S1 Appendix: Haplotype caller in elPrep 5

Charlotte Herzeel'@", Pascal Costanza'@, Dries Decap'?, Jan Fostier’2, Roel Wuyts',
Wilfried Verachtert!

1 ExaScience Life Lab, imec, Leuven, Belgium
2 Department of Information Technology, Ghent University - imec, Ghent, Belgium

@These authors contributed equally to this work.
* Charlotte.Herzeel@imec.be

Structure of the haplotype caller in GATK 4

The haplotype caller algorithm for variant calling performs several computations on
aligned sequencing data, and is far more involved than any of the other processing steps
that we have implemented in earlier versions of elPrep.

The GATK 4 implementation structures the execution of the algorithm in the
following way:

1. The purpose of the first stage is to direct the rest of the algorithm which locations
in the reference and which reads in the input BAM file to process. This is
achieved by an outermost loop that iterates over coarse-grained intervals, either as
provided by the user, for example in the form of a BED file, or by simply iterating
over the contigs as indicated in the header of the input BAM file. This results in a
sequence of intervals or contigs, and the rest of the algorithm is applied to each
element of this sequence, one by one. Alignment data is not yet fetched from the
input BAM file at this stage.

2. The second stage determines a number of assembly regions for each interval or
contig. An active assembly region is a short genomic region in which alignments
sufficiently deviate from the reference, which indicates that there are one or more
actual variants present. To ensure that variant calling is computationally feasible
(see below), the haplotype caller algorithm by default restricts the maximum size
of each assembly region to 300 base pairs. Assembly regions of maximum size 300
base pairs in between active regions are also passed to the next steps as inactive
assembly regions, since the haplotype caller also computes reference confidence
values for inactive regions when executing in GVCF or BP_RESULOTION mode.

Assembly regions are generated by an iterator object, which is internally
structured in the following way:

(a) A pileup iterator fetches alignments from the BAM file input, and collects all
reads that cover each position in the reference in ascending order. This
iterator also implicitly applies a downsampling filter such that each reference
position has a maximum number of alignments that start from this position.
The exact maximum number can be configured as a command line
parameter, and depending on its value, can even disable downsampling.
However, the default behavior of GATK is to downsample down to 50
starting alignments per reference position.

December 8, 2020



(b)

The assembly region iterator then internally builds activity profiles as a list
of activity states computed per reference position, by fetching pileups from
the above pileup iterator. Sublists of these activity states are dynamically
split off based on parameters like activity thresholds, maximum assembly
region size, and so on. These sublists are then combined into assembly region
objects. When pileups sufficiently deviate from reference bases, the
corresponding assembly region is marked as active, otherwise as inactive.
These assembly region objects are returned by the assembly region iterator.

3. An inner loop iterates over the assembly regions fetched from the above assembly
region iterator, and invokes the variant caller on each region. The variant caller
proceeds as follows:

(a)

If the assembly region is inactive or empty, a reference model for no variation
is computed and returned. (This check is repeated a few times throughout
the variant caller due to modifications to the region that may effectively
remove signs of variation.)

Otherwise, the reads that overlap, or are contained in, the assembly region
are assembled using a De-Bruijn-like graph, which results in a number of
candidate haplotypes.

For each candidate haplotype, its variation events are determined.

Based on these results, the assembly region is trimmed down to a potentially
smaller region.

For the remaining region, the read likelihoods for each haplotype candidate
are computed using a pair HMM algorithm. (This is computationally the
most demanding step in the haplotype caller algorithm, which is why
restricting the size of assembly regions further above is important.)

Based on this result, the reads are realigned.
This is followed by a genotyping step, producing the actual variant calls.

Finally, the reference confidence is computed both for reference positions
with and without variant calls.

4. The result of each invocation of the variant caller on the assembly regions is

finally written out to a VCF file. However, the variation information first needs to
be combined depending on whether the haplotype caller executes in GVCF or
BP_RESOLUTION mode (requiring the output of reference confidence values
either as summary statistics for subregions, or for each reference position
separately), or else in NONE mode (requiring no reference confidence values).

Due to the nested loops and iterators in the original expression of the haplotype

caller in GATK 4, and the fact that reads are streamed from file input sequentially
during the pileup creation step, the GATK implementation becomes inherently
sequential. In “Intel” mode, step 3.(e) is parallelized, which is computationally the most
demanding step, but the performance improvement is therefore also limited to this
single substep in the overall algorithm.

Parallelization of the haplotype caller in elPrep 5

In order to design a parallel version of the overall haplotype caller algorithm, we have
maintained the coarse-grained structure along the four main algorithmic blocks
described above, but instead of employing loops and iterators, we have organized them

December 8, 2020

2/



chr1:0-100

chri:

' '
[N
' '

jon

' \"*—;_\\\ \\\‘

@ split by @ splitinto T

>—— alignments —»{ interval or chromosome 11—/ assembly chr11:67543211-67543311 @ call region variants ——»| @ write VCF
contig regions "
' T g
' L
' ' ' T

' -
'

v

' chrY:0-100

chromosome Y

chrY:57227315-57227415

Fig 1. Parallelization of the haplotype caller in elPrep 5. Phase 1 groups reads
by interval or contig, and hands over each group as soon as possible to phase 2. Phase 2
splits groups into assembly regions, and hands over each assembly region as soon as
possible to phase 3. Phase 3 calls each region and hands over the variant calls to phase
4, which writes them to the result VCF file. All four phases can execute in parallel, and
phase 2 and 3 can operate on multiple groups and assembly regions in parallel.

into a parallel pipeline architecture [3] consisting of four phases corresponding to these
algorithm blocks.

The pipeline architecture described here is different from the parallel framework for
the rest of elPrep: While elPrep so far allows for alternating between parallelizing over
individual alignments and performing operations over the whole set of alignments, the
haplotype caller algorithm executes operations over ranges of alignments that contain
more than a single read, but are significantly smaller than the whole data set.

Fig 1 illustrates the four phases of elPrep’s implementation of the haplotype caller.
Parallel execution is achieved in three ways:

1. Phase 1 needs to group the alignments according to interval or contig boundaries
and prepare them for further processing per group in the remaining phases. As
soon as phase 1 completes the preparation for one interval or contig, it hands it
over to phase 2, which enables phase 1 and 2 to operate in parallel: While phase 2
operates on one set of intervals or contigs, phase 1 can already prepare the next
ones. This extends to all four phases which can all simultaneously operate on
different sets of intervals or contigs.

2. In addition, phase 2 can operate on multiple intervals or contigs in parallel at the
same time. The same holds for phase 3. In contrast, phases 1 and 4 are inherently
sequential and can only operate on exactly one interval or contig each at the same
time.

3. There are several computational steps within each phase which can be further
parallelized locally, like for example the pair HMM algorithm.

In the following subsections, we describe the different phases of the haploytpe caller
as implemented in elPrep 5 in more detail.

Phase 1: Split alignments by interval or by contig

While in the GATK implementation, downsampling is performed as part of building the
pileups in step 2, we are performing downsampling already in phase 1. The reason for

December 8, 2020 3/



this choice is as follows: If more than the specified maximum number of reads start at
any given position, then the concrete choice of which reads are retained and which reads
are discarded is governed by a single pseudo-random number generator. In order for
elPrep to produce the same results as GATK, we have reimplemented the same random
number generator, and as a consequence, this phase also has to remain strictly
sequential to ensure that elPrep’s implementation sees the same series of random
numbers in the exact same order as GATK. Since phase 1 is already inherently
sequential, it is better to perform downsampling here to not adversely impact
parallelization opportunities in phase 2.

The split up of the alignment data into either intervals or contigs is also already
performed in this phase, unlike in GATK. Since all alignment data is already present in
RAM in the elPrep implementation after the preceding preparation steps, there is no
reason to delay the grouping of read data.

Phase 2: Split each interval or contig into assembly regions
Phase 2 consists of the following steps:
1. Perform a pileup for each position in the reference.

2. Compute an activity probability for each position in the reference based on the
corresponding pileup.

3. Determine the assembly regions based on these activity probabilities.

Steps 1 and 2 are embarrassingly parallel. Step 3 is sequential since the different
active regions can be of different length, which means that each assembly region can
only be computed when the previous assembly regions are already known in the current
interval or contig.

Since alignments are potentially arbitrarily long in the reference due to
hypothetically arbitrarily long deletions, the pileup algorithm in step 1 would, without
further effort, have to check all alignments to the left of a given position if they overlap,
even if they are very far away.

To avoid this costly repeated reexamination of each read for each reference position,
we first compute the maximum reference length of all reads in a given contig, which is
usually rather short. Determining this number can be efficiently implemented with a
straightforward parallel reduction [3]. This number then helps to drastically reduce the
reads to consider when determining the pileup for a particular reference position.

The assembly regions computed in this phase are finally handed over to phase 3,
including both active and inactive regions like in GATK.

Phase 3: Perform variant calling on each assembly region

Variant calling is performed following the same steps as in GATK, i.e., by assembling
reads using a De-Bruijn-like graph; computing read likelihoods using a pair HMM
algorithm; realigning reads based on these likelihoods; genotyping the reads; and
computing the reference confidence. Parallelism is achieved in this phase by expressing
several steps in this phase as locally parallel algorithms, especially for computing event
maps, pair HMM, realignment, and so on.

Phase 4: Write variant information to a VCF file

This phase is mostly sequential. However, just like for the rest of elPrep where the file
representation of each entry in a SAM/BAM file is generated in parallel (either as a line

December 8, 2020

4]



of string or as the corresponding binary representation), the text lines which represent
VCF file entries are also generated in parallel.

Side channels

While in phase 3, the genotyping information for a variant that is part of an active
region is computed, it is possible that some output alleles represent deletions that cover
a stretch of the reference that is part of another active region further to the right.
While computing the genotyping information for the latter active region, information
from these output alleles from the former active region must be present. This means
that, strictly speaking, there is unfortunately a sequential dependency between the
different active regions.

To ensure that we can nevertheless perform variant calling on assembly regions in
parallel, we add a “side channel” to each assembly region which can receive deletion
information from other assembly regions to the left, and pass on deletion information to
other assembly regions to the right. These side channels are properly synchronized, so
can be safely accessed concurrently. Deletion information is passed to the right as early
as possible, especially in the very common case when it can be known very early that no
deletion information will be present in an assembly region. Likewise, deletion
information is consumed from the left as late as possible. Deletion information can be
efficiently passed through from an assembly region to the left to other assembly regions
to the right if the current assembly region does not participate in the handling of
deletion information (for example, for inactive regions).

The design of these side channels therefore ensures that variant calling can be
performed as much as possible in parallel in spite of this rare sequential dependency.

Guaranteeing equivalent results

Our goal with elPrep has always been to produce results that are identical at the binary
level to those of de-facto standard tools, like GATK [1,/2]. This enables us to verify
correctness of elPrep by performing straightforward comparisons using tools like Unix
diff, without requiring a biological interpretation of the results.

As for the rest of elPrep, GATK’s haplotype caller created some challenges in this
regard which we had to resolve. We have based the elPrep implementation of the
haplotype caller on version 4.1.3.0 of GATK. In the following subsections, we are
discussing the challenges that we have discovered in that version of GATK, and our
solutions.

Rounding modes for floating point operations

The Java and Go programming languages respectively use different rounding modes
when performing floating point operations. For the haplotype caller, this can lead to
results that are slightly different from each other, specifically because the logl0 function
may return slightly different results. We have solved this issue by providing our own
log10 implementation in C with specific instructions to direct the CPU to use the same
rounding mode as Java, and by calling that version from elPrep.

Formatting of floating point numbers

The Java and Go programming languages also differ with regard to how they print
floating point numbers, specifically with regard to how many digits are printed after the
comma. This can lead to different textual representations for the same floating point

December 8, 2020

5



values in the resulting VCF file, which makes it difficult to compare the results using
Unix diff. We have solved this by providing our own implementation for formatting
floating point numbers that mimics the Java behavior.

Non-determinism of De-Bruijn-like graphs

In the GATK implementation, version 4.1.3.0, when creating the De-Bruijn-like graphs,
the order of how incoming and outgoing vertices of each node are stored is
non-deterministic due to the use of a hashtable-based set implementation. This has an
impact on the result of read assembly due to the resulting non-deterministic order in
which nodes are visited during graph traversal. We have solved this issue by creating a
modified version of GATK that uses a linked hashtable-based set implementation
instead, which guarantees deterministic order, and by using a similar set
implementation in elPrep by default. Later versions of GATK adopt the same linked
hashtable-based set implementation for this purpose.

Random number generator

Furthermore, the Java and Go programming languages provide different random number
generator algorithms. This has an impact in two areas of the haplotype caller algorithm:

1. By default, the haplotype caller limits the number of reads that start at a given
reference position down to a specified maximum number. The choice which reads
are retained and which reads are dropped is based on the outcome of the random
number generator.

2. The haplotype caller algorithm computes a number of annotations to be included
in the resulting VCF file during genotyping. Among others, this includes the
“Quality by Depth” (QD) annotation. According to the code comments in the
original GATK 4 code, the QD value can become unusually high when multiple
events are on the same haplotype. To avoid that such results are filtered out by
later tools (e.g., VQSR), the QD value is capped to a maximum value before it is
being written out to the resulting VCF file. However, instead of simply setting
QD to a fixed high value, the capping also adds Gaussian noise to the capped
value, which is based on Java’s random number generator.

The first issue is easily resolved by replacing Go’s random number generator with
our own implementation that mimics Java’s algorithm and produces the exact same
sequence of random numbers.

The second issue is more problematic: GATK reuses the same random number
generator source for downsampling reads in the early stage as for capping QD values in
the late stage. From a software engineering perspective, this is problematic, because in
elPrep’s parallel implementation of the haplotype caller it becomes non-deterministic
which sequence of random numbers is seen for each purpose due to non-deterministic
interleaving of operations of the several phases executing in parallel.

We have solved the second issue by creating a modified version of GATK’s haplotype
caller that caps the QD value to a fixed value, without adding any Gaussian noise. This
means that the random number generator is not invoked for this purpose, so it is
exclusively used only for downsampling. Likewise, we can compile a custom version of
elPrep that removes the Gaussian noise from the capped QD value as well, producing

then exactly the same result as GATK when using those two modified versions of
GATK.

December 8, 2020



elPrep’s “pedantic” and “fixed_high_qd” modes

The technical differences described above lead only to very minor differences in the
resulting VCF files between the GATK and the elPrep implementations of the
haplotype caller algorithm. It is therefore desirable to avoid using the workarounds
described above by default to not incur unnecessary overheads (although they seem very
small in practice).

More concretely, by default elPrep compiles with Go’s default implementations of
the logl0 function, the formatting routines for floating point numbers, and its random
number generator. To enable the workarounds discussed above for precise equivalence
tests, elPrep has to be compiled in the so-called “pedantic” mode. In the “pedantic”
mode, elPrep also ensures that the state of the random number generator is retained
during processing of subsequent split files to guarantee equivalence even when using the
sfm version of elPrep.

With regard to capping QD values, elPrep by default uses a separate random
number generator source from the one used for downsampling. To disable adding
Gaussian noise when capping QD values, elPrep has to be compiled in the so-called
“fixed_high_qd” mode.

elPrep can be compiled both in “pedantic” and “fixed_high_qd” mode at the same
time. See the elPrep documentation for details on how to compile elPrep in these
different modes.

Summary

The algorithmic changes and challenges we described in the previous sections should
give an idea of the complexity we faced when optimizing and integrating the GATK
haplotype caller algorithm into elPrep. Parallelizing the execution of the haplotype
caller algorithm is only one aspect for improving the performance, but we also had to
simplify and optimize other algorithmic aspects. We estimate that we have touched
around 33000 lines of Java code in GATK to synthesize the haplotype caller
implementation in elPrep. Our haplotype caller code is around 9000 lines of Go code,
but we left out GATK features like checking for sample contamination, ploidies other
than diploid, and so on, which are not used in standard pipelines for processing human
DNA data. On top of the 9000 lines of code that implement the core haplotype caller
algorithm, we also have around 80000 lines of precomputed floating point values in the
Go source code for certain mathematical operations that were precomputed in Java, so
we can always obtain the same results in elPrep as in GATK.

References

1. Herzeel C, Costanza P, Decap D, Fostier J, Reumers J. elPrep: High-Performance
Preparation of Sequence Alignment/Map Files for Variant Calling. PLoS ONE.
2015;10(7). doi:10.1371/journal.pone.0138868.

2. Herzeel C, Costanza P, Decap D, Fostier J, Verachtert W. elPrep 4: A
multithreaded framework for sequence analysis. PLoS ONE. 2019:14(2).
doi:10.1371/journal.pone.0209523.

3. McCool M, Robison AD, Reinders J. Structured Parallel Programming - Patterns
for Efficient Computation. Waltham, Massachusetts: Morgan Kaufman; 2012.

December 8, 2020



