Environ Health Perspect

DOI: 10.1289/EHP7331

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Prenatal Exposure to Nitrate from Drinking Water and Markers of Fetal Growth Restriction: A Population-Based Study of Nearly One Million Danish-Born Children

Vanessa R. Coffman, Anja Søndergaard Jensen, Betina B. Trabjerg, Carsten B. Pedersen, Birgitte Hansen, Torben Sigsgaard, Jørn Olsen, Inger Schaumburg, Jörg Schullehner, Marie Pedersen, and Leslie T. Stayner

Table of Contents

Table S1. Characteristics of the study population by low birthweight, 1991-2011.

Table S2. Difference in the mean birthweight (grams) for NO_3^- concentrations in household drinking water restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

Table S3. Difference in mean body length at birth (millimeters) restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

Table S4. Difference in mean head circumference (millimeters) restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

Table S5. Adjusted odds ratios (aOR) for the association between term low birthweight and household NO_3^- concentration, restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

Table S6. Difference in the mean birthweight (g) and body length at birth (mm) and odds of low birthweight for NO_3^- concentrations in household drinking water to babies born during the full cohort (1991-2011) and restricted to the later, lower exposure years (1997-2011).

Table S7. Difference in the mean birthweight (g), birth length (mm), head circumference (mm), and odds ratios (OR) for low birthweight using categorical and continuous variables for NO_3^- concentrations in household drinking water, restricting to those with a recorded value for maternal pre-pregnancy height and weight.

Table S8. Difference in the mean birthweight (g), birth length (mm), and head circumference (mm) using categorical and continuous variables for NO_3^- concentrations in household drinking water, adding one additional potential confounder to the base model.

Table S9. Adjusted odds ratios for the association between term low birthweight and household NO_3^- concentrations, adding one additional potential confounder to the base model.

Table S10. Difference in the mean birthweight (g), birth length (mm), head circumference (mm), and low birthweight for NO_3^- concentrations in household drinking water in two different exposure categorical schemes (five and four categories).

SUPPLEMENTAL TABLES

Table S1. Characteristics of the study population by low birthweight, 1991-2011.

		T 1 1 1 1 1
	Normal weight	Low birthweight
	$(\geq 2,500 \text{ g})$	(< 2,500 g)
Total population ^{<i>a</i>} , n (%)	842,320 (100)	10,028 (100)
Pregnancy average NO ₃ ⁻ (mg/L), mean \pm SD	4.7 ± 7.6	4.9 ± 7.7
Gestational age (weeks), mean $\pm SD$	40 ± 1	38 ± 1
Maternal age (years), mean $\pm SD$	30 ± 5	29 ± 5
Maternal income ^b (DKK), mean $\pm SD$	$229,100 \pm 114,200$	$211,700 \pm 108,800$
Paternal age (years), mean $\pm SD$	32 ± 5	32 ± 6
Paternal income ^b (DKK), mean $\pm SD$	$331,000 \pm 211,200$	$299,000 \pm 178,000$
Missing, n (%)	429 (0)	6 (0)
Maternal height $(cm)^c$, mean $\pm SD$	169 ± 16	166 ± 8
Maternal pre-pregnancy weight $(kg)^c$, mean $\pm SD$	70 ± 23	65 ± 15
Sex. n (%)		
Female	410,705 (49)	5.856 (58)
Male	431.615 (51)	4,172 (42)
Gravidity, n (%)		.,_ ()
1	368,281 (44)	5,691 (57)
2	328,443 (39)	2,777 (28)
> 3	145.596 (17)	1.560(16)
Maternal smoking ^d , n (%)	110,000 (17)	1,000 (10)
No	657 508 (78)	5 047 (50)
Ves	184 812 (22)	4 981 (50)
Maternal education ^e , n (%)	101,012 (22)	1,501 (50)
Compulsory	194 700 (23)	3 828 (38)
Secondary	404 032 (48)	4288(43)
Post-secondary	243 588 (29)	1,200 (19)
Maternal employment status ^e n (%)	213,300 (2))	1,912 (19)
Fmploved	688 628 (82)	7 419 (74)
Unemployed	52 969 (6)	969 (10)
Not seeking work	100723(12)	1 640 (16)
Paternal education ^e n (%)	100,725 (12)	1,040 (10)
Compulsory	182 765 (22)	3 290 (33)
Secondary	438 140 (52)	4 959 (49)
Post-secondary	212 136 (25)	1 588 (16)
Missing	9 279 (1)	191 (2)
Paternal employment status ^e n (%)),27)(1)	1)1 (2)
Employed	760 694 (90)	8 512 (85)
Unemployed	33 551 (4)	664 (7)
Not seeking work	45 325 (5)	816 (8)
Missing	2750(0)	36(0)
Urbanicity of maternal address at hirth n (%)	2,750(0)	50(0)
Rural areas	272,270(32)	3 300 (34)
Provincial town ⁸	2/2,2/0 (32)	3,370(3+) 3 ()83 (31)
$\frac{1}{2} \frac{1}{2} \frac{1}$	241,417 (29)	1,005(51) 1 124 (11)
Suburb of capital	100,037 (13)	1,12+(11) 1 1/2 (11)
Capital	102,030 (12)	1,142(11) 1 280(12)
Capital Design of maternal address at birth $w(0/1)$	119,130 (14)	1,209 (13)
North Jutland	22 010 (11)	1 114 (11)
Notul Juliana Middle Intland	00,919 (11)	1,114(11) 2,245(22)
Southern Jutland	200,230 (23)	2,243 (22)
Southern Juliand	173,993 (21)	2,238 (22)
Capital area	255,167 (30)	2,840 (28)

Zealand	116,011 (14)	1,591 (16)
Year of birth, <i>n</i> (%)		
1991 - 1995	207,774 (25)	2,980 (30)
1996 - 2000	205,373 (24)	2,522 (25)
2001 - 2005	197,992 (24)	2,141 (21)
2006 - 2012	231,181 (27)	2,385 (24)
Season of birth, n (%)		
January - March	203,904 (24)	2,573 (26)
April - June	211,581 (25)	2,382 (24)
July - September	227,136 (27)	2,639 (26)
October - December	199,699 (24)	2,434 (24)
Water supply, <i>n</i> (%)		
Public ^{<i>i</i>}	838,345 (99)	9,971 (99)
Private ⁱ	2,989 (0.4)	42 (0.4)
Unknown ^k	986 (0.1)	15 (0.1)
Caesarean delivery ^{l} , n (%)		
No	494,210 (83)	4,294 (66)
Yes	97,663 (17)	2,187 (34)

Note: All X² tests for difference between strata were significant at $p \le 0.001$ except for the water supply (p = 0.36) and continuous nitrate (p = 0.001) 0.007).

a. The study population: full-term singleton live births in Denmark with a birthweight measurement born January 1, 1991 to December 31, 2011 to Danish-born parents who have at least eight address-linked NO3 measurements and with non-missing covariates in the base model

b. As reported two years prior to birth and standardized to 2009 values

c. Maternal height and weight were assessed two years prior to birth and available from 2003 onward only, which reduces the sample size to 3,038 cases and 294,715 non-cases of LBW

d. For children born in the period before 1997 smoking was recorded at the first visit with the midwife with no specifications as to the timing. For children born from 1997 onward smoking is during pregnancy.

e. As reported two years before birth

f. Municipalities in Denmark where the largest town has < 10,000 inhabitants

g. Municipalities having a town with between 10,000 and 100,000 inhabitants *h*. Municipalities having a town with > 100,000 inhabitants

i. Public water throughout pregnancy

j. Private well at some point in pregnancy

k. Public water supply for at least 8 out of the 10 months during pregnancy and unknown water supply for the remaining months

l. Available from 1997 onward only, which reduces the sample size to 6,481 cases and 591,873 non-cases of LBW

Table S2. Difference in the mean birthweight (grams) for NO_3^- concentrations in household drinking water restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

	Base model n = 852,348			Only public $n = 848,316$			Never above 50 mg/L n = 845,699		
NO_3^- (mg/L)	n	Δ (95% CI)	<i>p</i> -value	n	Δ (95% CI)	<i>p</i> -value	n	Δ (95% CI	<i>p</i> -value
Categorical									
≤ 1	186,182	Ref (0)		185,339	Ref (0)		185,661	Ref (0)	
$> 1 - \le 2$	182,870	-3.6 (-6.8, -0.5)	0.02	182,322	-3.5 (-6.7, -0.3)	0.03	182,333	-3.5 (-6.7, -0.3)	0.03
$> 2 - \le 5$	299,468	-7.4 (-10.8, -4.1)	< 0.001	298,381	-7.4 (-10.7, -4.0)	< 0.001	298,401	-7.4 (-10.7, -4.0)	< 0.001
$> 5 - \le 25$	150,019	-8.1 (-11.6, -4.6)	< 0.001	148,999	-7.9 (-11.5, -4.4)	< 0.001	149,130	-8.0 (-11.6, -4.5)	< 0.001
> 25	33,809	-7.0 (-13.3, -0.7)	0.03	33,275	-7.0 (-13.4, -0.7)	0.03	30,174	-6.6 (-13.2, 0.03)	0.05
trend			< 0.001			< 0.001			< 0.001
Continuous ^a	852,348	-9.7 (-14.6, -4.8)	< 0.001	848,316	-9.5 (-14.4, -4.5)	< 0.001	845,699	-9.8 (-14.8, -4.8)	< 0.001

Note: EU = European Union. CI = Confidence interval. Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity. *a*. The continuous NO₃⁻ exposure variable was log transformed, ln(x+1) and β (95% CI) shown for exposures x = 25.0 mg/L NO₃⁻ compared to 0 mg/L

Table S3. Difference in mean body length at birth (millimeters) restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

		Base model $n = 848,106$			Only public $n = 844,095$		Ν	Never above 50 mg/L n = 841,494		
NO_3^- (mg/L)	n	Δ (95% CI)	<i>p</i> -value	n	Δ (95% CI)	<i>p</i> -value	n	Δ (95% CI)	<i>p</i> -value	
Categorical										
≤ 1	185,379	Ref (0)		184,539	Ref (0)		184,860	Ref (0)		
$> 1 - \le 2$	182,001	-0.1 (-0.2, 0.1)	0.24	181,456	-0.1 (-0.2, 0.1)	0.26	181,467	-0.1 (-0.2, 0.1)	0.26	
$> 2 - \le 5$	297,885	-0.2 (-0.3, -0.02)	0.03	296,803	-0.2 (-0.3, -0.01)	0.04	296,824	-0.2 (-0.3, -0.01)	0.03	
$> 5 - \le 25$	149,114	-0.4 (-0.5, -0.2)	< 0.001	148,102	-0.4 (-0.5, -0.2)	< 0.001	148,234	-0.4 (-0.5, -0.2)	< 0.001	
> 25	33,727	-0.2 (-0.5, 0.1)	0.27	33,195	-0.2 (-0.5, 0.1)	0.22	30,109	-0.2 (-0.5, 0.1)	0.21	
trend			< 0.001			< 0.001			< 0.001	
Continuous ^a	848,106	-0.3 (-0.5, -0.1)	0.01	844,095	-0.3 (-0.5, -0.1)	0.01	841,494	-0.3 (-0.5, -0.1)	0.01	

Note: EU = European Union. CI = Confidence interval. Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity. *a*. The continuous NO₃⁻ exposure variable was log transformed, ln(x+1) and β (95% CI) shown for exposures x = 25.0 mg/L NO₃⁻ compared to 0 mg/L

Table S4. Difference in mean head circumference (millimeters) restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

		Base model ^{<i>a</i>} n = 588,981			Only public $n = 586,128$		Never above 50 mg/L n = 584.807		
NO_{3}^{-} (mg/L)	п	Δ (95% CI)	<i>p</i> -value	n	Δ (95% CI)	<i>p</i> -value	n	Δ (95% CI)	<i>p</i> -value
Categorical									
≤ 1	140,486	Ref (0)		139,828	Ref (0)		140,085	Ref (0)	
$> 1 - \le 2$	126,561	0.02 (-0.1, 0.2)	0.79	126,186	0.02 (-0.1, 0.2)	0.81	126,198	0.02 (-0.1, 0.2)	0.80
$> 2 - \le 5$	218,398	-0.2 (-0.4, -0.1)	0.001	217,601	-0.2 (-0.4, -0.1)	0.001	217,625	-0.2 (-0.4, -0.1)	0.001
$> 5 - \le 25$	81,085	0.1 (-0.1, 0.2)	0.52	80,451	0.1 (-0.1, 0.2)	0.57	80,588	0.1 (-0.1, 0.2)	0.55
> 25	22,451	0.1 (-0.2, 0.3)	0.62	22,062	0.1 (-0.2, 0.4)	0.62	20,311	0.1 (-0.2, 0.4)	0.46
trend			0.52			0.47			0.55
Continuous ^b	588,981	0.04 (-0.2, 0.3)	0.69	586,128	0.04 (-0.2, 0.3)	0.74	584,807	0.1 (-0.2, 0.3)	0.60

Note: EU = European Union. CI = Confidence interval. Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity. *a*. Data were available only for births ≥ 1997

b. The continuous NO₃⁻ exposure variable was log transformed, $\ln(x+1)$ and β (95% CI) shown for exposures x = 25.0 mg/L NO₃⁻ compared to 0 mg/L

Table S5. Adjusted odds ratios (aOR) for the association between term low birthweight and household NO_3^- concentration, restricted to babies born to mothers who were on public water throughout their pregnancy, and restricted to babies born to mothers whose nitrate levels were never reported above the EU standard of 50 mg/L.

		Base model $n = 852,348$		Only public $n = 848,316$			Never above 50 mg/L n = 845,699		
NO_3^- (mg/L)	n	aOR (95% CI)	<i>p</i> -value	n	aOR (95% CI)	<i>p</i> -value	n	aOR (95% CI)	<i>p</i> -value
Categorical									
≤ 1	186,182	Ref (1)		185,339	Ref (1)		185,661	Ref (1)	
$> 1 - \le 2$	182,870	0.98 (0.92, 1.05)	0.52	182,322	0.98 (0.91, 1.04)	0.47	182,333	0.98 (0.91, 1.04)	0.47
$> 2 - \le 5$	299,468	1.01 (0.94, 1.08)	0.86	298,381	1.01 (0.94, 1.08)	0.84	298,401	1.01 (0.94, 1.07)	0.87
$> 5 - \le 25$	150,019	1.02 (0.95, 1.09)	0.55	148,999	1.02 (0.95, 1.09)	0.55	149,130	1.02 (0.96, 1.09)	0.51
> 25	33,809	0.99 (0.88, 1.12)	0.91	33,275	0.99 (0.87, 1.11)	0.81	30,174	0.98 (0.86, 1.12)	0.78
trend			0.51			0.52			0.50
Continuous ^a	852,348	1.02 (0.93, 1.11)	0.73	848,316	1.02 (0.93, 1.11)	0.75	845,699	1.02 (0.93, 1.12)	0.74

Notes: EU = European Union. CI = Confidence interval. Models were fitted using logistic regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity. *a*. The continuous NO₃⁻ exposure variable was log transformed, ln(x+1) and aOR (95% CI) shown for exposures $x = 25.0 \text{ mg/L NO}_3^-$ compared to 0 mg/L

	Bi	rthweight (g) base mo	odel		Birthweight (g) restricted model	
$NO_3^-(mg/L)$	п	Δ (95% CI)	<i>p</i> -value	n	Δ (95% CI)	<i>p</i> -value
Categorical						
≤ 1	186,182	Ref (0)		142,697	Ref (0)	
$> 1 - \leq 2$	182,870	-3.6 (-6.8, -0.5)	0.02	128,846	-2.8 (-6.6, 0.9)	0.14
$> 2 - \le 5$	299,468	-7.4 (-10.8, -4.1)	< 0.001	221,761	-9.3 (-13.3, -5.3)	< 0.001
$> 5 - \le 25$	150,019	-8.1 (-11.6, -4.6)	< 0.001	82.449	-7.5 (-11.9, -3.1)	0.001
> 25	33,809	-7.0 (-13.3, -0.7)	0.03	22,616	-6.5 (-14.4, 1.4)	0.11
trend			< 0.001			< 0.001
Continuous ^{<i>a,b</i>}	852,348	-9.7 (-14.6, -4.8)	< 0.001	598,369	-9.6 (-15.8, -3.4)	0.002
	Bod	y length (mm) base n	nodel	В	ody length (mm) restricted model	
NO_3^- (mg/L)	п	Δ (95% CI)	<i>p</i> -value	п	Δ (95% CI)	<i>p</i> -value
Categorical						
≤ 1	185,379	Ref (0)		142,156	Ref (0)	
$> 1 - \le 2$	182,001	-0.1 (-0.2, 0.1)	0.24	128,301	-0.2 (-0.4, -0.02)	0.03
$> 2 - \le 5$	297,885	-0.2 (-0.3, -0.02)	0.03	220,776	-0.4 (-0.6, -0.2)	< 0.001
$> 5 - \le 25$	149,114	-0.4 (-0.5, -0.2)	< 0.001	82,033	-0.4 (-0.6, -0.2)	< 0.001
> 25	33,727	-0.2 (-0.5, 0.1)	0.27	22,583	-0.2 (-0.5, 0.2)	0.41
trend			< 0.001			< 0.001
Continuous ^{<i>a,b</i>}	848,106	-0.3 (-0.5, -0.1)	0.01	595,849	-0.4 (-0.6, -0.1)	0.02
	Lov	w birthweight base m	odel	I	Low birthweight restricted model	
$NO_3^-(mg/L)$	п	aOR (95% CI)	<i>p</i> -value	n	aOR (95% CI)	<i>p</i> -value
Categorical						
≤ 1	186,182	Ref (1)		142,697	Ref (1)	
$> 1 - \le 2$	182,870	0.98 (0.92, 1.05)	0.52	128,846	1.00 (0.93, 1.09)	0.94
$> 2 - \le 5$	299,468	1.01 (0.94, 1.08)	0.86	221,761	1.07 (0.98, 1.16)	0.12
$> 5 - \le 25$	150,019	1.02 (0.95, 1.09)	0.55	82.449	1.03 (0.94, 1.12)	0.55
> 25	33,809	0.99 (0.88, 1.12)	0.91	22,616	0.99 (0.84, 1.15)	0.85
trend			0.51			0.4
Continuous ^{b,c}	852,348	1.02 (0.93, 1.11)	0.73	598,369	1.02 (0.90, 1.15)	0.77

Table S6. Difference in the mean birthweight (g) and body length at birth (mm) and odds of low birthweight for NO_3^- concentrations in household drinking water to babies born during the full cohort (1991-2011) and restricted to the later, lower exposure years (1997-2011).

Note: CI = Confidence interval. Models were fitted using linear regression with generalized estimating equations in order to control for the nonindependence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity.

a. Total n is the same as the continuous model n

b. The continuous NO₃⁻ exposure variable was log transformed, ln(x+1) and β (95% CI) shown for exposures $x = 25.0 \text{ mg/L NO}_3^-$ compared to 0 mg/L

c. The continuous NO₃⁻ exposure variable was log transformed, ln(x+1) and aOR (95% CI) shown for exposures $x = 25.0 \text{ mg/L NO}_3^-$ compared to 0 mg/L

		Birthweight (g) restricted base model ^{<i>a,b</i>}		Birthweight (g) restricted base model ^{a,b} + he	g) restricted base model ^{a,b} + height and weight		
NO_3^- (mg/L)	n	Δ (95% CI)	<i>p</i> -value	Δ (95% CI)	<i>p</i> -value		
Categorical							
≤ 1	71,885	Ref (0)		Ref (0)			
$> 1 - \le 2$	70,245	-1.5 (-6.7, 3.7)	0.57	0.9 (-4.2, 6.0)	0.73		
$> 2 - \le 5$	114,043	-5.6 (-11.3, 0.03)	0.05	-3.7 (-9.2, 1.8)	0.19		
$> 5 - \le 25$	31,091	-3.1 (-10.1, 3.8)	0.38	-2.3 (-9.0, 4.4)	0.50		
> 25	10,489	1.7 (-9.9, 13.3)	0.77	1.6 (-9.6, 12.9)	0.78		
trend			0.25		0.35		
Continuous ^c	297,753	-3.4 (-12.7, 6.0)	0.48	-2.7 (-11.8, 6.4)	0.56		
		Birth length (mm) restri	cted base	Birth length (mm) restricted base model ^{b,d}	+ height and		
		model ^{b,d}		weight	8		
NO_3^- (mg/L)	n	Δ (95% CI)	<i>p</i> -value	Δ (95% CI)	<i>p</i> -value		
Categorical							
≤ 1	71,598	Ref (0)		Ref (0)			
$> 1 - \leq 2$	69,932	0.02 (-0.2, 0.3)	0.89	0.1 (-0.2, 0.3)	0.49		
$> 2 - \le 5$	113,501	-0.3 (-0.6, -0.1)	0.01	-0.3 (-0.6, -0.03)	0.03		
$> 5 - \le 25$	30,918	-0.4 (-0.7, -0.1)	0.03	-0.3 (-0.7, -0.03)	0.03		
> 25	10,476	-0.2 (-0.7, 0.3)	0.43	-0.3 (-0.8, 0.3)	0.33		
trend			0.01		0.01		
Continuous ^c	296,425	-0.5 (-0.9, -0.02)	0.04	-0.5 (-0.9, -0.03)	0.03		
		Head circumference (mm) restricted	Head circumference (mm) restricted base mo	$del^{b,e,f} + height$		
		Head circumference (mm base model ^{b,e,f}) restricted	Head circumference (mm) restricted base me and weight	$del^{b,e,f} + height$		
NO ₃ - (mg/L)	п	Head circumference (mm base model ^{<i>b,e,f</i>} Δ (95% CI)) restricted	Head circumference (mm) restricted base me and weight Δ (95% CI)	$pdel^{b,e,f} + height$		
NO ₃ ⁻ (mg/L) Categorical	n	Head circumference (mm base model ^{<i>b,e,f</i>} Δ (95% CI)) restricted <pre>p-value</pre>	Head circumference (mm) restricted base me and weight Δ (95% CI)	odel ^{<i>b,e,f</i>} + height		
$\frac{\text{NO}_{3} \text{ (mg/L)}}{\text{Categorical}} \leq 1$	<i>n</i> 70,889	Head circumference (mm base model ^{b,e,f} Δ (95% CI) Ref (0)) restricted p-value	Head circumference (mm) restricted base me and weight Δ (95% CI) Ref (0)	p-value		
$\frac{\text{NO}_{3} (\text{mg/L})}{\text{Categorical}} \leq 1 \\ > 1 - \leq 2$	n 70,889 69,226	Head circumference (mm base model ^{<i>b,e,f</i>} Δ (95% CI) Ref (0) 0.2 (0.02, 0.4)) restricted p-value 0.03	Head circumference (mm) restricted base me and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4)	p-value 0.003		
$\frac{\text{NO}_{3} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$	<i>n</i> 70,889 69,226 112,684	Head circumference (mm. base model ^{b.e.f} Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01)) restricted <u>p-value</u> 0.03 0.04	Head circumference (mm) restricted base me and weight $\Delta (95\% \text{ CI})$ Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03)	$\frac{p \cdot value}{p \cdot value}$		
$\frac{\text{NO}_{3} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$	<i>n</i> 70,889 69,226 112,684 30,650	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$) restricted <u>p-value</u> 0.03 0.04 0.26	Head circumference (mm) restricted base mo and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4)	$\frac{p \cdot value}{p \cdot value}$ 0.003 0.11 0.22		
$\frac{NO_{3} (mg/L)}{Categorical} \le 1 \\ > 1 - \le 2 \\ > 2 - \le 5 \\ > 5 - \le 25 \\ > 25$	<i>n</i> 70,889 69,226 112,684 30,650 10,433	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$) restricted <u>p-value</u> 0.03 0.04 0.26 0.31	Head circumference (mm) restricted base me and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6)			
$\frac{\text{NO}_{3} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend	<i>n</i> 70,889 69,226 112,684 30,650 10,433	Head circumference (mm base model ^{b,e,f}) Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6)) restricted <u>p-value</u> 0.03 0.04 0.26 0.31 0.81	Head circumference (mm) restricted base monomatic and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6)			
$\begin{array}{r} \text{NO}_{3}^{-} \text{ (mg/L)} \\ \text{Categorical} \\ \leq 1 \\ > 1 - \leq 2 \\ > 2 - \leq 5 \\ > 5 - \leq 25 \\ > 25 \\ \text{trend} \\ \text{Continuous}^{c} \end{array}$	<i>n</i> 70,889 69,226 112,684 30,650 10,433 293,882	Head circumference (mm base model ^{b,e,f}) Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3)) restricted <u>p-value</u> 0.03 0.04 0.26 0.31 0.81 0.81	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \hline p - value \\ \hline \\ \hline \\ p - value \\ \hline \\ 0.003 \\ 0.11 \\ 0.22 \\ 0.31 \\ 0.91 \\ 0.86 \\ \hline \end{array}$		
$\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend Continuous ^c	n 70,889 69,226 112,684 30,650 10,433 293,882	Head circumference (mm base model ^{b,e,f} Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3) Low birthweight restricted b) restricted <u>p-value</u> 0.03 0.04 0.26 0.31 0.81 0.81 pase model ^{a,b}	Head circumference (mm) restricted base model and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.03 (-0.3, 0.3)	$\frac{p - value}{p - value}$ 0.003 0.11 0.22 0.31 0.91 0.86		
$\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend Continuous ^c $\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{NO}_{3}^{-} (\text{mg/L})}$	n 70,889 69,226 112,684 30,650 10,433 293,882 n	Head circumference (mm base model ^{b,e,f} Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3) Low birthweight restricted b aOR (95% CI)) restricted p-value 0.03 0.04 0.26 0.31 0.81 0.81 p-value p-value	Head circumference (mm) restricted base model and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.03 (-0.3, 0.3)	$\frac{p - value}{p - value}$ $\frac{0.003}{0.11}$ 0.22 0.31 0.91 0.86 $\frac{eight and weight}{p - value}$		
$\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend Continuous ^c $\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$	n 70,889 69,226 112,684 30,650 10,433 293,882 n	Head circumference (mm base model ^{b,e,f}) Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3) Low birthweight restricted back (95% CI)) restricted p-value 0.03 0.04 0.26 0.31 0.81 0.81 p-value p-value	Head circumference (mm) restricted base model and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.03 (-0.3, 0.3)	$\frac{p \text{-value}}{p \text{-value}}$ $\frac{0.003}{0.11}$ 0.22 0.31 0.91 0.86 $\frac{p \text{-value}}{p \text{-value}}$		
$\begin{array}{r} \text{NO}_{3}^{-} (\text{mg/L}) \\ \text{Categorical} \\ \leq 1 \\ > 1 - \leq 2 \\ > 2 - \leq 5 \\ > 5 - \leq 25 \\ > 25 \\ \text{trend} \\ \text{Continuous}^c \\ \hline \\ \text{NO}_{3}^{-} (\text{mg/L}) \\ \text{Categorical} \\ \leq 1 \end{array}$	n 70,889 69,226 112,684 30,650 10,433 293,882 n 71,885	Head circumference (mm base model ^{b,e,f}) Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3) Low birthweight restricted to a OR (95% CI) Ref (1)) restricted p-value 0.03 0.04 0.26 0.31 0.81 0.81 p-value p-value	Head circumference (mm) restricted base model and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.03 (-0.3, 0.3) Low birthweight restricted base model ^{a,b} + he aOR (95% CI) Ref (1)	$\frac{p - \text{value}}{p - \text{value}}$ $\frac{0.003}{0.11}$ 0.22 0.31 0.91 0.86 $\frac{p - \text{value}}{p - \text{value}}$		
$\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend Continuous ^c $\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$	n 70,889 69,226 112,684 30,650 10,433 293,882 n 71,885 70,245	Head circumference (mm base model ^{b,e,f}) Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3) Low birthweight restricted back (95% CI) Ref (1) 1.00 (0.90, 1.13)) restricted p-value 0.03 0.04 0.26 0.31 0.81 0.81 p-value 0.95	Head circumference (mm) restricted base model and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.03 (-0.3, 0.3)	$\frac{p - value}{p - value}$ $\frac{0.003}{0.11}$ 0.22 0.31 0.91 0.86 $\frac{eight and weight}{p - value}$ 0.98		
$\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend Continuous ^c $\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$	<i>n</i> 70,889 69,226 112,684 30,650 10,433 293,882 <i>n</i> 71,885 70,245 114,043	Head circumference (mm base model ^{b,e,f}) Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3) Low birthweight restricted to a OR (95% CI) Ref (1) 1.00 (0.90, 1.13) 1.00 (0.89, 1.13)) restricted p-value 0.03 0.04 0.26 0.31 0.81 0.81 p-value 0.95 0.96	Head circumference (mm) restricted base model and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.03 (-0.3, 0.3) Low birthweight restricted base model ^{a,b} + he aOR (95% CI) Ref (1) 1.00 (0.89, 1.12) 1.01 (0.89, 1.13)	p-value p -value 0.003 0.11 0.22 0.31 0.91 0.86 eight and weight p -value 0.98 0.93		
$\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend Continuous ^c $\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$	<i>n</i> 70,889 69,226 112,684 30,650 10,433 293,882 <i>n</i> 71,885 70,245 114,043 31,091	Head circumference (mm base model ^{b,e,f}) Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3) Low birthweight restricted be a OR (95% CI) Ref (1) 1.00 (0.90, 1.13) 1.06 (0.92, 1.23)) restricted <u>p-value</u> 0.03 0.04 0.26 0.31 0.81 0.81 <u>p-value</u> 0.95 0.96 0.39	Head circumference (mm) restricted base model and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.03 (-0.3, 0.3)	p-value $p-value$ 0.003 0.11 0.22 0.31 0.91 0.86 eight and weight $p-value$ 0.98 0.93 0.46		
$\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend Continuous ^c $\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25	n 70,889 69,226 112,684 30,650 10,433 293,882 n 71,885 70,245 114,043 31,091 10,489	Head circumference (mm base model ^{b,e,f} Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3) Low birthweight restricted to a OR (95% CI) Ref (1) 1.00 (0.90, 1.13) 1.06 (0.92, 1.23) 0.85 (0.67, 1.09)) restricted p-value 0.03 0.04 0.26 0.31 0.81 0.81 p-value 0.95 0.96 0.39 0.21	Head circumference (mm) restricted base model and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.03 (-0.3, 0.3) Low birthweight restricted base model ^{a,b} + he aOR (95% CI) Ref (1) 1.00 (0.89, 1.12) 1.01 (0.89, 1.13) 1.06 (0.92, 1.22) 0.86 (0.67, 1.10)	p-value p -value 0.003 0.11 0.22 0.31 0.91 0.86 eight and weight p -value 0.98 0.93 0.46 0.22		
$\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend Continuous ^c $\frac{\text{NO}_{3}^{-} (\text{mg/L})}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$ > 25 trend	<i>n</i> 70,889 69,226 112,684 30,650 10,433 293,882 <i>n</i> 71,885 70,245 114,043 31,091 10,489	Head circumference (mm base model ^{<i>b,e,f</i>) Δ (95% CI) Ref (0) 0.2 (0.02, 0.4) -0.2 (-0.4, -0.01) 0.1 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.04 (-0.4, 0.3) Low birthweight restricted be a OR (95% CI) Ref (1) 1.00 (0.90, 1.13) 1.06 (0.92, 1.23) 0.85 (0.67, 1.09)}) restricted p-value 0.03 0.04 0.26 0.31 0.81 0.81 p-value 0.95 0.96 0.39 0.21 0.99	Head circumference (mm) restricted base model and weight Δ (95% CI) Ref (0) 0.3 (0.1, 0.4) -0.2 (-0.4, 0.03) 0.2 (-0.1, 0.4) 0.2 (-0.2, 0.6) -0.03 (-0.3, 0.3) Low birthweight restricted base model ^{a.b} + he aOR (95% CI) Ref (1) 1.00 (0.89, 1.12) 1.01 (0.89, 1.13) 1.06 (0.92, 1.22) 0.86 (0.67, 1.10)	$\begin{array}{c} \hline p - value \\ \hline p - value \\ \hline \\ \hline p - value \\ \hline \\ 0.003 \\ 0.11 \\ 0.22 \\ 0.31 \\ 0.91 \\ 0.86 \\ \hline \\ \hline \\ \hline \\ p - value \\ \hline \\ \hline \\ \hline \\ p - value \\ \hline \\ \hline \\ 0.98 \\ 0.93 \\ 0.46 \\ 0.22 \\ 0.98 \\ \hline \end{array}$		

Table S7. Difference in the mean birthweight (g), birth length (mm), head circumference (mm), and odds ratios (OR) for low birthweight using categorical and continuous variables for NO_3^- concentrations in household drinking water, restricting to those with a recorded value for maternal pre-pregnancy height and weight.

Note: CI = Confidence interval. Models were fitted using logistic regression with generalized estimating equations in order to control for the nonindependence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity. a. n = 297,753

b. Restricting the base model to those with pre-pregnancy height and weight measurements for comparable estimates between models

c. The continuous NO₃ exposure variable was log transformed, $\ln(x+1)$ and aOR (95% CI) shown for exposures x = 25.0 mg/L NO₃ compared to 0 mg/L

d. *n* = 296,425

e. n = 293,882

f. Data were available only for births \geq 1997

				Continuous				
		≤ 1	$> 1 - \le 2$	$> 2 - \le 5$	$> 5 - \le 25$	> 25		at 25 mg/L NO ₃ -
	n			Δ (95% CI)			<i>p</i> for trend	Δ (95% CI)
Birthweight (g) base model ^a	852,348	Ref (0)	-3.6 (-6.8, -0.5)	-7.4 (-10.8, -4.1)	-8.1 (-11.6, -4.6)	-7.0 (-13.3, -0.7)	< 0.001	-9.7 (-14.6, -4.8)
+ gestational age	852,348	Ref (0)	-3.8 (-6.7, -0.9)	-8.4 (-11.5, -5.4)	-8.8 (-12.1, -5.6)	-5.4 (-11.2, 0.5)	< 0.001	-9.8 (-14.3, -5.3)
+ Cesarean section	598,354	Ref (0)	-2.8 (-6.6, 0.9)	-9.3 (-13.3, -5.3)	-7.5 (-11.9, -3.0)	-6.6 (-14.4, 1.3)	< 0.001	-9.6 (-15.8, -3.5)
+ season of birth	852,348	Ref (0)	-3.7 (-6.8, -0.5)	-7.4 (-10.7, -4.1)	-8.1 (-11.6, -4.5)	-7.0 (-13.3, -0.6)	< 0.001	-9.6 (-14.5, -4.7)
+ paternal age	852,348	Ref (0)	-3.6 (-6.8, -0.4)	-7.4 (-10.7, -4.1)	-8.1 (-11.6, -4.6)	-7.0 (-13.3, -0.7)	< 0.001	-9.7 (-14.6, -4.8)
+ paternal income	851,913	Ref (0)	-3.5 (-6.7, -0.4)	-7.3 (-10.6, -3.9)	-8.0 (-11.5, -4.5)	-7.0 (-13.3, -0.6)	< 0.001	-9.6 (-14.5, -4.7)
+ paternal education	842,878	Ref (0)	-3.7 (-6.9, -0.6)	-7.2 (-10.6, -3.9)	-7.8 (-11.3, -4.3)	-7.1 (-13.5, -0.8)	< 0.001	-9.4 (-14.3, -4.5)
+ paternal employment status	849,562	Ref (0)	-3.3 (-6.5, -0.2)	-7.2 (-10.5, -3.8)	-7.9 (-11.4, -4.4)	-7.1 (-13.4, -0.8)	< 0.001	-9.7 (-14.6, -4.8)
				Categorical NO ₃	estimation (mg/L)			Continuous
		≤ 1	$> 1 - \le 2$	$>2-\leq 5$	$> 5 - \le 25$	> 25		at 25 mg/L NO ₃ -
	n			Δ (95% CI)			p for trend	Δ (95% CI)
Body length (mm) base model ^{<i>a</i>}	848,106	Ref (0)	-0.1 (-0.2, 0.01)	-0.2 (-0.3, -0.02)	-0.4 (-0.5, -0.2)	-0.2 (-0.5, 0.1)	< 0.001	-0.3 (-0.5, -0.1)
+ gestational age	848,106	Ref (0)	-0.1 (-0.3, 0.02)	-0.2 (-0.4, -0.1)	-0.4 (-0.6, -0.3)	-0.1 (-0.4, 0.2)	< 0.001	-0.3 (-0.5, -0.1)
+ Cesarean section	595,834	Ref (0)	-0.2 (-0.4, -0.02)	-0.4 (-0.6, -0.2)	-0.4 (-0.6, -0.2)	-0.2 (-0.5, 0.2)	< 0.001	-0.4 (-0.6, -0.1)
+ season of birth	848,106	Ref (0)	-0.1 (-0.2, 0.06)	-0.2 (-0.3, -0.02)	-0.4 (-0.5, -0.2)	-0.2 (-0.4, 0.1)	< 0.001	-0.3 (-0.5, -0.1)
+ paternal age	848,106	Ref (0)	-0.1 (-0.2, 0.1)	-0.2 (-0.3, -0.01)	-0.4 (-0.5, -0.2)	-0.2 (-0.4, 0.1)	< 0.001	-0.3 (-0.5, -0.1)
+ paternal income	847,673	Ref (0)	-0.1 (-0.2, 0.1)	-0.2 (-0.3, -0.01)	-0.3 (-0.5, -0.2)	-0.2 (-0.4, 0.1)	< 0.001	-0.3 (-0.5, -0.1)
+ paternal education	838,683	Ref (0)	-0.1 (-0.2, 0.06)	-0.2 (-0.3, -0.01)	-0.3 (-0.5, -0.2)	-0.2 (-0.5, 0.1)	< 0.001	-0.3 (-0.5, -0.1)
+ paternal employment status	845,336	Ref (0)	-0.1 (-0.2, 0.1)	-0.2 (-0.3, 0.0)	-0.3 (-0.5, -0.2)	-0.2 (-0.4, 0.1)	< 0.001	-0.3 (-0.5, -0.1)
				Categorical NO ₃	estimation (mg/L)			Continuous
		< 1	$> 1 - \le 2$	$>2-\le 5$	> 5 - ≤ 25	> 25		at 25 mg/L NO ₃ -
	n			Δ (95% CI)			p for trend	Δ (95% CI)
Head circumference (mm) base model ^a	588,981	Ref (0)	0.02 (-0.1, 0.2)	-0.2 (-0.4, -0.1)	0.1 (-0.1, 0.2)	0.1 (-0.2, 0.3)	0.52	0.04 (-0.2, 0.3)
+ gestational age	588,981	Ref (0)	0.01 (-0.1, 0.1)	-0.3 (-0.4, -0.1)	0.02 (-0.1, 0.2)	0.1 (-0.1, 0.4)	0.42	0.1 (-0.2, 0.3)
+ Cesarean section	588,981	Ref (0)	0.02 (-0.1, 0.2)	-0.2 (-0.4, -0.1)	0.03 (-0.1, 0.2)	0.1 (-0.2, 0.4)	0.47	0.04 (-0.2, 0.3)
+ season of birth	588,981	Ref (0)	0.02 (-0.1, 0.2)	-0.2 (-0.4, -0.1)	0.1 (-0.1, 0.2)	0.1 (-0.2, 0.3)	0.52	0.04 (-0.2, 0.3)
+ paternal age	588,981	Ref (0)	0.02 (-0.1, 0.2)	-0.2 (-0.4, -0.1)	0.1 (-0.1, 0.2)	0.1 (-0.2, 0.3)	0.53	0.1 (-0.2, 0.3)
+ paternal income	588,628	Ref (0)	0.02 (-0.1, 0.2)	-0.2 (-0.4, -0.1)	0.1 (-0.1, 0.2)	0.1 (-0.2, 0.4)	0.56	0.1 (-0.2, 0.3)
+ paternal education	583,104	Ref (0)	0.02 (-0.1, 0.2)	-0.2 (-0.4, -0.1)	0.1 (-0.1, 0.2)	0.1 (-0.2, 0.3)	0.65	0.1 (-0.2, 0.3)
+ paternal employment status	586,987	Ref (0)	0.03 (-0.1, 0.2)	-0.2 (-0.4, -0.1)	0.1 (-0.1, 0.2)	0.1 (-0.2, 0.4)	0.60	0.1 (-0.2, 0.3)

Table S8. Difference in the mean birthweight (g), birth length (mm), and head circumference (mm) using categorical and continuous variables for NO3concentrations in household drinking water, adding one additional potential confounder to the base model.

Note: Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother. The continuous NO3 exposure variable was log transformed, $\ln(x+1)$ and β (95% CI) shown for exposures $x = 25.0 \text{ mg/L NO}_3^-$ compared to 0 mg/L. *a*. Base model: Controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity

Table S9. Adjusted odds ratios for the association between term low birthweight and household NO_3^- concentrations, adding one additional potential confounder to the base model.

				Categorical NO3 ⁻	estimation (mg/L)			Continuous
		≤ 1	$> 1 - \leq 2$	$>2-\le 5$	$> 5 - \le 25$	> 25		at 25 mg/L NO ₃ -
	n			OR (95% CI))		p for trend	Δ (95% CI)
Low birthweight base model ^a	852,348	Ref (1)	0.98 (0.92, 1.05)	1.01 (0.94, 1.08)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.51	1.02 (0.93, 1.11)
+ gestational age	852,348	Ref (1)	0.99 (0.92, 1.06)	1.02 (0.95, 1.09)	1.02 (0.95, 1.09)	0.99 (0.87, 1.12)	0.56	1.01 (0.92, 1.11)
+ Cesarean section	598,354	Ref (1)	1.00 (0.93, 1.09)	1.07 (0.99, 1.16)	1.02 (0.94, 1.12)	1.00 (0.85, 1.16)	0.41	1.02 (0.90, 1.15)
+ season of birth	852,348	Ref (1)	0.98 (0.92, 1.05)	1.01 (0.94, 1.08)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.52	1.02 (0.93, 1.11)
+ paternal age	852,348	Ref (1)	0.98 (0.92, 1.05)	1.01 (0.94, 1.08)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.51	1.02 (0.93, 1.11)
+ paternal income	851,913	Ref (1)	0.98 (0.92, 1.04)	1.00 (0.94, 1.07)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.56	1.01 (0.93, 1.11)
+ paternal education	842,878	Ref (1)	0.99 (0.92, 1.05)	1.00 (0.94, 1.07)	1.02 (0.95, 1.09)	1.00 (0.89, 1.13)	0.54	1.02 (0.93, 1.11)
+ paternal employment status	849,562	Ref (1)	0.98 (0.92, 1.04)	1.00 (0.94, 1.07)	1.02 (0.95, 1.09)	0.99 (0.88, 1.12)	0.57	1.01 (0.93, 1.11)

Note: Models were fitted using linear regression with generalized estimating equations in order to control for the non-independence of births from the same mother. The continuous NO₃⁻ exposure variable was log transformed, ln(x+1) and OR (95% CI) shown for exposures x = 25.0 mg/L NO₃⁻ compared to 0 mg/L.

a. Base model: Controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity

	Birthweight	base model ^a		Birthweight collapsed model ^a				
$NO_3^-(mg/L)$	n	Δ (95% CI)	<i>p</i> -value	NO_3^- (mg/L)	п	Δ (95% CI)	<i>p</i> -value	
Categorical				Categorical				
≤ 1	186,182	Ref (0)		-	-	-	-	
$> 1 - \le 2$	182,870	-3.6 (-6.8, -0.5)	0.02	≤ 2	369,052	Ref (0)		
$> 2 - \le 5$	299,468	-7.4 (-10.8, -4.1)	< 0.001	$> 2 - \le 5$	299,468	-5.2 (-7.9, -2.5)	< 0.001	
$> 5 - \le 25$	150,019	-8.1 (-11.6, -4.6)	< 0.001	$> 5 - \le 25$	150,019	-6.3 (-9.4, -3.2)	< 0.001	
> 25	33,809	-7.0 (-13.3, -0.7)	0.03	> 25	33,809	-5.2 (-11.3, 0.9)	0.1	
trend			< 0.001	trend			< 0.001	
	Rirth length	hase model ^b		Bir	th length co	llansed model ^b		
$NO_2^{-}(mg/I)$	n	Δ (95% CI)	<i>n</i> -value	$NO_2^{-}(mg/I)$	n	A (95% CI)	n-value	
Categorical	n		p value	Categorical	п		<i>p</i> value	
< 1	185 379	$\operatorname{Ref}(0)$		-	_	_	_	
>1-<2	182.001	-0.1 (-0.2, 0.1)	0.24	< 2	367.380	Ref (0)		
>2-<5	297.885	-0.2 (-0.3, -0.02)	0.03	> 2 - < 5	297.885	-0.1 (-0.2, 0.01)	0.07	
$>5-\le 25$	149,114	-0.4 (-0.5, -0.2)	< 0.001	$>5-\leq 25$	149,114	-0.3 (-0.5, -0.2)	< 0.001	
> 25	33,727	-0.2 (-0.5, 0.1)	0.27	> 25	33,727	-0.1 (-0.4, 0.2)	0.41	
trend			< 0.001	trend			< 0.001	
	1 : 6	1 1.1cd		TT 1 '	C	11 1 1 1cd		
Head	a circumferei	nce base model ^{c,a}		Head ci	rcumference	e collapsed model ^{c,a}	<u> </u>	
$NO_3^{-}(mg/L)$	n	Δ (95% CI)	<i>p</i> -value	$NO_3^{-}(mg/L)$	п	Δ (95% CI)	<i>p</i> -value	
Categorical		T		Categorical				
≤ 1	140,486	Ref (0)	0.70	-	-	-	-	
$> 1 - \leq 2$	126,561	0.02 (-0.1, 0.2)	0.79	≤ 2	267,047	Ref (0)	0.001	
$>2-\leq 5$	218,398	-0.2 (-0.4, -0.1)	0.001	$>2-\le 5$	218,398	-0.3 (-0.4, -0.1)	<0.001	
$>5-\leq 25$	81,085	0.1 (-0.1, 0.2)	0.52	$>5-\leq 25$	81,085	0.04 (-0.1, 0.2)	0.56	
> 25	22,451	0.1 (-0.2, 0.3)	0.62	> 25	22,451	0.1 (-0.2, 0.3)	0.65	
trend			0.52	trend			0.65	
La	I any hirthwaight have model ⁴			Low birthweight collapsed model ^a				
NO(1/m r)	ow birthweig	ht base model ^a		Low	birthweight	collapsed model ^a		
$NO_3 (mg/L)$	ow birthweig n	ht base model ^a aOR (95% CI)	<i>p</i> -value	$\frac{\text{Low}}{\text{NO}_3^-(\text{mg/L})}$	birthweight n	aOR (95% CI)	<i>p</i> -value	
Categorical	w birthweig n	ht base model ^a aOR (95% CI)	<i>p</i> -value	Low NO ₃ ⁻ (mg/L) Categorical	birthweight n	aOR (95% CI)	<i>p</i> -value	
$\frac{\text{NO}_3 \text{ (mg/L)}}{\text{Categorical}} \le 1$	<u>n</u> 186,182	ht base model ^a aOR (95% CI) Ref (1)	<i>p</i> -value	Low NO ₃ ⁻ (mg/L) Categorical	n -	aOR (95% CI)	<i>p</i> -value	
$\frac{\text{NO}_3 \text{ (mg/L)}}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$	n 186,182 182,870	ht base model ^a aOR (95% CI) Ref (1) 0.98 (0.92, 1.05)	<i>p</i> -value 0.52	$\frac{\text{Low}}{\text{NO}_{3}^{-}(\text{mg/L})}$ Categorical ≤ 2	<u>n</u> - 369,052	aOR (95% CI)	<i>p</i> -value	
$\frac{\text{NO}_3 \text{ (mg/L)}}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$	n 186,182 182,870 299,468	ht base model ^a aOR (95% CI) Ref (1) 0.98 (0.92, 1.05) 1.01 (0.94, 1.08)	<i>p</i> -value 0.52 0.86	$\frac{\text{Low}}{\text{NO}_{3}^{-}(\text{mg/L})}$ Categorical $\frac{1}{\leq 2}$ $> 2 - \leq 5$	<u>n</u> 369,052 299,468	collapsed model ^a aOR (95% CI) Ref (1) 1.02 (0.97, 1.07)	<i>p</i> -value - 0.5	
$\frac{\text{NO}_3 \text{ (mg/L)}}{\text{Categorical}}$ ≤ 1 $> 1 - \leq 2$ $> 2 - \leq 5$ $> 5 - \leq 25$	n 186,182 182,870 299,468 150,019	ht base model ^a aOR (95% CI) Ref (1) 0.98 (0.92, 1.05) 1.01 (0.94, 1.08) 1.02 (0.95, 1.09)	<i>p</i> -value 0.52 0.86 0.55	$\frac{\text{Low}}{\text{NO}_{3}^{-}(\text{mg/L})}$ Categorical $\frac{2}{2}$ $2 - \leq 5$ $5 - \leq 25$	n 369,052 299,468 150,019	<u>collapsed model</u> ^a <u>aOR (95% CI)</u> <u>-</u> Ref (1) 1.02 (0.97, 1.07) 1.03 (0.97, 1.09)	<i>p</i> -value - 0.5 0.31	
$\frac{ \text{NO}_3 (\text{mg/L}) }{ \text{Categorical} } \leq 1 \\ > 1 - \leq 2 \\ > 2 - \leq 5 \\ > 5 - \leq 25 \\ > 25$	n 186,182 182,870 299,468 150,019 33,809	ht base model ^a aOR (95% CI) Ref (1) 0.98 (0.92, 1.05) 1.01 (0.94, 1.08) 1.02 (0.95, 1.09) 0.99 (0.88, 1.12)	<i>p</i> -value 0.52 0.86 0.55 0.91	$\frac{\text{Low}}{\text{NO}_{3}^{-}(\text{mg/L})}$ Categorical $\frac{\leq 2}{\geq 2-\leq 5}$ $\geq 5-\leq 25$ ≥ 25	n 369,052 299,468 150,019 33,809	<u>collapsed model</u> ^a <u>aOR (95% CI)</u> <u>-</u> Ref (1) 1.02 (0.97, 1.07) 1.03 (0.97, 1.09) 1.00 (0.89, 1.13)	<i>p</i> -value - 0.5 0.31 0.95	

Table S10. Difference in the mean birthweight (g), birth length (mm), head circumference (mm), and low birthweight for NO_3^- concentrations in household drinking water in two different exposure categorical schemes (five and four categories).

N ote: CI = Confidence interval. Models were fitted using linear and logistic regression with generalized estimating equations in order to control for the non-independence of births from the same mother and were controlled for maternal age, calendar year, sex, gravidity, maternal smoking, maternal education, maternal income, maternal employment status, region, and urbanicity.

a. n = 852,348

b. *n* = 848,106 *c*. *n* = 588,981

d. Data were available only for births ≥ 1997