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S1. DESCRIPTION OF DATA
A. Flow-cytometry data

We obtained flow cytometry data (from the BD
LSRFortessa™ cell analyzer and BD FACSDiva™
software) for cell lines expressing the genes env and
HBB, in both their wild-type (WT) and mutated
(mut) versions. For each gene, experimental data
were collected in four replicates (8 in total), each
containing groups of observations corresponding to
cells stimulated with tetracycline (Tet) at concentra-
tions of 5, 10, 20, 40, 80, and 250 ng/mL, respectively.

Each data-set was stored in a .fcs format file
and it was imported and pre-processed in R as an
object of class flowFrame, which consists of an an-
notated data-frame class defined in the flowCore R
package [1] and designed to deal with flow-cytometry
data. Rows in such data frames correspond to sin-
gle measurements. Each row contains the values of
two fluorescence intensities that correspond to stain-
ing for mRNA and total DNA and are labeled by
R640-670/14-A and UV355-450/50-A, respectively.
These readings were compesated for spectral over-
lap with flowCore. In addition to this, the values of
four scattering observations, namely FSC.H, FSC.W,
SSC.H, and SSC.W, were recorded. Such observations
are thought to be correlated to cell size and gran-
ularity. Values for each observation are stored in
so-called “arbitrary units” (a.u.) [2].

The first task is to identify records in the data
sets corresponding to either cell debris or clumps
of cells, which have to be removed from subsequent
analysis. We apply the robust model-based clus-
tering approach of Ref. [3], distributed as the flow-
Clust package [4], to identify cell populations in the
data. Based on the scattering observations, the
points were grouped into 3 clusters, and the set
corresponding to single cells is the one with inter-
mediate size and granularity, as suggested by the
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DNA content (see Fig. S1). For the data sets where
the three detected clusters overlap, points where
grouped into two clusters, instead. For this sec-
ond case, inspection shows that the cluster with
lower size and granularity corresponds to single cells.
Standard rectangle gates were applied to remove a
few outlier points whose UV355-450/50-A reads were
lower than 500. Kernel density estimates (KDE)
for the populations after this sub-setting are plot-
ted in Fig. 2 (Main Text) and Fig. S2. Technical
variation affects the shapes of the distributions only
for some HIV replicates, with shoulders at the lower
ends sometimes merging with the main mode. The
cells corresponding to the data points in the shoul-
ders exhibit normal characteristics (in terms of cell
size and DNA content) and thus probably reflect
cells without mRNA. The parameter estimates, re-
ported in section S6, appear robust with regards to
the absence or presence of the shoulders save for the
highest pxs.

B. Control cells

For each replicate k, we consider control cells,
where the gene of interest has been deleted (see
Main text). Such control cells were subjected to
the same staining procedure as the others, which
leaves a background of fluorescence probes that are
not specifically bound to the mRNA. We argue that
such background fluorescence stain are also present
in the cells expressing the transgenes and contribute
a term egk) to the signal detected by the cell-analyzer
channel of label R640-670/14-A for each cell i. The
histograms of the signal from control cells appear
skewed, as illustrated for example in Fig. S3 (left).
We chose to fit the Azzalini’s skew-normal distribu-
tion, that has PDF

felyla®, ul®) 5 *)y
=20((y — p™) o™ a®) ¢(y|u), o), (1)

to such data, where ® and ¢ are the standard normal
CDF and normal PDF, respectively, while the mean
ugk), the standard deviation O’Ek), and the skewness
parameter a®) are point estimates from the con-
trol data sets. The maximum likelihood estimates
for each replicate are reported in Table S1 (see also

Figs. S3(left)).

C. SmFISH and Nanostring barcoding data

Flow-FISH data are supplemented by microscopy-
based single-molecule FISH counts (which we sim-
ply refer to as smFISH) and Nanostring nCounter®

Technology bar-coding measurements. These assays
are used to choose informative priors for the mean
mRNA abundance and, in turn, to calibrate the
flow-FISH readouts. Symbols 7, s2, and sz represent
sample mean, sample variance, and standard error
of the mean, respectively. Based on these, we chose
truncated normal informative priors for the average
expression level uy ~ N(Z, sz), with the constraint
wx > 0, for all replicates k.

HEK293 cells are not ideal for smFISH, since they
tend to overlap when growing, producing dense clus-
ters after dividing. A further problem with sm-
FISH is the limited dynamic range of suitable mi-
croscopes. In fact, images tend to be overexposed
when recorded during transcriptional bursts at set-
tings that are otherwise optimal for lower transcript
numbers and, conversely, optimal settings for tran-
scriptional bursts do not cope well when transcript
numbers are low. Therefore we only exploit smFISH
results to infer the average expression level, and rely
on flow-FISH to study the noise. SmFISH data yield
the summary statistics of Table S2 for the mean ex-
pression of HBB. Nanostring data (SI Dataset 1)
yields the summary statistics of Table S3 for the
mean expression of enw.
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FIG. S1.  Clustering of flow-cytometry data. (left) Clusters are projected to the FSC.W-SSC.H plane and plotted
with the ellipses that delimit the 0.60 quantiles of fitted t-distributions. (right) Inspection of UV355-450/50-A shows
signature distributions for DNA content, thus suggesting that the central cluster (in blue color) contains single-cell
reads. Duplets have twice the amount of DNA content than single cells.
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FIG. S2.  KDEs of the flow-FISH single-cell readings corresponding to the abundances of HBB (top) and env
(bottom) transcripts, from wild-type (blue), mutant (orange), and control (gray) cells, from 4 replicates per transgene,
k =1,2,3,4 (left to right), at the different induction level (Tet concentrations in unit of ng/mL, shades of colors).
Gene expression saturates upon increasing Tet concentration and mutant-cell expressions is lower than the wild-type.
Fluorescence is given in arbitrary units (a.u.), y-axes are not to scale.
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FIG. S3. Control measurements. (left) The MLE skew-normal density (line) of the background data for Tet=40
ng/mL, k =1, WT, is in good agreement with the empirical histogram. (right) Microscopy FISH count summary of
housekeeping gene Aktl vs induction levels, for both wild-type and mutant cells. Points and error bars are sample
means and standard deviations, respectively.

TABLE S1.  MLE estimation of the control-cell fluorescence (replicates 2 (HBB) and 4 (HIV) have the same
background parameters as measurements were performed the same day with the same control cells).

gene k Tet ,u(k) o) a® sﬁk) sgk) st(lk)
HBB 1 0 389.504 348.098 1.817 15.670 12.396 0.214

HBB 1 250 514.828 307.460 1.632 11.667 9.027 0.153
HBB 2 0 625.804 458.715 1.863 21.687 17.915 0.230
HBB 2 250 459.139 311.688 2.075 9.098 7.703 0.169
HBB 3 0 539.613 360.195 2.046 11.838 10.270 0.182
HBB 3 250 493.913 337.605 2.091 10.440 9.088 0.178
HBB 4 0 53.140 320.685 2.303 7.201 6.514 0.151
HBB 4 250 112.667 256.183 1.748 5.507 4.497 0.094
HIV 1 0 565.327 390.016 1.834 8.397 6.936 0.102
HIV 1 250 443.898 463.603 1.813 14.774 12.117 0.148
HIV 2 0 -31.395 230.794 1.108 13.129 8.356 0.145
HIV 2 250 -23.282 312.375 2.066 8.109 7.156 0.145
HIV 3 0 196.970 401.184 5.423 6.238 8.517 0.425
HIV 3 250 407.813 259.586 1.445 16.865 12.125 0.226
HIV 4 0 625.804 458.715 1.863 21.687 17.915 0.230
HIV 4 250 459.139 311.688 2.075 9.098 7.703 0.169




TABLE S2.

Summary statistics for the mean ex-
pression of HBB, obtained from microscopy FISH.

TABLE S3.

Summary statistics for the mean ex-

pression of HIV, obtained from nCounter® data.

2

The standard error of the mean sz is obtained prop-
agating the errors from the nCounter® and the Atkl
smFISH measurements used for normalisation.

gene Tet T s2 sample size
WT 0 64.868 2984.538 585
WT 5 115450 7640.059 202
WT 10 175.150 18093.547 193
WT 20 312.945 32327.429 347
WT 40 384.111 23962.077 190
WT 80 414.105 31613.582 437
WT 250 565.351 54765.760 342
mut 0 38.953 1431.185 379
mut 5 41.645 717.115 279
mut 10 62.995 3573.429 198
mut 40 90.709 3301.445 468
mut 80 115.413 7096.164 179
mut 250 163.547 7375.582 892

= 2

gene Tet T E=

WT
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut

mut

0 24.723 3.247
5 72975 3.247
10 115.872 3.247
20 151.462 3.247
40 199.433 3.247
80 232.644 3.247
250 238.178 3.247
0 21.875 3.247
5 36.842 3.247
10 58.108 3.247
20 95.460 3.247
40 139.979 3.247
80 162.874 3.247
250 187.287 3.247




S2. PHENOMELOGICAL GENE EXPRESSION MODELS

We describe the gene expression in terms of the standard phenomenological two-state model [5]. This
model assumes that the gene randomly alternates between an “on” and an “off” state, and that the mRNA
is only transcribed, at rate &, during the on state. The gene switches from “off” to “on” and from “on”
to “off” states after an exponentlally distributed random time with mean 1 /kon and l/koﬂr7 respectively.
Consequently, the transcriptional bursting is fully characterised by the rates &, kon, and kog. In addition to
this, mRNA is degraded at rate d. It is convenient to express the rates in units of the inverse of the mean
mRNA life-time d, i.e.,

(2)
3)
(4)

It can be shown that the stationary probability density function (PDF) of the mRNA population = for this
model is (see, e.g., Ref. [6])

wz NI

d,
d,

kot
kon
o

SO

jol}
Il

e T(kon + )T (kon + Kot )

«
kon, ko) =
fx(l‘|a, H) l’!F(kon +koff +$) F(kon)

lFl(koﬁukon+koﬁ+x;a)7 (5)

where I' is the gamma function and 1 Fj is the confluent hyper-geometric function of the first kind. An
alternative representation of the PDF (5) is

1
fX(x‘avkon»koff) = / fPoi(x|ap)fBe(p|kon7koff) dpv (6)
0
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a®e @
Fra(el) = 5 @
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are density distributions of Poisson and beta random variables (RVs), respectively.
The PDF of equation (6) encodes the following hierarchy

X|a, P ~ Poi(aP), (9)
P|kon7 ko ~ Beta(kona koff)~ (10)

Further details can be found, e.g., in Refs. [6, 7]. It is convenient to reparametrise the Poisson-beta distri-
bution in terms of its mean

kon
= ai, 11
Hx koff + kon ( )
to get
ko kon
Xljuxe Ko, Fots, P~ Poi(jux 222 p), (12)
fX(x‘a;kon;koff) = fA/X(x|MX7konvkoff)~ (13)

In fact, this allows us to exploit knowledge on px in the form of informative priors of S1 C. The expression
for the squared coefficient of variation (CV?) can also be written in terms of ux, i.e.,

2 ]. koﬂ'
= 14
v Hx M kon(l + kot + kon) ’ ( )




where the second term on the r.h.s. quantifies the overdispersion of X with respect to a Poisson random
variable. Such a functional relation between CV% and px has been encountered in gene expression data [8—
12]. The probability P cannot be directly accessed and therefore is a latent (hidden) variable for the model.
In fact, for our data, the mRNA number is a latent variable too, being only inferred from the measured
fluorescence signals. This can be encoded into a measurement equation, as explained in the next section.
In the limit as kog — 00, @ — 00, with the ratio a/kog held fixed, the population mean and CV? satisfy

@
Hx = Tkona (15)
off
1 1
CVy = —+—, 16
X 125'¢ kon ( )
respectively, while the distribution of X approaches the negative binomial distribution with PDF
T'(kon + ) k Fon x ’
Y(x|px, kon) = on on ) . 17
X( ‘IU/X ) x!r(kon) (kon +,UfX kon+ﬂX ( )

This can be easily proven using the Poisson-gamma mixture formulation of the negative binomial RV X i.e.,

X|A ~ Poi()), (18)
MEon, kot /e ~ Gamma(koy, Kot /). (19)

In fact, the beta distribution scaled by a > 0 approaches the gamma distribution as kg — 0o, @ — 00, i.e.,

k
kon—1 ,——off g

kg *

1 F(k()yrl + koff) (l‘)k‘m*l (1 .’L‘)kofffl e " e «a (20)
aD(kon)T (ko) \av o T (kon) ’
which follows from known asymptotic relations
I'(koft + Fon
Kogr—o00 F(koﬁ')koff on
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lim (1 - —) T e ate (22)
a—00 o

The ratio a/kog has a simple interpretation, being the expected number of transcription events during an
on phase. In Ref. [13] this ratio has been referred to as the “expected burst size”. In the limit as kop — 00
with the mean expression px held fixed, the negative binomial distribution (17) approaches the distribution

U

X (z|px) = froi(z|px). (23)

S3. MEASUREMENT AND TECHNICAL ERROR MODEL

The DB FACSDiva™ software manual [14] specifies that the light intensity from fluorescent dyes is
amplified linearly within a wide range (see also, e.g., Refs. [9, 15]). Based on this, we assume that the
measured fluorescence Y; of cell i is proportional to the true mRNA abundance X; and therefore can be
expressed as in the following “measurement” equation,

v = 1 s, (24)

where k indexes the replicate, x can be thought of as a scale and ¢; is the zero of such a scale, also
corresponding to the background of unspecific staining and auto-fluorescence of the ith cell [7].
The dispersion of biological data is typically due to both technical errors, caused by the measurement

process, and the variability intrinsic to the underlying biology. In our measurement model, for the variables
X™® to best accommodate the true biological noise of Y; k , it is important that egk) and ) are specified

7
with sufficient precision and accuracy.
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FIG. S4. Flow-FISH data (violin plots [16]) vs mean expression levels obtained from FISH data for the replicate
k =3, WT HBB gene. Their relation is captured by a linear model with coefficient k.

(0)

are chosen according to section S1 B, i.e.,

", o), (25)

€ €

Informative priors for €

egk) ~ SN(a™®
where the parameters a(”“), ugk), and aék) are estimated from the control cells at 250 ng/mL Tet. The standard
errors of the maximum likelihood estimates are neglected. As a consequence, all the single-cell measurements
can be thought of as being subjected to the same random background, thus mitigating tractability issues.
For a more comprehensive fully-Bayesian hierarchical approach see Ref. [7].

To pin down informative priors for x(*), we perform gamma regression. For each flow-FISH data-set, 500
random cell readings are selected for the main Monte Carlo estimation of section S4. The remaining reads
are used as response variables for a gamma regression with identity link. Covariates are mean expression
level point estimates from section S1 C. As an example, this is illustrated in Fig. S4 for £ = 3, WT HBB gene.
The GLM estimates of the expected values /. along with the standard errors s/, are reported in Table S4.
Our prior choice is the truncated normal RV

K NN(mes;), (26)
with the constraint £ > 1, where the mean p, and standard deviation s/, are obtained from the 16 values in

Table S4 according to the laws of total expectation and variance, respectively, i.e.,
_ 2 5, 5
foo =T, 8 = sEA R — TR (27)
where the bar notation represents averages.
For the remaining parameters we assume
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~

Kot ~ Gamma(akoff? ﬁkoff)?
oy = Bhon = ke = Bkoff = 0.001, (

which is a classical choice for vague priors with positive support [17].
Since the replicates are independent, the likelihood of the parameters of the Poisson-beta model, for a

data-set of N measurements yik)\h is

w
o
=

N
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TABLE S4. Estimated coefficients (means and standard errors of the mean, ) and sfik), respectively) of the

gamma GLM.

gene ;Lff) s

k

1 HBB WT 20.904 0.230
2 HBB WT 27.080 0.283
3 HBB WT 28.394 0.241
4 HBB WT 21.631 0.244
1 HBB mut 20.308 0.233
2 HBB mut 29.621 0.402
3 HBB mut 32.267 0.353
4 HBB mut 26.612 0.322
1
2
3
4
1
2
3
4

HIV WT 17.715 0.153
HIV WT 34.771 0.341
HIV WT 17.118 0.183
HIV WT 50.748 0.547
HIV mut 23.035 0.219
HIV mut 32.463 0.381
HIV mut 26.951 0.296
HIV mut 25.487 0.300

where (%) .= (K, a®), ugk), ék)) is the vector of the parameters that describe the experimental setting. This
completes the definition of the first Bayesian model for the observed data. The directed acyclic graph (DAG)
of the full posterior of this model is illustrated in Fig. S5(A).

Consistently, the likelihood of the parameters of the negative-binomial model is

L”(y N|9(k)7,ux7 on =H (ng — kala®™, u® o) Fi (x|, On)), (32)
j=1 x

as illustrated in Fig. S5(B). The simplest Poisson model, the likelihood is

£y 100 ) = H(foy;’”—m|a<k>,u£k>,a£k> ) (lpx )) (33)

whose DAG is illustrated in Fig. S5(C).

(

S4. MONTE CARLO ESTIMATION variable arrays P;.ny and Xi.ny were batched too, as
the RVs conditioned on the data of a single block
are strongly correlated and are conveniently updated
during single Metropolis—Hastings steps. Using the
symbol 1, for the identity matrix and N, to repre-
sent a multivariate normal RV of dimension x, the
simulation of posterior samples for the Poisson-beta
model proceeds as follows:

A. MCMC samplers

Adaptive Metropolis—Hastings samplers to fit the
model to the data where implemented using the
PyMC library for probabilistic programming [18],
version 2.3.7, which has a flexible object oriented
syntax and provides tools to handle long traces and
perform diagnostics. To improve the convergence
speed, the array containing the N elements of a data-
set was numerically sorted by value and split into lis Wlth proposals  Nig(u
M = N/10 blocks of size 10. The latent random- ./\/10( 1 ), Z( )110) respectively,

e For ¢+ = 0,1,..., M, values of the 10-value

blocks P(i10+1):(i+1)10 and (X; 10+1):(i+1)10 are
updated according to a random walk Metropo-

(P)7 Z(P) 110) and
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with measurement equation. Circle nodes represent parameters to be estimated, blank nodes represent set parameters,
diamonds correspond to deterministic functions of their parents, and square nodes represent observations.

e The RVs ux, K, kon, and k.g are updated
as a single block according to the adaptive
Metropolis—Hastings method of Ref. [19] with
proposal Ny(p, X).

The proposal parameters MEX), O’Z(X), ,uZ(P), O’EP),

(i =1,...,M), u, and ¥ are chosen adaptively.
To improve the adaptation (noting that the pos-
terior for kog is more disperse than those of ux,
K, and kopn), X is initialised to the diagonal matrix
diag(0.1,0.1,0.1, 1).

In order to mitigate tractability issues (which is
mainly due to the large number of presence of latent
variables), the model is only fitted to a randomly
sampled subset of N = 500 data points. For a more
modern approach to cope with latent variables see
Ref. [7], which also defines a more complex hierar-
chical model.

The sampler implemented for the negative-
binomial model is similar to the one implemented
for the Poisson-beta model (with data organised into
M ranked batches) but converges and mixes more
rapidly, as it does not encode for the latent vari-
ables P;, i = 1,2,...,N. The simulation proceeds
as follows:

e For 7 = 07 1, ceey M, values of X(z 10+1):(i+1) 10
are updated according to a random-walk

Metropolis with proposal Nlo(ugx), O'Z(X) 110)-

e The random variables pux,x and ko, are up-
dated simultaneously according to the adap-
tive Metropolis—Hastings method with pro-
posal N3(u,X),

where the quantities 1,, HE ), O’Z(X), (i=1,...,M),
w, and ¥ are defined as in the former case. The
Poisson-model sampler is analogous to the negative
binomial, except that it does not include the param-
eter kon. All the samplers were successfully tested

with simulated data.

B. Consensus posteriors
The posterior

1 2 3 4
POl Y AN N o

ﬁ{ﬁk leW} p(¥)

(34)
represents the consensus belief on the vector of pa-
rameters ¥ among all the replicates k = 1,2,3,4,
with p(9) being the prior. We approximate such a
posterior by means of a consensus Monte Carlo ap-
proach, i.e., by running a separate MCMC on each of
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corresponding posterior-predictive distribution (orange),
according to the negative-binomial model. It is possible
to visually appreciate their overlap. To quantify the ex-
tent to which the posterior predictive reproduces the true
data distribution for all the fit, we studied the Wasser-
stein distance of the two distribution.

the datasets yik}v, k =1,2,3,4, and then averaging

individual Monte Carlo draws across, as in Ref. [20].
The draws 19§-k), j=1,...,L k=1,2,3,4, are com-
bined into the weighted averages

k
> 05wy
Dok W(k)

where wy) is the vector of the reciprocal of the
marginal posterior variances. This method has been
only justified rigorously for Gaussian posteriors and
only yields approximate posteriors, in general. How-
ever, it allowed us to distribute the Bayesian analysis
across different machines , and therefore was of great
utility to aggregate results.

9 = (35)

C. Goodness of fit

To evaluate the goodness of fit (GoF) we estimate
the posterior predictive distribution

(785 = / @ 10)p01 ") o, (36)

where 6 is the vector of all parameters, by generating
pseudo-data gﬁk])\, for the model using the param-

eters drawn from the posterior p(0|y£kl)\,) alongside
each MCMC chain. A GoF test follows by mea-

suring to what extent the pseudo-data deviate from

y%kj)\, Specifically, we calculate the root mean square

11

displacement (RMSD) of the data y(k) i=1,...,N

with respect to the sample mean y( ) of the draws
from the marginal posterior predictive, i.e.,

N
k k
RMSD (7%, yi) = Z B yMh2.(37)

Comparison between the RMSD results for the
Poisson-beta and the negative-binomial models is
shown in Fig. S7, which suggests that both these
models fit the data equally well. Conversely, the
RMSDs for the Poisson model are always higher that
the RMSDs for the two former models (see Fig. S7)
implying that the Poisson model does not fit as well.
Further, we computed the Wasserstein distance in
distribution between the data and the pseudo-data.
The Wasserstein distance between two distributions
u and v is defined as

ll(u,v):/_oo\U—VL (38)

where U and V are the empirical cumulative dis-
tribution functions associated to and u and v, re-
spectively. Fig. S7 shows that the distances are al-
ways smaller than the 95% percentile of bootstrap-
samples distances from the true data, thus confirm-
ing GoF. Bin sizes for the empirical distribution were
chosen according to the Freedman—Diaconis rule.

S5. MRNA DECAY RATES

The draws from the posteriors of the dimension-
less rates kon, kofr, and a are converted to number
of events per minute ko, kog, and & by using es-
timated decay rates of mRNA. For the HBB gene,
decay rates were measured in Ref. [22] (and are re-
ported in Table S5). Due to the detection of two
different mRNA isoforms, viz., “rt” and “pA”, the
empirical mRNA distribution can be thought of a
Gaussian mixture density with PDF

f(x)

pri+prt = 1, with parameters of Table S5. According
to equations (2)-(4), the traces from kop, koft, and «
were multiplied by draws from this Gaussian mixture
to obtain kop, kog, and a.

We measured total env RNA content (including
non-poly-adenylated transcripts) with RT-qPCR,
using gene-specific primers (forward primers bind
exon 1 and reverse primers bind the 3’'UTR, see sec-
tion S10 C). The decay rates of env transcripts were
obtained by fitting a linear model to the logarithm
of RT-qPCR measurements of transcripts vs time in

= PpA ¢(x|/u'pA> CTpA) + Prt (ZS(LL“,U,M, Urt)v (39)
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FIG. S7.  GoF analysis. (left and centre) RMSDs of the data with respect to the sample means of the (posterior
predictive (see eq. (37)) for each dataset. Comparison of Poisson-beta model vs the negative-binomial model (left
scatter plot) shows that the two models achieve similar GoF, while the RMSDs obtained from the Poisson model
are always the largest (central scatter plot). (right) Wasserstein distances between the empirical histogram of the
data and the negative-binomial model posterior predictive (x-axis) is always smaller that the 95% quantiles of the
bootstrapped distances from the true data, which suggests that that the posterior-predictive samples for the negative-
binomial model always reproduce the true flow-FISH data (as in, e.g., Fig. S6).

TABLE S5. . Decay rates in number of events per min-
utes of the two mRNA isoforms for the HBB gene. “pA”

and “rt” refer to polyadenylated and read-through iso- T, HIV WT
forms, respectively (it is possible to foresee larger disper- [ - o AV
sion for the mutant than for the WT). o - .

SNP isoform o P ’%? ° >

WT pA  0.0024 0.0002 0.72 g T 8 °

WT rt 0.0067 0.0016 0.28 g o

mut pA  0.0036 0.0003 0.11 o 8

mut rt 0.0112 0.0023 0.89 °

T ° H
T T T T T T T T
minutes. The inferred mean pg and standard error 0 100 300 500 700
oq of the decay rates are reported in Fig. S8. The time [minutes]
draws from the posteriors of dimensionless rates ko,
ko, and o were converted to number of events per SNP  pa  0a
minute by multiplying by normal draws N (g, o4), WT 0.0044 6Ge-04
with parameters listed in Fig. S8. mut 0.0035 4e-04
FIG. S8.  Logarithm of RT-gPCR 2722¢* measure-

ments of residual transcripts vs time of the mutant and
WT HIV gene transcripts. From linear regression, decay
rates in unit of events per minutes are obtained.



S6. SUMMARY OF MCMC RESULTS

A. Poisson-beta distribution

Fig. S9 shows two results obtained from fitting
the Poisson-beta model. The traces of the posterior
chains from each replicate were combined according
to the consensus Monte Carlo procedure (see sec-
tion S4B) to obtain a representation of the consen-
sus belief of Fig. 3 (Main text). It is worth noting
that the credible intervals for zfoff and & are very
wide, while the MCMC draws of k.g and a appear
strongly cross-correlated (see, e.g., Fig. S10), where
the drawn samples form an angle arccot(o/kog) with
the abscissae axis.

The 90% highest posterior density credible inter-
vals (HPD CIs) and medians of the estimated pa-
rameters K, tx, kon, koff, and a/kog are reported in
Tables S6-S10 (HBB gene) and Tables S11-S15 (HIV
gene).

TABLE Sé6.

x of HBB gene

k SNP tet low.HPD median upp.HPD

R R R R R R R R R R W W W W W W W W W W WNNDNDNDDNDNDNDDNNDNDDN SR e e

WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut

mut

5

250

9.559
22.384
18.866
20.378
25.675
17.021
32.504
16.315
23.342
27.117
17.047
23.567
22.676
21.508
25.727
32.172
24.276
26.707
31.601
41.755
27.094
22.821
25.938
32.783
30.479
30.875
25.001
20.897
24.799
42.772
35.653
31.024
28.080
18.060
17.540
23.540
30.582
29.660
23.480
14.313
23.044
32.880
28.650
26.352

11.257
25.504
20.662
22.284
27.393
18.443
35.358
18.734
25.416
30.304
18.166
26.676
24.647
23.394
27.715
34.216
25.938
29.680
36.919
44.750
30.426
24.260
29.050
32.859
32.865
32.961
26.456
21.763
27.457
47.404
38.381
34.699
29.963
20.483
19.780
23.855
32.931
31.397
25.104
16.032
26.306
35.456
31.858
27.831

13.031
28.796
22,473
24.023
29.289
19.965
38.254
21.498
27.553
33.601
19.282
30.352
28.696
25.370
29.846
35.902
27.678
32.950
41.979
48.189
33.609
25.754
32.440
38.434
35.207
35.374
28.116
23.000
30.501
51.766
41.145
38.285
31.857
23.184
22.412
24.425
35.604
33.534
26.733
17.731
30.166
38.080
35.336
29.268
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Estimates for parameters kon, kog, ux, and a/kog of the Poisson- beta model, from wild-type (blue)

and mutant (orange) cell data, for all induction levels, shades of colors correspond to replicates. Points are medians,
error bars comprise 90% HPD ClIs. HBB-gene results show results consistent across all the replicates (panel A). The
HIB-gene results are reported in panels B. Increasing expression levels, three of the HIV replicates show a drop-off in
the average burst size and an increase in the burst, see also Fig. S2. The consensus estimates are reported in Fig. 3,

Main text.



TABLE S7. ux HBB

SNP

tet low.HPD

median

upp.HPD

25 3.0 35
led

FIG. S10. Cross-correlation between the MCMC draws
for the dimensionless parameters kog and .

B R R R R R R R R R W W W W W WW W W W WNNNDNDNDNDNDNDNDNNDNDRE =R R

WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut

250

105.402
156.821
292.726
360.207
398.889
539.820
39.239
53.895
85.582
105.474
157.627
103.760
161.211
295.510
362.581
401.521
542.177
39.110
56.058
86.483
104.644
158.168
105.803
170.108
297.477
365.211
399.257
544.380
39.047
64.976
86.882
106.385
157.720
103.952
155.066
309.627
363.798
400.513
540.749
38.580
54.873
86.438
106.004
158.561

116.589
173.998
311.989
382.007
414.140
564.476
42.300
61.338
90.517
115.611
163.197
116.053
184.961
313.086
384.120
423.421
565.898
42.207
64.338
91.288
115.765
163.425
116.504
195.097
314.601
385.872
413.887
565.718
41.876
71.285
91.723
118.060
163.555
114.542
173.247
314.120
383.977
415.609
564.065
41.557
63.206
91.326
116.457
163.656

128.100
191.793
329.181
402.900
429.588
589.263
45.212
69.030
95.846
127.808
168.546
126.933
190.736
329.837
404.709
432.840
589.598
44.976
72.119
96.615
127.515
168.913
127.453
195.097
331.874
405.793
429.090
583.439
44.904
77.862
96.974
128.903
168.630
126.282
191.033
316.703
404.975
431.024
587.349
44.668
70.399
96.352
128.697
168.862
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TABLE S8. ko, HBB gene

TABLE S9. kos HBB gene

SNP

tet low.HPD median upp.HPD

SNP tet low.HPD median upp.HPD

R R R R R R R R R R W W W W W W W W W W W NN DNNDNDNDNDNDN SRR == R

WT
WT
WT
WwT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut

mut

5
10
20
40
80

250

10

40

80
250

10
20
40
80
250

10
40
80
250

10
20
40
80
250

10
40
80
250

10
20
40
80
250

10
40
80
250

0.001
0.002
0.002
0.003
0.003
0.002
0.012
0.005
0.005
0.006
0.007
0.002
0.002
0.003
0.003
0.003
0.003
0.003
0.004
0.005
0.006
0.006
0.003
0.002
0.004
0.004
0.005
0.006
0.003
0.007
0.007
0.006
0.005
0.002
0.002
0.003
0.003
0.004
0.004
0.003
0.005
0.006
0.009
0.010

0.001
0.003
0.003
0.004
0.005
0.003
0.042
0.018
0.019
0.023
0.026
0.003
0.003
0.004
0.004
0.005
0.004
0.011
0.014
0.022
0.019
0.024
0.004
0.003
0.006
0.006
0.007
0.008
0.013
0.026
0.026
0.021
0.018
0.003
0.004
0.003
0.004
0.005
0.006
0.013
0.018
0.024
0.034
0.038

0.005
0.011
0.012
0.016
0.016
0.011
0.072
0.031
0.032
0.038
0.042
0.011
0.012
0.014
0.015
0.016
0.013
0.018
0.024
0.037
0.032
0.039
0.013
0.012
0.021
0.021
0.025
0.031
0.021
0.042
0.044
0.035
0.031
0.011
0.013
0.012
0.014
0.019
0.020
0.021
0.031
0.040
0.057
0.063

R R R R R R R R R R W W W W W W W W W W WNNDENDNDDNDNDNDDNNDNDN SR == R

WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut

mut

5

250

0.125
0.072
0.012
0.011
0.016
0.009
0.073
0.050
0.013
0.031
0.042
0.083
0.004
0.011
0.007
0.010
0.005
0.024
0.006
0.011
0.010
0.012
0.050
0.013
0.011
0.010
0.013
0.027
0.036
0.033
0.013
0.011
0.014
0.180
0.095
0.013
0.009
0.020
0.019
0.122
0.072
0.020
0.049
0.037

0.765
0.380
0.039
0.024
0.040
0.015
1.278
0.832
0.130
0.375
0.622
0.468
0.103
0.052
0.013
0.016
0.008
0.496
0.077
0.050
0.040
0.127
0.399
0.030
0.035
0.022
0.055
0.097
0.807
0.440
0.091
0.044
0.067
0.813
0.443
0.019
0.019
0.068
0.060
1.271
1.031
0.149
0.431
0.844

3.017
1.567
0.154
0.094
0.161
0.056
4.126
3.991
0.474
2.323
3.073
1.868
0.843
0.334
0.048
0.057
0.031
2.425
0.442
0.095
0.073
0.909
1.601
0.343
0.156
0.104
0.230
0.495
3.286
2.258
0.224
0.084
0.137
3.140
1.732
0.101
0.072
0.265
0.254
3.884
3.537
0.768
1.596
3.754
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TABLE S10. «/k.z HBB TABLE S11. « HIV

SNP tet low.HPD median upp.HPD k SNP tet low.HPD median upp.HPD

k
1 WT 5 180.624 213.178 250.384 L WT 5 8727 9937 11.325
1 WT 10 125.805 147.598 168.798 1 WT 10 10.993 12.288  13.592
1 WT 20 216.330 261.287 314.761 L WT 20 16932 18302 19.718
1 WT 40 212.117 270.985 329.730 L WT 40 18.385 19.903  20.011
1 WT 80 214.432 257.880 304.762 L WT 80 16.735 17.896 18.957
1 WT 250 477.217 564.684 648.593 L WT 250 24.550 25.974  27.432
I mut 5  9.080 10960 13174 1 mut 5 16.621 19.959 23.859
| mut 10 98529 36.058 43.356 1 mut 10 21.241 23.881 27.318
1 mut 40 44662 57687 71459 1 mut 20 22.935 25.057 27.444
I mut 80 43.999 55447 69.005 1 mut 40 19.246 20.688 22.178
1 mut 250 59.522 70.628 84.777 1 mut 80 26.489 28.430 30.467
9 WT 5 82844 96710 111.647 1 mut 250 24.061 25.942 27.678
2 WT 10 118.521 142.328 186.000 2 WT 5 15392 17512 19.808
2 WT 20 180.061 222.460 269.372 2 WT 10 25.774 28301  30.527
2 WT 40 256.229 310.385 368.848 2 WT 20 36.093 38.649 40.924
2 WT 80 238.431 309.659 327.796 2 WT 40 34.004 35.801 37.798
2 WT 250 481.478 561.546 649.773 2 WT 80 30.599 31.966 33.382
9 mut 5 35331 42.066 49.954 2 WT 250 37.518 39.354 41.203
2 mut 10 38750 55.886 71.052 2 mut 5 21794 25.773  29.947
9 mut 40 47767 63.996 77583 2 mut 10 43.278 47.496 52.058
2 mut 80 72.672 93.342 115.105 2 mut 20 21203 23.231  25.227
2 mut 250 61.357 86.761 108.005 2 mut 40 30.657 32.984  35.508
3 WT 5 69549 81039 94.196 2 mut 80 19.609 21.327 22.957
3 WT 10 114.861 170.317 170.356 2 mut 250 16.493 17.664 18.954
3 WT 20 124.441 164.157 206.865 3 WT 5 10456 12.000 13.644
3 WT 40 153.175 216.801 264.885 3 WT 10 9.830 10.997  12.398
3 WT 80 141.653 180.708 226.265 3 WT 20 29612 31544  33.564
3 WT 250 149.771 189.476 213.603 3 WT 40 15.692 16.768 17.845
3 mut 5 20455 35547 42080 3 WT 80 16.705 17.712 18.798
3 mut 10 25170 31955 38.079 3 WT 250 19.341 20.192 21.265
3 mut 40 34.828 47.958 60.944 3 mut 5 33.804 38444 42.521
3 mut 80 65.273 87.569 108.009 3 mut 10 29.922  32.648  36.088
3 mut 250 95.857 119.091 143.867 3 mut 20 25741 28.254  30.406
4 WT 5 84.599 97.546 113.826 3 mut 40 21.824 23.662 25.236
4 WT 10 104.599 123.292 142.147 3 mut 80 21917 23.597  25.190
4 WT 20 215.483 270.814 270.814 3 mut 250 16.718 17.810 18.906
4 WT 40 249.124 305.273 366.964 4 WT 5 34743 38418 42457
4 WT 80 182.471 217.225 258.564 4 WT 10 37419 40.703  43.863
4 WT 250 234.660 281.937 339.927 4 WT 20 42950 46.185 49.408
4 mut 5 98552 34146  40.265 4 WT 40 48250 51.426 54.571
4 mut 10 30.453 37.481 44.636 4 WT 80 54.240 57.360 60.494
4 mut 40 34310 46529 58.219 4 WT 250 53.328 56.927 60.132
4 mut 80 30.063 38.528 47.509 4 mut 5 25447 29.942  34.647
4 mut 250 40.276 47.439  56.269 4 mut 10 34.322 38.062 42.392

4 mut 20 28.296 30.815 33.340

4 mut 40 26.199 28.116 29.970

4 mut 80 20.818 22.328 23.790

4 mut 250 20.302 21.626 22.973




TABLE S12. px HIV gene

SNP tet low.HPD median upp.HPD

TABLE S13. kon HIV gene

R R R R R R R R R R R W W W W W W W W W W W WNNNNDNDNDNDNDDNDNDNN SR e e = = R

WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut

5

250

67.005
109.810
144.574
194.485
226.244
231.469

31.686

52.227

89.312
133.357
156.590
180.919

66.834
110.155
146.758
193.705
226.944
233.022

33.431

58.085

88.921
133.678
155.778
180.361

67.657
110.114
145.713
192.742
226.620
232.351

36.811

55.191

89.503
133.490
156.822
180.569

69.528
111.093
146.982
195.212
229.161
234.182

34.228

54.750

89.372
133.614
156.317
180.968

72.838
115.686
151.166
198.005
232.415
238.032
37.672
58.303
95.185
139.395
162.956
187.275
73.001
116.385
152.367
200.206
232.737
238.787
38.818
63.467
95.219
140.521
162.631
186.879
73.147
115.655
152.053
199.274
233.022
238.150
40.994
60.551
95.670
139.695
162.594
186.922
75.142
117.156
153.429
201.345
235.061
240.462
39.432
60.567
95.749
139.938
162.691
186.969

79.536
121.952
157.431
203.512
238.770
244.048
43.353
64.193
101.282
145.681
169.112
193.192
78.969
122.115
157.963
205.751
238.957
244.544
44.292
68.566
101.320
146.283
168.680
193.168
79.668
121.652
157.986
205.308
238.193
244.483
45.435
64.555
101.158
145.130
169.538
192.906
81.061
122.570
159.127
207.570
241.236
246.342
44.903
66.025
101.674
146.017
168.913
193.373

SNP tet low.HPD median upp.HPD

R R R R R R R R R R R W W W W W W W W W W W WNNDNNDNDNDNDNNDNDDNNFE R =R

WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut

mut

5

250

0.003
0.003
0.006
0.009
0.006
0.009
0.002
0.003
0.004
0.007
0.004
0.004
0.002
0.004
0.006
0.008
0.013
0.010
0.002
0.004
0.004
0.004
0.003
0.004
0.002
0.002
0.009
0.007
0.008
0.008
0.003
0.003
0.005
0.005
0.004
0.006
0.004
0.004
0.004
0.005
0.006
0.004
0.003
0.004
0.005
0.005
0.004
0.006

0.004
0.004
0.009
0.012
0.008
0.012
0.003
0.004
0.005
0.009
0.006
0.005
0.003
0.005
0.008
0.012
0.018
0.014
0.003
0.005
0.005
0.005
0.004
0.005
0.003
0.003
0.012
0.010
0.011
0.011
0.004
0.004
0.006
0.006
0.005
0.008
0.006
0.006
0.006
0.007
0.008
0.006
0.003
0.005
0.006
0.007
0.005
0.008

0.005
0.005
0.011
0.016
0.010
0.015
0.004
0.005
0.007
0.011
0.007
0.007
0.004
0.007
0.011
0.015
0.023
0.019
0.004
0.006
0.006
0.007
0.005
0.006
0.004
0.004
0.015
0.012
0.014
0.014
0.005
0.005
0.008
0.008
0.007
0.010
0.007
0.007
0.008
0.009
0.011
0.008
0.004
0.006
0.008
0.009
0.007
0.010
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TABLE S14. kog HIV gene

TABLE S15.

/kogr HIV

SNP

tet low.HPD median upp.HPD

SNP tet

low. HPD

median

upp.HPD

R R R R R R R R R R R W W W W W W W W W W W W NN NN DNDNDNDNDNDNRNNRFE R = =R

WT
WT
WT
WwT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut

mut

5
10
20
40
80

250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

0.144
0.084
0.229
0.038
0.015
0.135
0.073
0.051
0.018
0.123
0.014
0.016
0.103
0.052
0.023
0.045
0.047
0.023
0.022
0.013
0.007
0.012
0.009
0.012
0.068
0.038
0.096
0.088
0.037
0.059
0.015
0.011
0.015
0.024
0.010
0.016
0.103
0.020
0.014
0.011
0.017
0.010
0.037
0.010
0.011
0.013
0.007
0.017

0.881
0.562
0.744
0.078
0.031
0.590
0.454
0.368
0.140
0.478
0.024
0.044
0.570
0.401
0.151
0.191
0.204
0.097
0.201
0.037
0.011
0.019
0.014
0.020
0.611
0.556
0.582
0.348
0.374
0.117
0.120
0.030
0.088
0.146
0.017
0.036
0.649
0.195
0.038
0.017
0.036
0.015
0.288
0.020
0.020
0.024
0.010
0.037

2.155
1.685
1.857
0.654
0.060
1.298
1.354
1.166
0.616
1.361
0.042
0.189
1.574
1.406
0.667
0.656
0.605
0.353
0.769
0.169
0.017
0.031
0.021
0.031
2.029
1.761
1.690
0.988
1.164
0.226
0.623
0.233
0.720
0.626
0.026
0.122
1.825
0.755
0.156
0.026
0.091
0.021
0.992
0.041
0.035
0.042
0.014
0.078

R R R R R R R R R R R W W W W W W W W W W W WNNDNNDNDDNDNDNDDNDNDNDND = e = = =R

WT
WT
WT
WwWT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut

mut

5

250

250

250

67.863
110.233
66.024
62.055
125.449
78.058
31.371
39.406
53.780
50.390
102.514
107.239
78.383
85.438
69.807
65.879
49.412
65.047
34.809
38.469
82.526
98.967
152.628
135.805
95.847
152.746
50.485
80.785
87.801
88.618
28.936
46.523
44.259
67.822
114.493
77.043
50.970
77.752
99.153
147.939
113.452
205.845
33.166
40.803
53.655
71.864
132.897
82.023

83.165
128.710
75.388
86.423
163.587
89.165
40.575
48.621
65.401
58.418
128.589
136.430
92.406
97.416
83.687
78.702
61.013
84.639
44.291
51.197
102.341
120.615
182.466
164.695
112.554
177.896
58.166
93.509
99.460
103.986
36.907
63.475
56.383
80.040
141.460
104.075
59.826
95.427
128.960
179.362
149.386
243.531
41.173
53.581
70.015
90.996
162.495
104.932

98.742
148.311
86.230
86.468
197.794
100.338
50.588
58.372
80.227
66.771
150.897
165.491
106.888
111.716
101.449
95.247
75.818
112.098
54.536
64.148
124.937
143.267
213.368
193.826
131.718
201.429
66.866
106.082
133.676
120.259
43.947
79.732
76.276
95.357
169.534
130.875
68.217
118.147
158.025
211.985
180.708
280.996
49.774
68.012
87.576
110.250
192.626
129.862

19



B. Negative binomial distribution TABLE S16. « HBB

In contrast to the Poisson-beta model, the k SNP tet low.HPD median upp.HPD

WT 5 9.675 11.307 13.213
WT 10 22.041 25.232 28.377
WT 20 18.950 20.813 22.843
WT 40 20.381 22.383 24.447
WT 80 25.673 27.661 29.771
WT 250 17.300 18.830 20.649
mut 5  32.550 35.329 38.490
mut 10 16.072 18.688 21.615
mut 40 23.375 25.503 27.566
mut 80 27.251 30.309 34.188
mut 250 16.967 18.178  19.357
WT 5 23578 26.572 29.961
WT 10 23.453 26.572 29.997
WT 20 21.562 23.610 25.909
WT 40 25.687 28.089 30.456
WT 80 31.358 33.931 36.457
WT 250 24.861 26.446 28.603
mut 5 26.626 29.697 33.019
mut 10 31.988 36.180 41.474
mut 40 40.925 44.272 47.412
mut 80 27.407 30.832 34.251
mut 250 22.856 24.409 26.037
WT 5 25,676 29.020 32.801
WT 10 32.162 35.936 39.914
WT 20 30.366 32.843 35.501
WT 40 30.841 33.200 35.696
WT 80 24.637 26.419 28.015
WT 250 20.441 21.780 23.367
mut 5 24.569 27.336 30.290
mut 10 42.637 47.605 52.771
mut 40 35.782 38.444 41.379
mut 80 31.078 35.045 38.636
mut 250 28.041 30.084 32.136
WT 5 17.636 20.198 23.004
WT 10 17.386 19.747 22.473
WT 20 21.240 23.109 25.149
WT 40 29.894 32.568 35.174
WT 80 29.411 31.375 33.856
WT 250 23.425 25.036 26.811
mut 5 14.236 15.954 17.716
mut 10 22.721 26.243 30.138
mut 40 32.983 35.546 38.257
mut 80 28.575 31.849 35.621
mut 250 26.358 27.852 29.440

negative-binomial model directly encodes the ratio
a/kog as a single parameter, which is inferred with
rather narrow credible intervals. Parsimony suggests
that the negative-binomial model is a reasonable
choice for the genes considered here, as it encodes
for the most relevant kinetic parameters, viz., the
average burst size a/kog and the burst frequency
kon- Fig. S11 shows the parameters estimated from
the negative-binomial model. The traces of the pos-
teriors chains from each replicates were combined
according to the consensus Monte Carlo procedure
(see section S4B) to obtain a representation of the
consensus belief in Fig. S12.

The 90% HPD CIs and medians of the estimated
parameters K, fix, kon, and a/kog are reported in
Tables S16-S19 (HBB gene) and Tables S20-S23
(HIV gene).

R R R R R R R R R R W W W W W W W W W WWNNDNNDNDDNNDNDDNNDN = e e e e
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FIG. S11. Estimates for parameters kon, px, and a/keg of the negative-binomial model, from wild-type (blue) and
mutant (orange) cell data, for all induction levels, shades of colors corresponds to replicates. Points are medians,
error bars comprise 90% HPD CIs. HBB-gene results show consistent results across all the replicates (panel A). The
HIV-gene results are reported in panels B. Results are consistent with the Poisson-beta model estimates (Fig. S9).
Increasing expression levels, three replicates show a drop-off in the average burst size and an increase in the burst
frequency, see also Fig. S2.
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TABLE S17. ux HBB TABLE S18. k., HBB

SNP tet low.HPD median upp.HPD SNP tet low.HPD median upp.HPD

B R R R R R R R R R W W W W W W W W W W W NN NNDNDDNDNDNDNNN SR = =)

WT 5 103.193 115.687 126.875 WT 5 0.001 0.001 0.005
WT 10 157.904 175.269 194.327 WT 10 0.002 0.003 0.011
WT 20 293.749 311.584 331.666 WT 20 0.003 0.004 0.013
WT 40 357.077 382.068 402.882 WT 40 0.004 0.005 0.018
WT 80 397.085 413.625 430.396 WT 80 0.004 0.005 0.019
WT 250 537.710 562.996 589.504 WT 250 0.002 0.003 0.013
mut 5 39.255 42.325 45.219 mut 5 0.012 0.045 0.074
mut 10 53.368 61.634 69.735 mut 10  0.005 0.019 0.032
mut 40 85.470 90.459 95.633 mut 40  0.006 0.021 0.035
mut 80 103.857 115.778 127.620 mut 80 0.007  0.025 0.041
mut 250 157.575 163.136 168.842 mut 250 0.007  0.027 0.044
WT 5 104.884 115.671 127.339 WT 5 0.002 0.003 0.011
WT 10 156.119 174.189 192.233 WT 10 0.003 0.004 0.013
WT 20 292.999 311.784 331.770 WT 20 0.003 0.004 0.015
WT 40 360.835 382.742 404.849 WT 40 0.004 0.005 0.019
WT 80 397.159 414.805 430.893 WT 80 0.004 0.006 0.022
WT 250 542.191 564.530 590.432 WT 250 0.003 0.005 0.018
mut 5 39.031 42.105 45.158 mut 5 0.003 0.011 0.019
mut 10 57.835 65.531 72.791 mut 10  0.005 0.017 0.027
mut 40 86.987 92.086 96.961 mut 40  0.008 0.031 0.051
mut 80 103.723 115.390 127.323 mut 80 0.007  0.028 0.045
mut 250 157.508 163.312 168.777 mut 250 0.007  0.028 0.046
WT 5 104.159 116.177 127.657 WT 5 0.003 0.004 0.014
WT 10 163.259 179.811 197.030 WT 10 0.003 0.004 0.015
WT 20 296.072 314.846 332.531 WT 20 0.005 0.007 0.025
WT 40 363.753 384.298 406.525 WT 40 0.005 0.007 0.026
WT 80 397.951 414.531 430.464 WT 80 0.005 0.008 0.027
WT 250 538.464 564.609 588.360 WT 250 0.006 0.009 0.034
mut 5 38.955 41.838 44.995 mut 5 0.003 0.013 0.021
mut 10 63.927 70.558 77.724 mut 10  0.008 0.027 0.045
mut 40 86.541 91.645 96.597 mut 40  0.009 0.033 0.054
mut 80 105.958 117.686 129.102 mut 80  0.009 0.030 0.050
mut 250 157.977 163.500 169.119 mut 250 0.006 0.023 0.038
WT 5 103.541 114.909 127.623 WT 5 0.002 0.003 0.011
WT 10 153.130 172.692 190.326 WT 10 0.003 0.004 0.013
WT 20 292.635 312.606 330.812 WT 20 0.003 0.004 0.015
WT 40 365.063 386.377 407.528 WT 40 0.003 0.005 0.017
WT 80 399.614 415.485 432.185 WT 80 0.004 0.006 0.021
WT 250 540.558 564.417 589.218 WT 250 0.004 0.006 0.022
mut 5 38.556 41.557 44.534 mut 5 0.003 0.013 0.023
mut 10 55.032 63.112 71.160 mut 10  0.005 0.019 0.031
mut 40 85.960 91.252 96.281 mut 40  0.008 0.028 0.045
mut 80 104.157 116.484 127.851 mut 80 0.010 0.037 0.063
mut 250 157.935 163.479 169.027 mut 250 0.011 0.041 0.065
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TABLE S19. «/kon HBB TABLE S20. ~ HIV

SNP tet low.HPD median upp.HPD k SNP tet low.HPD median upp.HPD

k
1 WT 5 175.298 206.600 246.085 L WT 5 8683 9925 11.355
1 WT 10 120.820 144.691 167.516 I WT 10 10.830 12.201  13.502
1 WT 20 190.560 217.633 249.246 L WT 20 16946 18.291  19.696
1 WT 40 170.125 194.471 222.404 I WT 40 17.995 19.136  20.300
1 WT 80 181.291 206.076 232.972 I WT 80 16.814 17.998 19.187
1 WT 250 354.322 406.867 459.164 L WT 250 24456 25.898 27.413
1 mut 10 26.797 33.634 40.524 1 mut 10 20.826 23.864 27.041
1 mut 40 38.121 44.326 50.962 I mut 20 22.626 24.912 27.281
1 mut 250 56.503 64.628 73.724 I mut 80 26.548 28.642  30.929
2 WT 5 79.762 93.656 108.321 1 mut 250 24.056 26.022 27.857
2 WT 10 104.729 123.788 143.569 2 WT 5 15406 17.501  19.880
2 WT 20 161.758 186.721 211.985 2 WT 10 25483 28210 30.905
2 WT 40 160.712 183.674 208.313 2 WT 20 36.121 38563  41.320
2 WT 80 156.316 177.567 201.871 2 WT 40 33.654 35.716  37.949
2 WT 250 258.811 295.198 334.765 2 WT 80 30.499 32.001 33.633
9 mut 5 33.600 39522 45.973 2 WT 250 37.389 39.279  41.400
2 mut 10 34.079 40.868 48.606 2 mut 5 21.886 25.819 30.735
2 mut 80 36.745 44.057 51.733 2 mut 20 21.292 23.474 25.662
2 mut 250 54.699 62.845 71.400 2 mut 40 30.748  33.257  35.874
3 WT 10 97.887 114.499 133.520 2 mut 250 16.597 17.858 19.331
3 WT 20 102.297 117.574 133.503 3 WT 5 10305 11911 13.704
3 WT 40 117.655 135.267 152.972 3 WT 10 9.759  10.994  12.394
3 WT 80 120.396 137.453 155.178 3 WT 20 15478 16.882 18.327
3 WT 250 134.325 154.819 174.205 3 WT 40 15.642 16.744 17.818
3 mut 5 28.241 33.741 39.190 3 WT 80 16.849 17.904 19.029
3 mut 10 22.808 27.192 31.662 3 WT 250 19.059 20.252 21.472
3 mut 40 25.141 29.293  33.804 3 mut 5 33.159 38.139  43.447
3 mut 80 34'292 41.021 47.862 3 mut 10 28.905 32.666 36.895
3 mut 250 66.549 75912 86.434 3 mut 20 25.677 28.163 30.685
4 WT 5 81.257 95.302 110.891 3 mut 40 21.877 23.641 25.428
4 WT 10 100.651 119.384 138.147 3 mut 80 22105 23.864 25.581
4 WT 20 169.562 193.318 219.519 3 mut 250 16.736 17.863  19.027
4 WT 40 187.460 214.568 244.764 4 WT 5 34330 38261 42.130
4 WT 80 160.411 183.310 206.170 4 WT 10 37.272 40.394  44.002
4 WT 250 204.957 232.671 264.311 4 WT 20 43.020 46.210 50.115
4 mut 10 29.960 35.848 43.176 4 WT 80 54224 57441 60.923
4 mut 40 30.133 34.940 39.916 4 WT 250 54.376 57.496 61.232
4 mut 80 27.685 33.007 38.815 4 mut 5 25398 29.929 34.621
4 mut 250 37.564 42.970 49.161 4 mut 10 34261 38.357 42.825
4 mut 20 28.323 31.007 33.655
4 mut 40 26.348 28.262 30.242
4 mut 80 21.116 22.690 24.363
4 mut 250 20.337 21.627 23.114




TABLE S21. px HIV TABLE S22. kon HIV

SNP tet low.HPD median upp.HPD SNP tet low.HPD median upp.HPD

R R R R R R R R R R R W W W W W W W W W W W WNNNNDNDNDNDNDDNDNDNN SR e e = = R

WT 5 66.749 72.714 79.573
WT 10 109.215 115.559 121.995
WT 20 144.952 151.119 157.583
WT 40 192.656 199.155 205.249
WT 80 225.999 232.337 238.487
WT 250 232.122 238.168 244.560
mut 5 31.397 37.570 43.353
mut 10 52.305 58.144 64.224
mut 20 89.505 95.336 101.545
mut 40 133.432 139.663 146.087
mut 80 156.547 162.818 169.259
mut 250 180.854 187.190 193.263
WT 5 66.749 72966 79.146
WT 10 109.748 115.981 122.719
WT 20 145.901 152.450 158.287
WT 40 193.656 199.980 206.311
WT 80 226.495 232.703 239.197
WT 250 232.607 238.913 244.831
mut 5 32.501 38487 44.321
mut 10 58.006 63.477 68.941
mut 20 88.766 95.055 101.497
mut 40 133.898 140.390 146.663
mut 80 156.238 162.667 168.835
mut 250 180.541 186.876 193.151
WT 5 66.720 73.187 79.646
WT 10 109.464 116.001 122.177
WT 20 144.933 151.139 157.537
WT 40 192.762 199.160 205.284
WT 80 225.811 232.428 238.252
WT 250 231.709 237.918 244.421
mut 5 36.242 41.159 46.565
mut 10 53.945 59.653 65.693
mut 20 89.646 95.617 102.024
mut 40 133.566 139.776 146.113
mut 80 156.555 162.557 168.787
mut 250 180.705 186.932 193.327
WT 5 69.298 75.131 81.160
WT 10 111.288 117.514 123.639
WT 20 146.956 153.289 159.350
WT 40 194.908 201.289 207.621
WT 80 228.382 234.962 240.972
WT 250 234.384 240.198 246.468
mut 5 34.044 39.263 45.106
mut 10 54.421 60.168 65.966
mut 20 89.558 95.636 101.791
mut 40 133.322 139.929 146.100
mut 80 156.024 162.534 168.737
mut 250 180.686 187.024 193.207

WT 5 0.003  0.004 0.005
WT 10 0.003  0.004 0.005
WT 20 0.007  0.009 0.012
WT 40 0.010 0.014 0.018
WT 80 0.007 0.010 0.012
WT 250 0.009 0.012 0.016
mut 5 0.003  0.003 0.004
mut 10 0.003  0.004 0.006
mut 20 0.004  0.006 0.007
mut 40 0.007  0.009 0.011
mut 80 0.006  0.007 0.008
mut 250 0.005  0.006 0.008
WT 5 0.003  0.004 0.005
WT 10 0.004  0.005 0.007
WT 20 0.007  0.009 0.012
WT 40 0.009 0.013 0.016
WT 80 0.015  0.020 0.026
WT 250 0.011 0.016 0.021
mut 5 0.002  0.003 0.004
mut 10 0.004  0.006 0.007
mut 20 0.0056  0.007 0.008
mut 40 0.005  0.006 0.008
mut 80 0.004  0.005 0.006
mut 250 0.005  0.006 0.008
WT 5 0.002  0.003 0.004
WT 10 0.002  0.003 0.004
WT 20 0.005 0.007 0.008
WT 40 0.007  0.010 0.013
WT 80 0.008 0.011 0.014
WT 250 0.009 0.012 0.016
mut 5 0.003  0.004 0.006
mut 10 0.003  0.004 0.005
mut 20 0.005  0.007 0.009
mut 40 0.005  0.007 0.009
mut 80 0.005  0.007 0.009
mut 250 0.007  0.009 0.011
WT 5 0.004  0.006 0.007
WT 10 0.004  0.006 0.007
WT 20 0.005 0.007 0.009
WT 40 0.007  0.009 0.012
WT 80 0.007  0.010 0.013
WT 250 0.006  0.008 0.010
mut 5 0.003  0.004 0.004
mut 10 0.005  0.006 0.008
mut 20 0.006  0.008 0.010
mut 40 0.007  0.009 0.011
mut 80 0.006  0.008 0.010
mut 250 0.007  0.009 0.011
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TABLE S23.

SNP tet low.HPD

AR R R R R R R R R R R W W W W W W W W W W W WNNDNDNDNDNDNDNDNDNDNDN SR e == R

WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut
mut
WT
WT
WT
WT
WT
WT
mut
mut
mut
mut
mut

mut

5
10
20
40
80

250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

10
20
40
80
250

65.123
105.447
62.196
55.029
91.968
73.419
30.097
38.247
50.656
48.290
75.487
95.084
76.105
81.737
65.181
61.362
44.884
56.796
33.159
33.516
43.426
67.491
101.936
94.257
92.776
147.773
88.084
77.288
80.400
76.617
27.222
40.746
41.247
63.647
72.747
63.329
49.732
77.064
85.802
83.077
87.612
114.176
32.124
29.015
35.600
48.680
64.269
63.794

a/kon HIV
median upp.HPD
80.224  96.055
124.804 144.056
72.693  82.359
62.855 71.783
105.675 120.244
84.125 95.301
38.894 48.835
46.466  55.041
59.480  68.448
55.669  63.965
87.423  99.612
108.486 123.429
89.902 104.946
93.017 105.950
74.363  83.731
69.436  78.737
51.005 57.922
64.669 73.245
41.584  50.823
39.641  45.896
51.414  59.328
76.908  87.220
115.771 132.951
109.003 123.450
109.735 130.017
172.554 197.158
100.818 114.809
87.747  99.551
91.796 103.421
86.925 98.877
32.985 39.572
48.876  57.111
48.004 54.827
72.555  83.277
84.254  95.213
72.322 82.431
58.001 66.871
88.972 100.832
97.901 110.523
94.987 107.236
99.737 112.167
129.687 146.438
39.552  47.867
34.206  40.406
41.423  47.690
56.041 64.317
73.738 84.134
73.262  83.058
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TABLE S24. x HBB

k SNP tet low.HPD median upp.HPD
WT 5 260.821 267.314 273.981
WT 10 270.677 277.100 284.186
WT 20 298.204 304.307 311.348
WT 40 305.802 312.765 319.762
WT 80 321.045 327.146 334.050
WT 250 338.221 345.124 349.512
mut 5 165.515 172.460 179.105
mut 10 192.112 198.697 206.055
mut 40 183.042 189.718 196.109
mut 80 185.722 192.343 199.121
mut 250 178.993 185.852 192.476

N NN DNDNNDNDDNNDN O

TABLE S25. ux HBB

SNP tet low.HPD median upp.HPD
WT 5 11.310 11.728 12.148
WT 10 16.261 16.814 17.355
WT 20 23.646 24.285 25.005
WT 40 33.593 34.477 35.487
WT 80 42.511 43.591 44.589
WT 250 42.719 43.602 44.549
mut 5 7.300 7.704  8.128
mut 10 11.689 12.224 12.753
mut 40 21.350 22.256 23.111
mut 80 17.868 18.619 19.384
mut 250 21.277 22.220 23.121

NN NN NDNNNDN O

C. Poisson distribution

The Poisson model encodes only one biological pa-
rameter, viz., the average gene expression level px.
We fitted this model to data from one of the repli-
cates as a benchmark. The 90% HPD CIs and me-
dians of the estimated parameters x and pyx, are
reported in Tables S24-S25 (HBB gene) and Ta-
bles S26-S27 (HIV gene). It is worth noting that,
compared to the prior derived in section S3 and both
the estimates from the Poisson-beta and negative-
binomial models of Tables S6, S11, S16, and S20,
the k is overestimated. In fact, high values of &
compensate for the small dispersion encoded in a
Poisson random variable. Jointly with the fact that
the Poisson model shows lower GoF than the two
general models (subsection S4C and figure S7), we
conclude that the expression of the genes HIV and
HBB is relative to a Poisson random variable and
a flexible gene expression model for Xi(k), such as
the Poisson-beta or the negative-binomial models, is
necessary to exploit the measurement equation (24).

TABLE S26. CV% HBB

k SNP tet low.HPD median upp.HPD

2 WT 5 0.082  0.085 0.088
2 WT 10 0.058  0.059 0.061
2 WT 20 0.040 0.041 0.042
2 WT 40 0.028 0.029 0.030
2 WT 80 0.022 0.023 0.024
2 WT 250 0.022 0.023 0.023
2 mut 5 0.123  0.130 0.137
2 mut 10 0.078  0.082 0.085
2 mut 40 0.043  0.045 0.047
2 mut 80 0.052  0.054 0.056
2 mut 250 0.043  0.045 0.047
TABLE S27. « HIV
k SNP tet low.HPD median upp.HPD
4 WT 5 245.093 251.782 258.632
4 WT 10 276.948 283.448 290.234
4 WT 20 291.102 297.690 304.497
4 WT 40 285.262 291.524 298.090
4 WT 80 300.678 306.854 313.563
4 WT 250 315.404 321.897 328.357
4 mut 5 172.173 179.215 186.314
4 mut 10 183.339 189.696 196.491
4 mut 20 178.477 185.104 191.728
4 mut 40 189.708 196.348 203.244
4 mut 80 183.321 189.823 196.490
4 mut 250 185.416 192.345 198.760
TABLE S28. ux HIV
k SNP tet low.HPD median upp.HPD
4 WT 5 11.520 11.960 12.434
4 WT 10 17.091 17.645 18.199
4 WT 20 24.572 25.315 26.012
4 WT 40 37.049 38.005 39.049
4 WT 80 46.374 47.601 48.746
4 WT 250 45.807 46.889 48.064
4 mut 5 6.517  6.877 7.264
4 mut 10 12.027 12.547 13.114
4 mut 20 15.649 16.369 17.065
4 mut 40 19.839 20.665 21.484
4 mut 80 19.157 19.943 20.770
4 mut 250 20.907 21.769 22.651
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TABLE S29. CV% HIV

k SNP tet low.HPD median upp.HPD

WT 5 0.080  0.084 0.087
WT 10 0.055  0.057 0.058
WT 20 0.038  0.040 0.041
WT 40 0.026  0.026 0.027
WT 80 0.021 0.021 0.022
WT 250 0.021 0.021 0.022
mut 5 0.137  0.145 0.153
mut 10 0.076  0.080 0.083
mut 20 0.059  0.061 0.064
mut 40 0.047  0.048 0.050
mut 80 0.048  0.050 0.052
mut 250 0.044  0.046 0.048
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FIG. S13. Scatter plot of the UV355-450/50-A vs FSC-A
signal for the 40 ng/mL Tet-induced HBB gene, replicate
k = 3. Cells from the three phases, highlighted with dif-
ferent green-scale colors, were separated using flowClust.

S7. CELL CYCLE

Staining for DNA concentration allows us to
heuristically find cells that are in G1, S, and G2
phases of the cell cycle, see Figs. S1(right) and S13.
We considered the dataset with cells treated at con-
centration of 40 ng/mL of Tet. We separated the
data points corresponding to the G1 phase from
those from S and G2 using flowClust [4]. The less
dense cluster S-G2 was further separated in two
groups (corresponding to the phases S and G2) run-
ning the same algorithm again. Results are shown
in Fig. S13 for HBB cell line, k = 3.

Data from phase G1, S, and G2 are referred to
as y(cfl), yék), and yg;), respectively, for each repli-
cate k. We refer to their averages (sample standard
deviations of mean) as yq1, ¥s, and ¥a2, (Sja.» Sgs»
and sy, ) respectively. To take into account that the
mean gene expression seems to change with the cell

phase, we introduce the conversion factors ¢*) =

/5 to obtain :Ei(k) = Mg and sgf) = Mgy,

which in turn are used in the informative priors
k _(k) (K
uy) ~ N (@Y si), (40)

i = G1,S,G2. Equations (40) take the place of ux
in the DAG of Fig. S5(B) for the G1, S, and G2
phase, respectively, for each replicate k. Fitting the
negative-binomial model to 500 samples from each
dataset yields the consensus estimates of Fig. 4(C-
D) (Main text). In addition to this, we also subset
reads form each phase into three groups by their size
(based on the values of their FSC-A fluorescense sig-
nal, see Main text). We assume that the cell cycle
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TABLE S30. Intrinsic noise, extrinsic noise and to-
tal noise from each replicate of wild-type HBB and HIV
genes, 40 ng/mL Tet. First table is based on cell-phase
only partition, second table is bases on both cell phase
and cell size. Extrinsic noise has the lowest contribution
to the total noise.

gene k intr. noise extr. noise tot. noise

HBB 1 0.587 0.017 0.060
HBB 2 0.399 0.033 0.014
HBB 3 0.380 0.023 0.008
HBB 4 0.448 0.024 0.030
HIV 1 0.322 0.053 0.015
HIV 2 0417 0.041 0.020
HIV 3 0.444 0.040 0.029
HIV 4 0.289 0.036 0.021
gene k intr. noise extr. noise tot. noise
HBB 1 0.514 0.025 0.539
HBB 2  0.467 0.054 0.521
HBB 3 0.381 0.020 0.401
HBB 4 0.477 0.023 0.500
HIV 1 0.324 0.044 0.369
HIV 2 0.423 0.039 0.461
HIV 3  0.492 0.039 0.531
HIV 4 0.301 0.029 0.330

and the cell size are extrinsic contributors to the to-
tal transgene mRNA variability, with the remaining
variability sources thought of as being intrinsic. As
in Ref. [8], using the symbol ()1 for the average over
the intrinsic variables, with the cell phase held fixed,
and (-)g for the average over the different cell phases,
the law of total variance allows us to write, for the
mRNA abundance X,

(X = (XODe | (X7 — (X)p
(X0 (XD ’
(41)
where the first term on the r.h.s. is the intrinsic
noise, while the second term is the extrinsic noise.
Computing the two terms gives the intrinsic and ex-
trinsic noise levels of Tables S30 and Fig. 4(D) (Main
text), which show that the cell cycle and the cell
size always contributed only a minor term to the
total noise.

CV% =

S8. POLII-MEDIATED 3’-5’
INTERACTIONS BY CHIA-PET

We considered scRNAseq and ChIA-PET data ac-
cessible at the GEO Series numbers GSE124682 [23]
and GSE33664 [24], respectively.
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GSM832464 and GSM832465, respectively), the interaction scores obtained at different bin resolutions (1, 2, and 7
Kbs) appear strongly correlated. (G)-(I) Similarly, the two biological repeats appear strongly correlated at each bin

resolution.

Raw chromatin contact frequency is highest for
small genomic distances. In order to normalise for
this and expose deviations from this general relation-
ship, we need to divide by the expected number of
reads at a given genomic distance. We calculate this
by random sampling 10000 genomic intervals and
measuring the contact frequency over this sample.
This estimate appears robust to decreasing the num-
ber of sampled intervals. The relation between gene
length and the normalised 3’-5’ interaction score is
illustrated in Fig. S15. Genes with length smaller
than the resolution of the interaction matrices are
discarded from the main analysis.

We fitted the model of equations (54)—(56) to the
smRNAseq data, thus enabling a convenient clas-
sification of genes based on transcription; see also,
e.g., reference [25]. Without correction for incom-
plete capture of mRNA, the parameter ko, incor-
porates here both biological and technical above-
Poisson noise, whilst allowing the ranking of the
genes based on their total noise.
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FIG. S15. 3’-5’ interaction score vs gene length. The

cluster corresponding to small lengths mostly includes
pseudo-genes.



S9. MICROSCOPIC GENE EXPRESSION
MODEL

We referred to the models of section S2 as the phe-
nomelogical models. In fact, our main concern there
was to exploit a minimal description of the statis-
tics of the transcription events and the stationary
mRNA distribution—which is the (observed) phe-
nomenology, indeed. Due to their simplicity, these
models allowed us to attain the important goal of
separating the technical noise (due to background
fluorescence and measurement process) from the bi-
ological noise encoded into X;.

Nevertheless, there are specific microscopic bio-
logical mechanisms, more difficult to observe, that
may give rise to the observed phenomena. In our
tetracycline-inducible genes, Tet repressor (TetR)
homodimers bind to the operator TetO, downstream
of the transcription start site (T'SS). When such a
binding event occurs, the transcription is inhibited
as the elongation is impeded. Adding Tet in turn
alters the conformation of TetR and hinders the
binding events, having the net effect of inducing the
gene expression. Crucially, during the “on” phase,
the transcription rate is proportional to the abun-
dance of Polll (law of mass action), which can be
thought of as waiting in a compartment upstream of
the TSS [26]. Therefore, when the gene is actively
transcribing, its rate can vary in time according to
the amount of Polll ready to initiate transcription.
After transcription, Polll can either be re-injected
into the compartment and set ready for a new initi-
ation event (Polll recycling), or disposed into the nu-
clear environment. Also, the compartment recruits
PollI from the nuclear environment. This can be de-
scribed by means of the following chemical reaction
scheme:

@ — Polll, (42)
DNA,, + Polll “2s mRNA + DNA,, + Poll,

(43)

DNA,, + Polll "= mRNA + DNA,,,  (44)
DNA, 22 DNAg, (45)
DNAg 22 DNA,,, (46)
mRNA % o, (47)

Polll 5 o, (48)

where DNA,,, and DNA g are unlocked and locked
DNA configurations, respectively. The presence of
the 3’-5’ crosstalk loop is thought to facilitate the re-
cycling of Polll after each transcription event; there-
fore we can study the effect of the recycling on the
simulated expression data by tuning [ in the reac-
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tion scheme. Obviously, the pA mutation lowers the
recycling probability [ with respect to the WT, but
[ is not supposed to be zero in mutant genes, as the
recycling can occur by means of other mechanisms
(e.g., diffusion). By the law of mass action

Aot = Ky, (49)
Aon = Ky, (50)

where K is a chemical affinity and n is the concen-
tration of TetR. Hence, we can imitate variations
in the Tet dose by fine-tuning n, with large val-
ues of Tet (high induction levels) corresponding to
small values of n. Unlike the simpler phenomenolog-
ical models, we do not have an analytical likelihood
for this model, thus parameter inference is more
challenging, to be addressed with likelihood-free
methods. We simulate the model using the Doob-
Gillespie algorithm; sample trajectories of mRNA
abundances are plotted in Fig. 5 D (Main text).
When all the chemical species are highly abun-
dant and the gene is always in “on” state (this can
be achieved in the limit as kog — 0), it is straight-
forward to derive the following rate equations,

%[POHI] =a — [Polll](d — B(1 — 1)), (51)
%[mRNA] —[PollT]8 — [mRNA]d, (52)
where [X] is the abundance of the species X. The

stationary mRNA abundance is then

B8 «
RNA|==———— 53
[mRNA] ds+B(1—1) (53)
which corresponds to the vertical lines of

Fig. 4 B (Main text). While the parameters
v, B, d, 6, Ky are chosen to simulate mRNA
abundances and noises in ranges consistent with
those of the real data, fine-tuning the recycling
probability and the induction parameters [ and n
yields patterns similar to those observed in the
experimental setting (i.e., those of Figs. S9, S11,
and 2 (Main text)). More specifically, a simple
scatter plot of the sample averages versus the cv?
of [mnRNA] shows a drift of the noise curve from
the Poisson case CV% = 1/ux as the recycling
rate [ increases. Fitting a negative binomial (NB)
Bayesian model

mRNA ~NB(ux, kon), (54)
ux ~ Gamma(0.001,0.001), (55)
ko ~ Gamma(0.001, 0.001), (56)

to 500 simulated stationary mRNA abundances, al-
lowed us to estimate the average burst size a/kog =
ix /kon and the burst frequency ko, shown in Figs.
S16 and 5 C (Main text).
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FIG. S16. Negative-binomial model fit to 500 mRNA abundances simulated from the microscopic model. The pattern
of the inferred average burst sizes and burst frequencies mirrors those obtained from the real data. For each value of
the recycling probability ! (I = 0.5,0.85, 1), simulations are performed with Aog = 0.5,1,1.5,2,2.5,3,2.5,3.5,4,4.5;
remaining parameters are (7, 3, d, §, Aon) = (10,10,0.01,1,0.01). The solid lines in the noise plot (lower-left plot) are

fitted CV% = A/ux + B curves.

S10. MATERIALS

A. Cell lines and cell culture

The wildtype HBB and HIV-1l-env cell lines
have been utilized in previous studies [22, 27, 28].
The nomenclature was changed for the present
manuscript, with the cell lines denoted HBB WT,
HBB mut, HIV WT and HIV mut, which had
been denoted 5 pA+, 8 pA—, HIV-1 pA+ and
HIV-1 pA— in [22], respectively. Cells were main-
tained in DMEM medium supplemented with 10%
fetal bovine serum and 100 pug mL~! penicillin-
streptomycin (DMEM-10). Induction of cell lines
was carried out for 16 hours before downstream ex-
periments.

Deletion cell line construction. The design and
construction of the deletion cell line used the proto-
col detailed in [29], with the following changes. A
dual sgRNA strategy was employed with a 5’ guide
binding between the AmpR promoter and CMV en-
hancer and a 3’ guide binding just after the 3’ FRT
site. The use of plasmid pSpCas9(BB)-2A-GFP
(PX458) and dual targeting necessitated the trans-
fection with two plasmids, each containing a respec-
tive guide. Transfection was carried out using cal-
cium phosphate, followed by washing the cells with
warm PBS after 16-24 hours and replacing the me-

dia. Cells were allowed to recover for 48-72 hours
before single-cells were isolated in 96-well plates via
FACS (BD ARIAFusion), with the brightest 10%
GFP positive cells being sorted. Testing for deletion
was initially verified via genomic DNA extraction
and PCR, followed by smFISH assay using flow cy-
tometry.

B. Single-molecule RNA fluorescence in situ
hybridization

Probe sets. Probe sets for HBB and HIV-
l-env RNA were designed with the tool at
www.biosearchtech.com/stellarisdesigner (see Ta-
ble S31 for sequences). The probe sets were syn-
thesized by LGC Biosearch Technologies as custom
Stellaris® probe sets. AKTI1 probes were ready-
made and ordered from LGC Biosearch.

smFISH. smFISH staining followed the probe man-
ufacturer’s protocol. Briefly, cells were grown on
poly-L-lysine treated glass coverslips overnight, fixed
in 3.7% formaldehyde for 10 minutes and perme-
abilized in ethanol for > 1 hour. After overnight
staining at 37°C in dextran sulphate and formamide
buffered with SSC, cells were washed, followed by
mounting onto a slide using Vectashield with DAPI
as the mounting medium. Imageing was carried out



TABLE S31. Sequences and details of smFISH probe
sets. Product Name: Stellaris® FISH Probes, Custom
Assay with Quasar® 670 Dye.

1) Oligo Name: HIV

tcactaaacgagctcgtcga
taaacgctagagtccggagg
agaattccaccacactggac
ctatgtcgacacccaattct
agtctaggatctactggagg
ggcaatgaaagcaacacttt
gagtctgactgttctgatga
cttcttcttctattccttceg
cagatcgtcccagataagtg
agagtaagtctctcaagegg
aatatttgagggcttcccac
gcactattctttagttcctg
cttctataaccctatctgtc
tattcttctaggtatgtgge
tactttttgaccacttgcca
ctcagctcgtctcattcttt
gctgatcagegggtttaaac
accttccagggtcaaggaag

2) Oligo Name: HBB

tcactaaacgagctcgtcga
cggtgtcttctatggaggtc
gtcagaagcaaatgtaagct
tgcaccatggtgtctgtttg
caacttcatccacgttcacc
gagtggacagatccccaaag
gagcactttcttgccatgag
cttgaggttgtccaggtgag
acgtgcagcttgtcacagtg
aaagtgatgggccagcacac
caccactttctgataggcag
tggacagcaagaaagcgagce
tagacccagtttggtagttg
tccagcagacatgggtgatc
ctagacagcagacatgggtg
tacagtcgtccagcagacat
ttctacagctagacagcaga
ctcatgttttctacagtcgt
ttatctagatccggtggatc
gcatttttttcactgecatte
gcaattgttgttgttaactt

ggtcaaaacagcgtggatgg
gagctcggtaccaagcttaa

cagcagttgttgcagaatta
tctgtcgagtaacgectatt
tggtacaagcagttttagge
cctaaggcttttgtcatgaa
gctgectttgatagagaaget
aggatccgttcactaatcga
tagctgaagaggcacaggct
ttccacaatcctcgttacaa
ccaatactgtaggagattcc
ctgtggcattgagcaagtta
agctctataagctgecttgta
agcaaaatcctttccaagcec
ttacagcaggccatccaatce
cctctagactcgagatactg
ctggcaactagaaggcacag

taggaaaggacagtgggagt

aaacagcgtggatggecgtct
tttaaacgctagagtccgga
ggttgctagtgaacacagtt
gcagtaacggcagacttctc
aaagaacctctgggtccaag
cttagggttgcccataacag
caggccatcactaaaggcac
cactcagtgtggcaaaggtg
agcctgaagttctcaggatc
ctggtggggtgaattctttg
cgcttagtgatacttgtggg
cttagggaacaaaggaacct
tcatgttttctacagctaga
tcctcatgttttctacagte
gtgatcctcatgttttctac
atgggtgatcctcatgtttt
agacatgggtgatcctcatg
tagacagcagacatgggtga
ttgtggtttgtccaaactca
tgcagcttataatggttaca

on a brightfield microscope.

Flow cytometry. DNA staining was carried
out with FxCycle™ Violet Stain (ThermoFisher,
F10347) at a concentration of 1 ug mL~!. Fixed
cells were analysed on a BD Fortessa. Processing
and data analysis of raw flow cytometry data was
carried out using the flowcore R package [1] (v1.48,
R version 3.3).

SmFISH spot counting. Quantification of RNA
was carried out using FISH-quant [30]. Images were
imported with the following settings: XY 64.8 nm;
7 200 nm; Refractive index 1.515; NA 1.40; Em 592;
Ex 546; Microscope widefield. Cell outlines were
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drawn manually. A single image was then processed
and the settings used to batch-process the remaining
set. The threshold and quality score parameters of
FISH-quant were set to quantify as many spots as
possible while reducing spurious detection through
batch-specific selection of these parameters.

C. RNA isolation and preparation, and
degradation rate estimation

Total RNA was extracted from the respective cell
lines following the RNeasy Mini Kit (Qiagen, 47104)
protocol, using QIAshredder (Qiagen, 79654). RNA
for RNA-seq analysis was treated with TURBO
DNA-free™ kit (ThermoFisher, AM1907).

To estimate the mRNA degradation rate, RNA
was reverse transcribed using random primers
(Promega, C118A) and M-MLV reverse transcrip-
tase (Promega, M170A) followed by qPCR using
SensiMix™ SYBR® No-Rox (Bioline, QT650-02)
on a Qiagen Rotor-Gene Q. Gene-specific primers
were used (HIV Forward TCTCCTACGGCAGGAAGAAG;
HIV Reverse GGTAGCTGAAGAGGCACAGG). Analysis was
carried out by calculating the CT values using the
qpcR R package [31] (v1.4-1) and from this 27 24C¢
were calculated using the mut time 0 concentration
as the reference sample. A degradation time series
was carried out by standard induction method at 250
ng mL~?! tetracycline for 16 hours, followed by re-
moval of media and washing with warm DMEM-10.
Cells were then placed in fresh medium and samples
were taken at different time points following on from
this.

D. Nanostring

Cells were seeded, induced and processed as indi-
cated previously (subsection S10 A), with the follow-
ing alteration: after trypsinisation cells were resus-
pended in 1 mL of PBS and kept on ice. Count-
ing of cells was carried out via Countess (Ther-
moFisher) cell counter with 100 pL (50 : 50) PBS
to trypan blue. Samples were spun down at 500 g
for 5 minutes and were then resuspended in RLT
buffer from RNeasy Mini Kit (Qiagen, 47104) with
beta-mercaptoethanol to obtain a concentration of
6500 cells per uL. Samples were then vortexed for
1 minute and placed at —80°C. Cell lysis was veri-
fied under a microscope. Samples were shipped on
dry ice to an external provider for processing. Cus-
tom probe sets, including probes targeting HIV-1-
env along with GAPDH and AKT1 as house-keeping
genes, were designed and shipped by NanoString
Technologies.



E. RNA-seq

Library preparation. RNA-seq libraries were
prepared using 500 ng of total input RNA and
the NEBNext® UltraTM II Directional RNA Li-
brary Prep Kit for Illumina (E7760L), along with
the NEBNext® rRNA Depletion Kit (E6310L) and
NEBNext® Multiplex Oligos for Illumina Set 1 and
2 (E7335, E7500). Ribo-depletion was carried out to
capture transgene RNA regardless of the absence or
presence of a poly(A) tail. The manufacturer’s man-
ual was followed, with the final PCR amplification
using 9 cycles. Libraries were assessed via Bioanal-
yser, diluted and mixed before being sequenced on
an Ilumina® NextSeq 500, generating paired-end
reads with read length 42.

RNA-seq analysis. Data quality control was
performed with FastQC v0.11.5. Read and adapter
trimming was carried out using TrimGalore! v0.4.3
with cutadapt v0.4.3 using default settings [32].
Indices for STAR to map to were constructed
from the human genome (GRCh38.p12, Gencode
primary annotation) and the respective (HBB
WT/mut and HIV-l-env WT/mut) transgenic
sequence. The GTF was modified to include
these genes as a separate chromosome (chrHBB
or chrHIV). To mask the existing HBB sequence,
bedtools’ (v2.25.0) maskfasta command was
used [33]. RNA-seq reads were mapped to the
genome using STAR software v2.5.3a with pa-
rameter --outSAMattributes XS [34].  Counts
per gene were calculated using LiBiNorm [35]
acting in an HTSeq-count [36] compatible mode
with the following parameters: --format=bam
--minaqual=10 --stranded=reverse
--mode=intersection-strict. Coverage statis-
tics were generated using deepTools’ (v3.1.3)
bamCoverage [37]. Fold changes for the HBB
and HIV genes were calculated using DESeq2
v1.22.1 [38] from Bioconductor release 3.8 and R
v3.5.1.

Splicing analysis. To analyse potential alter-
native splicing in the env transgene, BAM files
were imported into R (v4.0.2) and analysed us-
ing SGSeq (v1.4) [39]. A table of counts relat-
ing to potential splice variants (Table S32) in-
dicates that there are potential alternative splic-
ing events, however the number of reads related
to each variant indicates that they are present
across all samples and appear related to the over-
all abundance of mRNA. To further analyse the
difference between introns and exons in the HIV-
1 env wild-type and mutant cell lines, the Tran-
scripts Per Kilobase Million (TPM), a normalisa-
tion that takes account of both sequence depth and
gene length, were calculated (Fig. S17). BAM files
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were imported into R (v4.0.2) and analysed us-
ing Rsubread (v2.2.6) [40], calling FeatureCounts
with the following parameters: minOverlap=20,
isPairedEnd=TRUE, strandSpecific=2. We do see
a slightly higher fraction of intronic reads present in
the env mutant at 250 ng mL~! Tet, although the
principal difference between the mutant and wild-
type appears to be overall mRNA abundance. In
addition to this, ref. [22] quantified the levels of HBB
pre-mRNA relative to the total HBB RNA and de-
termined that ratios are the same within the first 2
hours of induction (splicing was slightly effected af-
ter 24 hours, albeit this phenotype appeared to arise
subsequent to RNAPII depletion).



TABLE S32. Counts of potential splice variants in env transgene.

variantID mut 0 mut 0 mut 0 mut 250 mut 250 mut 250 WT 0 WT 0 WT 0 WT 250 WT 250 WT 250

1 0 0 0 0 0 0 0 0 0 0 1 0
2 28 21 14 233 164 223 42 46 44 404 434 303
3 28 24 27 46 51 58 31 27 45 33 28 45
4 0 0 0 0 0 0 0 0 0 0 0 1
5 26 30 22 42 51 59 36 33 44 32 23 48
6 0 0 0 0 0 1 0 0 0 0 1 0
7 41 53 31 41 56 65 49 46 60 36 30 54
8 0 0 0 0 0 0 0 0 0 0 1 0
9 0 0 0 1 0 1 0 0 0 1 4 1
10 0 0 0 0 1 0 0 0 0 0 0 0
TPM: Exons and Introns for Env gene
factor(Type)
E Exon
= @ Intron
s
] ]
- Samples .

FIG. S17. TPMs of exonic and intronic regions in env transgene.
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