 21.350 22.256 23.111

2 mut 80 17.868 18.619 19.384

2 mut 250 21.277 22.220 23.121

C. Poisson distribution

The Poisson model encodes only one biological pa-
rameter, viz., the average gene expression level µX .
We fitted this model to data from one of the repli-
cates as a benchmark. The 90% HPD CIs and me-
dians of the estimated parameters κ and µX , are
reported in Tables S24–S25 (HBB gene) and Ta-
bles S26–S27 (HIV gene). It is worth noting that,
compared to the prior derived in section S3 and both
the estimates from the Poisson-beta and negative-
binomial models of Tables S6, S11, S16, and S20,
the κ is overestimated. In fact, high values of κ
compensate for the small dispersion encoded in a
Poisson random variable. Jointly with the fact that
the Poisson model shows lower GoF than the two
general models (subsection S4 C and figure S7), we
conclude that the expression of the genes HIV and
HBB is relative to a Poisson random variable and
a flexible gene expression model for X

(k)
i , such as

the Poisson-beta or the negative-binomial models, is
necessary to exploit the measurement equation (24).

TABLE S26. CV2
X HBB

k SNP tet low.HPD median upp.HPD

2 WT 5 0.082 0.085 0.088

2 WT 10 0.058 0.059 0.061

2 WT 20 0.040 0.041 0.042

2 WT 40 0.028 0.029 0.030

2 WT 80 0.022 0.023 0.024

2 WT 250 0.022 0.023 0.023

2 mut 5 0.123 0.130 0.137

2 mut 10 0.078 0.082 0.085

2 mut 40 0.043 0.045 0.047

2 mut 80 0.052 0.054 0.056

2 mut 250 0.043 0.045 0.047

TABLE S27. κ HIV

k SNP tet low.HPD median upp.HPD

4 WT 5 245.093 251.782 258.632

4 WT 10 276.948 283.448 290.234

4 WT 20 291.102 297.690 304.497

4 WT 40 285.262 291.524 298.090

4 WT 80 300.678 306.854 313.563

4 WT 250 315.404 321.897 328.357

4 mut 5 172.173 179.215 186.314

4 mut 10 183.339 189.696 196.491

4 mut 20 178.477 185.104 191.728

4 mut 40 189.708 196.348 203.244

4 mut 80 183.321 189.823 196.490

4 mut 250 185.416 192.345 198.760

TABLE S28. µX HIV

k SNP tet low.HPD median upp.HPD

4 WT 5 11.520 11.960 12.434

4 WT 10 17.091 17.645 18.199

4 WT 20 24.572 25.315 26.012

4 WT 40 37.049 38.005 39.049

4 WT 80 46.374 47.601 48.746

4 WT 250 45.807 46.889 48.064

4 mut 5 6.517 6.877 7.264

4 mut 10 12.027 12.547 13.114

4 mut 20 15.649 16.369 17.065

4 mut 40 19.839 20.665 21.484

4 mut 80 19.157 19.943 20.770

4 mut 250 20.907 21.769 22.651
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TABLE S29. CV2
X HIV

k SNP tet low.HPD median upp.HPD

4 WT 5 0.080 0.084 0.087

4 WT 10 0.055 0.057 0.058

4 WT 20 0.038 0.040 0.041

4 WT 40 0.026 0.026 0.027

4 WT 80 0.021 0.021 0.022

4 WT 250 0.021 0.021 0.022

4 mut 5 0.137 0.145 0.153

4 mut 10 0.076 0.080 0.083

4 mut 20 0.059 0.061 0.064

4 mut 40 0.047 0.048 0.050

4 mut 80 0.048 0.050 0.052

4 mut 250 0.044 0.046 0.048
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FIG. S13. Scatter plot of the UV355-450/50-A vs FSC-A
signal for the 40 ng/mL Tet-induced HBB gene, replicate
k = 3. Cells from the three phases, highlighted with dif-
ferent green-scale colors, were separated using flowClust.

S7. CELL CYCLE

Staining for DNA concentration allows us to
heuristically find cells that are in G1, S, and G2
phases of the cell cycle, see Figs. S1(right) and S13.
We considered the dataset with cells treated at con-
centration of 40 ng/mL of Tet. We separated the
data points corresponding to the G1 phase from
those from S and G2 using flowClust [4]. The less
dense cluster S-G2 was further separated in two
groups (corresponding to the phases S and G2) run-
ning the same algorithm again. Results are shown
in Fig. S13 for HBB cell line, k = 3.

Data from phase G1, S, and G2 are referred to

as y
(k)
G1 , y

(k)
S , and y

(k)
G2 , respectively, for each repli-

cate k. We refer to their averages (sample standard
deviations of mean) as ȳG1, ȳS, and ȳG2, (sȳG1

, sȳS ,
and sȳG2

) respectively. To take into account that the
mean gene expression seems to change with the cell
phase, we introduce the conversion factors c(k) =

x̄/ȳ(k) to obtain x̄
(k)
i = c(k)ȳi and s

(k)
x̄i

= c(k)sȳi
which in turn are used in the informative priors

µ
(k)
Xi
∼ N (x̄

(k)
i , s

(k)
x̄i

), (40)

i = G1,S,G2. Equations (40) take the place of µX
in the DAG of Fig. S5(B) for the G1, S, and G2
phase, respectively, for each replicate k. Fitting the
negative-binomial model to 500 samples from each
dataset yields the consensus estimates of Fig. 4(C-
D) (Main text). In addition to this, we also subset
reads form each phase into three groups by their size
(based on the values of their FSC-A fluorescense sig-
nal, see Main text). We assume that the cell cycle

TABLE S30. Intrinsic noise, extrinsic noise and to-
tal noise from each replicate of wild-type HBB and HIV
genes, 40 ng/mL Tet. First table is based on cell-phase
only partition, second table is bases on both cell phase
and cell size. Extrinsic noise has the lowest contribution
to the total noise.

gene k intr. noise extr. noise tot. noise

HBB 1 0.587 0.017 0.060

HBB 2 0.399 0.033 0.014

HBB 3 0.380 0.023 0.008

HBB 4 0.448 0.024 0.030

HIV 1 0.322 0.053 0.015

HIV 2 0.417 0.041 0.020

HIV 3 0.444 0.040 0.029

HIV 4 0.289 0.036 0.021

gene k intr. noise extr. noise tot. noise

HBB 1 0.514 0.025 0.539

HBB 2 0.467 0.054 0.521

HBB 3 0.381 0.020 0.401

HBB 4 0.477 0.023 0.500

HIV 1 0.324 0.044 0.369

HIV 2 0.423 0.039 0.461

HIV 3 0.492 0.039 0.531

HIV 4 0.301 0.029 0.330

and the cell size are extrinsic contributors to the to-
tal transgene mRNA variability, with the remaining
variability sources thought of as being intrinsic. As
in Ref. [8], using the symbol 〈·〉I for the average over
the intrinsic variables, with the cell phase held fixed,
and 〈·〉E for the average over the different cell phases,
the law of total variance allows us to write, for the
mRNA abundance X,

CV2
X =

〈〈X2〉I − 〈X〉2I 〉E
〈〈X〉I〉2E

+
〈〈X〉2I 〉E − 〈〈X〉I〉2E

〈〈X〉I〉2E
,

(41)
where the first term on the r.h.s. is the intrinsic
noise, while the second term is the extrinsic noise.
Computing the two terms gives the intrinsic and ex-
trinsic noise levels of Tables S30 and Fig. 4(D) (Main
text), which show that the cell cycle and the cell
size always contributed only a minor term to the
total noise.

S8. POLII-MEDIATED 3’-5’
INTERACTIONS BY CHIA-PET

We considered scRNAseq and ChIA-PET data ac-
cessible at the GEO Series numbers GSE124682 [23]
and GSE33664 [24], respectively.



30

FIG. S14. Joint plots of 3’-5’ interaction scores. For each biological replicate (Rep 1 and Rep 2, corresponding to
GSM832464 and GSM832465, respectively), the interaction scores obtained at different bin resolutions (1, 2, and 7
Kbs) appear strongly correlated. (G)-(I) Similarly, the two biological repeats appear strongly correlated at each bin
resolution.

Raw chromatin contact frequency is highest for
small genomic distances. In order to normalise for
this and expose deviations from this general relation-
ship, we need to divide by the expected number of
reads at a given genomic distance. We calculate this
by random sampling 10000 genomic intervals and
measuring the contact frequency over this sample.
This estimate appears robust to decreasing the num-
ber of sampled intervals. The relation between gene
length and the normalised 3’-5’ interaction score is
illustrated in Fig. S15. Genes with length smaller
than the resolution of the interaction matrices are
discarded from the main analysis.

We fitted the model of equations (54)–(56) to the
smRNAseq data, thus enabling a convenient clas-
sification of genes based on transcription; see also,
e.g., reference [25]. Without correction for incom-
plete capture of mRNA, the parameter k̄on incor-
porates here both biological and technical above-
Poisson noise, whilst allowing the ranking of the
genes based on their total noise.
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FIG. S15. 3’-5’ interaction score vs gene length. The
cluster corresponding to small lengths mostly includes
pseudo-genes.
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S9. MICROSCOPIC GENE EXPRESSION
MODEL

We referred to the models of section S2 as the phe-
nomelogical models. In fact, our main concern there
was to exploit a minimal description of the statis-
tics of the transcription events and the stationary
mRNA distribution—which is the (observed) phe-
nomenology, indeed. Due to their simplicity, these
models allowed us to attain the important goal of
separating the technical noise (due to background
fluorescence and measurement process) from the bi-
ological noise encoded into Xi.

Nevertheless, there are specific microscopic bio-
logical mechanisms, more difficult to observe, that
may give rise to the observed phenomena. In our
tetracycline-inducible genes, Tet repressor (TetR)
homodimers bind to the operator TetO2 downstream
of the transcription start site (TSS). When such a
binding event occurs, the transcription is inhibited
as the elongation is impeded. Adding Tet in turn
alters the conformation of TetR and hinders the
binding events, having the net effect of inducing the
gene expression. Crucially, during the “on” phase,
the transcription rate is proportional to the abun-
dance of PolII (law of mass action), which can be
thought of as waiting in a compartment upstream of
the TSS [26]. Therefore, when the gene is actively
transcribing, its rate can vary in time according to
the amount of PolII ready to initiate transcription.
After transcription, PolII can either be re-injected
into the compartment and set ready for a new initi-
ation event (PolII recycling), or disposed into the nu-
clear environment. Also, the compartment recruits
PolII from the nuclear environment. This can be de-
scribed by means of the following chemical reaction
scheme:

∅ γ−→ PolII, (42)

DNAon + PolII
l β−→ mRNA + DNAon + PolII,

(43)

DNAon + PolII
(1−l) β−→ mRNA + DNAon, (44)

DNAon
λoff−→ DNAoff , (45)

DNAoff
λon−→ DNAon, (46)

mRNA
d→ ∅, (47)

PolII
δ→ ∅, (48)

where DNAon and DNAoff are unlocked and locked
DNA configurations, respectively. The presence of
the 3’-5’ crosstalk loop is thought to facilitate the re-
cycling of PolII after each transcription event; there-
fore we can study the effect of the recycling on the
simulated expression data by tuning l in the reac-

tion scheme. Obviously, the pA mutation lowers the
recycling probability l with respect to the WT, but
l is not supposed to be zero in mutant genes, as the
recycling can occur by means of other mechanisms
(e.g., diffusion). By the law of mass action

λoff = nKλ, (49)

λon = Kλ, (50)

where Kλ is a chemical affinity and n is the concen-
tration of TetR. Hence, we can imitate variations
in the Tet dose by fine-tuning n, with large val-
ues of Tet (high induction levels) corresponding to
small values of n. Unlike the simpler phenomenolog-
ical models, we do not have an analytical likelihood
for this model, thus parameter inference is more
challenging, to be addressed with likelihood-free
methods. We simulate the model using the Doob-
Gillespie algorithm; sample trajectories of mRNA
abundances are plotted in Fig. 5 D (Main text).

When all the chemical species are highly abun-
dant and the gene is always in “on” state (this can
be achieved in the limit as koff → 0), it is straight-
forward to derive the following rate equations,

d

dt
[PolII] =α− [PolII](δ − β(1− l)), (51)

d

dt
[mRNA] =[PolII]β − [mRNA]d, (52)

where [X] is the abundance of the species X. The
stationary mRNA abundance is then

[mRNA] =
β

d

α

δ + β(1− l) , (53)

which corresponds to the vertical lines of
Fig. 4 B (Main text). While the parameters
γ, β, d, δ, Kλ are chosen to simulate mRNA
abundances and noises in ranges consistent with
those of the real data, fine-tuning the recycling
probability and the induction parameters l and n
yields patterns similar to those observed in the
experimental setting (i.e., those of Figs. S9, S11,
and 2 (Main text)). More specifically, a simple
scatter plot of the sample averages versus the CV2

of [mRNA] shows a drift of the noise curve from
the Poisson case CV2

X = 1/µX as the recycling
rate l increases. Fitting a negative binomial (NB)
Bayesian model

mRNA ∼NB(µX , kon), (54)

µX ∼Gamma(0.001, 0.001), (55)

kon ∼Gamma(0.001, 0.001), (56)

to 500 simulated stationary mRNA abundances, al-
lowed us to estimate the average burst size α/koff =
µX/kon and the burst frequency kon shown in Figs.
S16 and 5 C (Main text).
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FIG. S16. Negative-binomial model fit to 500 mRNA abundances simulated from the microscopic model. The pattern
of the inferred average burst sizes and burst frequencies mirrors those obtained from the real data. For each value of
the recycling probability l (l = 0.5, 0.85, 1), simulations are performed with λoff = 0.5, 1, 1.5, 2, 2.5, 3, 2.5, 3.5, 4, 4.5;
remaining parameters are (γ, β, d, δ, λon) = (10, 10, 0.01, 1, 0.01). The solid lines in the noise plot (lower-left plot) are
fitted CV2

X = A/µX +B curves.

S10. MATERIALS

A. Cell lines and cell culture

The wildtype HBB and HIV-1-env cell lines
have been utilized in previous studies [22, 27, 28].
The nomenclature was changed for the present
manuscript, with the cell lines denoted HBB WT,
HBB mut, HIV WT and HIV mut, which had
been denoted β pA+, β pA−, HIV-1 pA+ and
HIV-1 pA− in [22], respectively. Cells were main-
tained in DMEM medium supplemented with 10%
fetal bovine serum and 100 µg mL−1 penicillin-
streptomycin (DMEM-10). Induction of cell lines
was carried out for 16 hours before downstream ex-
periments.

Deletion cell line construction. The design and
construction of the deletion cell line used the proto-
col detailed in [29], with the following changes. A
dual sgRNA strategy was employed with a 5’ guide
binding between the AmpR promoter and CMV en-
hancer and a 3’ guide binding just after the 3’ FRT
site. The use of plasmid pSpCas9(BB)-2A-GFP
(PX458) and dual targeting necessitated the trans-
fection with two plasmids, each containing a respec-
tive guide. Transfection was carried out using cal-
cium phosphate, followed by washing the cells with
warm PBS after 16-24 hours and replacing the me-

dia. Cells were allowed to recover for 48-72 hours
before single-cells were isolated in 96-well plates via
FACS (BD ARIAFusion), with the brightest 10%
GFP positive cells being sorted. Testing for deletion
was initially verified via genomic DNA extraction
and PCR, followed by smFISH assay using flow cy-
tometry.

B. Single-molecule RNA fluorescence in situ
hybridization

Probe sets. Probe sets for HBB and HIV-
1-env RNA were designed with the tool at
www.biosearchtech.com/stellarisdesigner (see Ta-
ble S31 for sequences). The probe sets were syn-
thesized by LGC Biosearch Technologies as custom
Stellaris® probe sets. AKT1 probes were ready-
made and ordered from LGC Biosearch.

smFISH. smFISH staining followed the probe man-
ufacturer’s protocol. Briefly, cells were grown on
poly-L-lysine treated glass coverslips overnight, fixed
in 3.7% formaldehyde for 10 minutes and perme-
abilized in ethanol for > 1 hour. After overnight
staining at 37°C in dextran sulphate and formamide
buffered with SSC, cells were washed, followed by
mounting onto a slide using Vectashield with DAPI
as the mounting medium. Imageing was carried out
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TABLE S31. Sequences and details of smFISH probe
sets. Product Name: Stellaris® FISH Probes, Custom
Assay with Quasar® 670 Dye.

1) Oligo Name: HIV
tcactaaacgagctcgtcga ggtcaaaacagcgtggatgg

taaacgctagagtccggagg gagctcggtaccaagcttaa

agaattccaccacactggac cagcagttgttgcagaatta

ctatgtcgacacccaattct tctgtcgagtaacgcctatt

agtctaggatctactggagg tggtacaagcagttttaggc

ggcaatgaaagcaacacttt cctaaggcttttgtcatgaa

gagtctgactgttctgatga gctgctttgatagagaagct

cttcttcttctattccttcg aggatccgttcactaatcga

cagatcgtcccagataagtg tagctgaagaggcacaggct

agagtaagtctctcaagcgg ttccacaatcctcgttacaa

aatatttgagggcttcccac ccaatactgtaggagattcc

gcactattctttagttcctg ctgtggcattgagcaagtta

cttctataaccctatctgtc agctctataagctgcttgta

tattcttctaggtatgtggc agcaaaatcctttccaagcc

tactttttgaccacttgcca ttacagcaggccatccaatc

ctcagctcgtctcattcttt cctctagactcgagatactg

gctgatcagcgggtttaaac ctggcaactagaaggcacag

accttccagggtcaaggaag taggaaaggacagtgggagt

2) Oligo Name: HBB
tcactaaacgagctcgtcga aaacagcgtggatggcgtct

cggtgtcttctatggaggtc tttaaacgctagagtccgga

gtcagaagcaaatgtaagct ggttgctagtgaacacagtt

tgcaccatggtgtctgtttg gcagtaacggcagacttctc

caacttcatccacgttcacc aaagaacctctgggtccaag

gagtggacagatccccaaag cttagggttgcccataacag

gagcactttcttgccatgag caggccatcactaaaggcac

cttgaggttgtccaggtgag cactcagtgtggcaaaggtg

acgtgcagcttgtcacagtg agcctgaagttctcaggatc

aaagtgatgggccagcacac ctggtggggtgaattctttg

caccactttctgataggcag cgcttagtgatacttgtggg

tggacagcaagaaagcgagc cttagggaacaaaggaacct

tagacccagtttggtagttg tcatgttttctacagctaga

tccagcagacatgggtgatc tcctcatgttttctacagtc

ctagacagcagacatgggtg gtgatcctcatgttttctac

tacagtcgtccagcagacat atgggtgatcctcatgtttt

ttctacagctagacagcaga agacatgggtgatcctcatg

ctcatgttttctacagtcgt tagacagcagacatgggtga

ttatctagatccggtggatc ttgtggtttgtccaaactca

gcatttttttcactgcattc tgcagcttataatggttaca

gcaattgttgttgttaactt gcaattgttgttgttaactt

on a brightfield microscope.

Flow cytometry. DNA staining was carried
out with FxCycleTM Violet Stain (ThermoFisher,
F10347) at a concentration of 1 µg mL−1. Fixed
cells were analysed on a BD Fortessa. Processing
and data analysis of raw flow cytometry data was
carried out using the flowcore R package [1] (v1.48,
R version 3.3).

SmFISH spot counting. Quantification of RNA
was carried out using FISH-quant [30]. Images were
imported with the following settings: XY 64.8 nm;
Z 200 nm; Refractive index 1.515; NA 1.40; Em 592;
Ex 546; Microscope widefield. Cell outlines were

drawn manually. A single image was then processed
and the settings used to batch-process the remaining
set. The threshold and quality score parameters of
FISH-quant were set to quantify as many spots as
possible while reducing spurious detection through
batch-specific selection of these parameters.

C. RNA isolation and preparation, and
degradation rate estimation

Total RNA was extracted from the respective cell
lines following the RNeasy Mini Kit (Qiagen, 47104)
protocol, using QIAshredder (Qiagen, 79654). RNA
for RNA-seq analysis was treated with TURBO
DNA-freeTM kit (ThermoFisher, AM1907).

To estimate the mRNA degradation rate, RNA
was reverse transcribed using random primers
(Promega, C118A) and M-MLV reverse transcrip-
tase (Promega, M170A) followed by qPCR using
SensiMixTM SYBR® No-Rox (Bioline, QT650-02)
on a Qiagen Rotor-Gene Q. Gene-specific primers
were used (HIV Forward TCTCCTACGGCAGGAAGAAG;
HIV Reverse GGTAGCTGAAGAGGCACAGG). Analysis was
carried out by calculating the CT values using the
qpcR R package [31] (v1.4-1) and from this 2−∆∆Ct

were calculated using the mut time 0 concentration
as the reference sample. A degradation time series
was carried out by standard induction method at 250
ng mL−1 tetracycline for 16 hours, followed by re-
moval of media and washing with warm DMEM-10.
Cells were then placed in fresh medium and samples
were taken at different time points following on from
this.

D. Nanostring

Cells were seeded, induced and processed as indi-
cated previously (subsection S10 A), with the follow-
ing alteration: after trypsinisation cells were resus-
pended in 1 mL of PBS and kept on ice. Count-
ing of cells was carried out via Countess (Ther-
moFisher) cell counter with 100 µL (50 : 50) PBS
to trypan blue. Samples were spun down at 500 g
for 5 minutes and were then resuspended in RLT
buffer from RNeasy Mini Kit (Qiagen, 47104) with
beta-mercaptoethanol to obtain a concentration of
6500 cells per µL. Samples were then vortexed for
1 minute and placed at −80°C. Cell lysis was veri-
fied under a microscope. Samples were shipped on
dry ice to an external provider for processing. Cus-
tom probe sets, including probes targeting HIV-1-
env along with GAPDH and AKT1 as house-keeping
genes, were designed and shipped by NanoString
Technologies.
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E. RNA-seq

Library preparation. RNA-seq libraries were
prepared using 500 ng of total input RNA and
the NEBNext® UltraTM II Directional RNA Li-
brary Prep Kit for Illumina (E7760L), along with
the NEBNext® rRNA Depletion Kit (E6310L) and
NEBNext® Multiplex Oligos for Illumina Set 1 and
2 (E7335, E7500). Ribo-depletion was carried out to
capture transgene RNA regardless of the absence or
presence of a poly(A) tail. The manufacturer’s man-
ual was followed, with the final PCR amplification
using 9 cycles. Libraries were assessed via Bioanal-
yser, diluted and mixed before being sequenced on
an Illumina® NextSeq 500, generating paired-end
reads with read length 42.

RNA-seq analysis. Data quality control was
performed with FastQC v0.11.5. Read and adapter
trimming was carried out using TrimGalore! v0.4.3
with cutadapt v0.4.3 using default settings [32].
Indices for STAR to map to were constructed
from the human genome (GRCh38.p12, Gencode
primary annotation) and the respective (HBB
WT/mut and HIV-1-env WT/mut) transgenic
sequence. The GTF was modified to include
these genes as a separate chromosome (chrHBB
or chrHIV). To mask the existing HBB sequence,
bedtools’ (v2.25.0) maskfasta command was
used [33]. RNA-seq reads were mapped to the
genome using STAR software v2.5.3a with pa-
rameter --outSAMattributes XS [34]. Counts
per gene were calculated using LiBiNorm [35]
acting in an HTSeq-count [36] compatible mode
with the following parameters: --format=bam
--minaqual=10 --stranded=reverse
--mode=intersection-strict. Coverage statis-
tics were generated using deepTools’ (v3.1.3)
bamCoverage [37]. Fold changes for the HBB
and HIV genes were calculated using DESeq2
v1.22.1 [38] from Bioconductor release 3.8 and R
v3.5.1.

Splicing analysis. To analyse potential alter-
native splicing in the env transgene, BAM files
were imported into R (v4.0.2) and analysed us-
ing SGSeq (v1.4) [39]. A table of counts relat-
ing to potential splice variants (Table S32) in-
dicates that there are potential alternative splic-
ing events, however the number of reads related
to each variant indicates that they are present
across all samples and appear related to the over-
all abundance of mRNA. To further analyse the
difference between introns and exons in the HIV-
1 env wild-type and mutant cell lines, the Tran-
scripts Per Kilobase Million (TPM), a normalisa-
tion that takes account of both sequence depth and
gene length, were calculated (Fig. S17). BAM files

were imported into R (v4.0.2) and analysed us-
ing Rsubread (v2.2.6) [40], calling FeatureCounts
with the following parameters: minOverlap=20,
isPairedEnd=TRUE, strandSpecific=2. We do see
a slightly higher fraction of intronic reads present in
the env mutant at 250 ng mL−1 Tet, although the
principal difference between the mutant and wild-
type appears to be overall mRNA abundance. In
addition to this, ref. [22] quantified the levels of HBB
pre-mRNA relative to the total HBB RNA and de-
termined that ratios are the same within the first 2
hours of induction (splicing was slightly effected af-
ter 24 hours, albeit this phenotype appeared to arise
subsequent to RNAPII depletion).
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TABLE S32. Counts of potential splice variants in env transgene.

variantID mut 0 mut 0 mut 0 mut 250 mut 250 mut 250 WT 0 WT 0 WT 0 WT 250 WT 250 WT 250

1 0 0 0 0 0 0 0 0 0 0 1 0

2 28 21 14 233 164 223 42 46 44 404 434 303

3 28 24 27 46 51 58 31 27 45 33 28 45

4 0 0 0 0 0 0 0 0 0 0 0 1

5 26 30 22 42 51 59 36 33 44 32 23 48

6 0 0 0 0 0 1 0 0 0 0 1 0

7 41 53 31 41 56 65 49 46 60 36 30 54

8 0 0 0 0 0 0 0 0 0 0 1 0

9 0 0 0 1 0 1 0 0 0 1 4 1

10 0 0 0 0 1 0 0 0 0 0 0 0

FIG. S17. TPMs of exonic and intronic regions in env transgene.
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