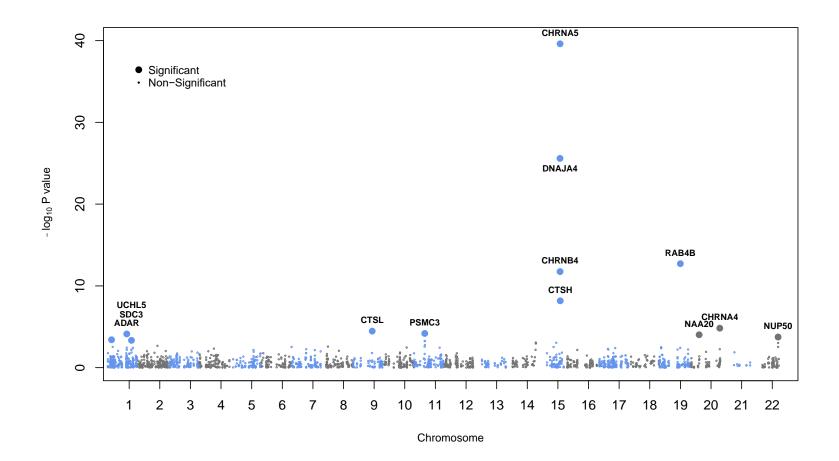
Gene set	Jaccard Similarity Estimate					
Merged Kily et al. ³⁰	1					
Merged Wang et al. ²⁹	6.00E-03	1				
Chen et al. ²⁷	0.00E+00	1.59E-02	1			
Sharp et al. ³¹	3.30E-03	3.50E-03	5.40E-03	1		
Polesskaya et al. ²⁸	5.50E-03	8.80E-03	8.10E-03	0.00E+00 1		

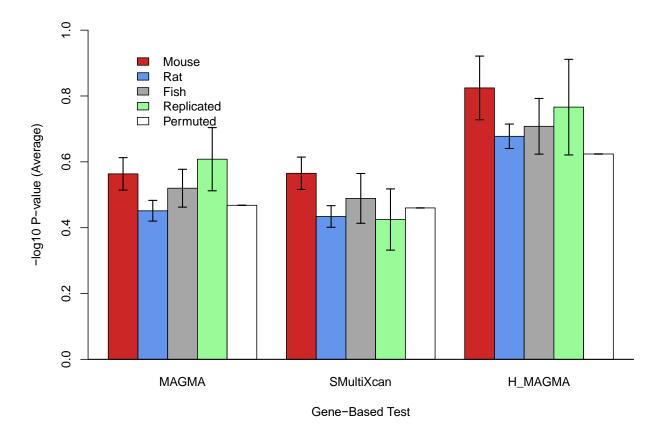
Supplementary Table 1. Jaccard Similarity Estimates Across Identified gene sets

Note: Gene sets shown do not exactly align with the full complement of GeneWeaver set IDs shown in Table 1 as several sets (within studies) were merged to reduce overrepresentation of genes in a given study. Bolded values indicate p < 0.05.


	_1 Wang	_1	BEHAVIOR_1	DD ADI DEGIONI (
ACTB V	Wang		I	BRAIN_REGION_1	2	_2	BEHAVIOR_2	N_2
	wang	mouse	Nic_Self-Admin Chronic_Nic_Self-	Amyg_Hipp_nAcc_PF C_VTA	Chen	mouse	Acute_Nic	VTA
LDH7A1 S	Sharp	rat	Admin	nAcc	Kily	fish	Nic_CPP	Whole_Brain
CCT3	Wang	mouse	Nic_Self-Admin	Amyg_Hipp_nAcc_PF C_VTA Amyg_Hipp_nAcc_PF	Polesska ya	rat	Chronic_Nic_Treat ment Chronic_Nic_Self-	PFC_vStriatum_ Hipp
OSTN V	Wang	mouse	Nic_Self-Admin	C_VTA	Sharp	rat	Admin	nAcc
GABBR1	Wang	mouse	Nic_Self-Admin	Amyg_Hipp_nAcc_PF C_VTA Amyg_Hipp_nAcc_PF	Chen	mouse	Acute_Nic	VTA
TPR2	Wang	mouse	Nic_Self-Admin	C_VTA	Chen	mouse	Acute_Nic	VTA
KCNK1	Wang	mouse	Nic_Self-Admin	Amyg_Hipp_nAcc_PF C_VTA	Polesska ya Polesska	rat	Chronic_Nic_Treat ment Chronic_Nic_Treat	Hipp
KRT5 I	Kily	fish	Nic_CPP	Whole_Brain	ya	rat	ment	Hipp
	Wang Kily	mouse fish	Nic_Self-Admin Nic_CPP	Amyg_Hipp_nAcc_PF C_VTA Whole_Brain	Chen Chen Polesska	mouse mouse	Acute_Nic Acute_Nic Chronic_Nic_Treat	VTA VTA PFC vStriatum
RKACB (Chen	mouse	Acute_Nic	VTA	ya	rat	ment	Hipp
SEN1	Wang	mouse	Nic_Self-Admin	Amyg_Hipp_nAcc_PF C_VTA Amyg_Hipp_nAcc_PF	Polesska ya	rat	Chronic_Nic_Treat ment	PFC_vStriatum_ Hipp
SMB5	Wang	mouse	Nic_Self-Admin	C_VTA Amyg_Hipp_nAcc_PF	Chen	mouse	Acute_Nic Chronic_Nic_Self-	VTA
SMD7	Wang	mouse	Nic_Self-Admin	C_VTA	Sharp	rat	Admin	nAcc

Supplementary Table 2. Replicated Genes Across Gene Weaver Studies

			Chronic_Nic_Self-					
RAD21	Sharp	rat	Admin	nAcc	Chen	mouse	Acute_Nic	VTA
				Amyg_Hipp_nAcc_PF	7		Chronic_Nic_Self-	
RPS28	Wang	mouse	Nic_Self-Admin	C_VTA	Sharp	rat	Admin	nAcc
				Amyg_Hipp_nAcc_PF	7			
SST	Wang	mouse	Nic_Self-Admin	C_VTA	Chen	mouse	Acute_Nic	VTA
				Amyg_Hipp_nAcc_PF	7			
SYT4	Wang	mouse	Nic_Self-Admin	C_VTA	Chen	mouse	Acute_Nic	VTA
				Amyg_Hipp_nAcc_PF	7			
TFDP1	Wang	mouse	Nic_Self-Admin	C_VTA	Kily	fish	Nic_CPP	Whole_Brain
				Amyg_Hipp_nAcc_PF	F Polesska	l	Chronic_Nic_Treat	PFC_vStriatum_
UCHL1	Wang	mouse	Nic_Self-Admin	C_VTA	ya	rat	ment	Hipp
				Amyg_Hipp_nAcc_PF	7			
YWHAG	Wang	mouse	Nic_Self-Admin	C_VTA	Chen	mouse	Acute_Nic	VTA


Table showing the two studies (study 1 and study 2) in GeneWeaver for which a gene was observed to be differentially expressed across two brain tissues (brain region 1/2) for varying smoking/nicotine exposure experimental paradigms.

Supplementary Figure 1 Candidate Gene-Based Tests for Human Tobacco Consumption

This figure shows the results of the associations of the model organisms nicotine genes via three gene-based tests (MAGMA, H-MAGMA, MultiXcan). Significant genes were required to survive a false discovery rate < 0.05 (padj < 0.05).

Supplementary Figure 2 Genetic Signal of Human Tobacco Consumption from (Model Organisms) Nicotine Genes

*Not*e: we performed a one-way analysis of variance (ANOVA) to test whether differences existed between species, replicated genes (21 genes associated with nicotine exposure across studies) and a random list of permuted genes (permuted 500 non-model organism genes 10,000 times). Our ANOVA suggested that genes from mouse studies were more associated with human tobacco consumption than rat and fish studies and also than random (permuted) genes (p < 0.05).

Supplementary Table 3 Model Organism Based Polygenic Score Predicting Human Tobacco Consumption

Polygenic Score Predicting Cigarettes Per Day in European Ancestry Add Health Participants								
	β	S.E.	Z Score	<i>P</i> -value	N Variants			
Model Organism Genes (Protein Coding Regions)	0.079	0.027	2.884	0.004*	81453			
Model Organism Genes (Surrounding Regions 10 kB)	-0.023	0.028	-0.840	0.401	21288			
All Other Variants	0.164	0.025	6.669	< 0.001*	4554197			
All Variants	0.174	0.024	7.725	< 0.001*	4656938			

Note we fit two polygenic risk score models - one consisting of all variants and one model with multiple components (protein coding genes, surrounding regions, all other variants). Each model controlled for demographics and six principle components. * p < .05