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numbers and percentages of each disorder grade were calculated in each species. SPOT-

D (A), IUPred (B) were used for disorder prediction of 1870 species, and the disorder
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complexity. A2, B2. The raw data for the correlation analysis between DSDR variation
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Dataset 1. The disorder values calculated using SPOT-D and IUPred for each
amino acid residue of all proteins in the 1870 species across 3 superkingdoms. The
scores of each residue were shown according to the order of each protein sequence. The
letters represent the residues in protein sequences.

Dataset 2. DSDR and CDRN values of each domain in the 1870 species.

Dataset 3. The median normalized DSDR values of all protein domain families in
each species across three superkingdoms (related to Figure 3A). DSDR was
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"NA" means no such domain in this species.
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each domain pair. ‘Degree of variation’ represents the variation of DSDR.



Dataset 5. Domain GO annotations used in the study.

These five datasets are available at http://dis-domain-data.ncpsb.org/.
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Supplemental results

The special features of the IDDs with one or more consecutive disorder region

(CDR) but a low disorder ratio (DSDR < 30%)

The comparison of domain disorder type between fungi and metazoans reflected the
difference of domain disorder characteristics between them. Fungi have more class Il
IDDs, which have a consecutive disorder region (CDR) but a low disorder ratio
(DSDR<30%). From the viewpoint of domain length, it is clear that class Il IDDs are
significantly longer than class IV IDDs (Figure S17A). The long peptide chains of the
class I IDDs tend to contain a continuous disordered region (CDR), which will increase
its flexibility to form more flexible conformations via the disordered linker region. For
example, fungal_trans domain (a fungi-specific domain) in the transcriptional activator
SEF1 of Saccharomyces cerevisiae contains a CDR (40 aa, from Asp®Z to Glu®?),
which is located in the middle region of fungal_trans domain (from Thr7 to 11e°7)
(Figure S17B). The structure of SEF1 was modeled using SWISS-MODEL [1-5]. The
CDR in the fungal_trans domain is seated between two coils, which is similar to a
flexible chain linking two compact rods (Figure S17C). It implies that the CDR in
fungal_trans domain may play as an entropic chain or a linker to adjust the local
conformation to bind to DNA as SEF1 is a transcription factor [6].

Another fungi-specific class Il domain, cAMP phosphodiesterases class-1I
(PDEase_Il) domain in Nadsonia fulvescens with a long CDR (45 aa, Figure S17D, E),

is involved in heterocyclic metabolic process. PDEase Il catalyzes the hydrolysis of



CcAMP to 5' nucleoside monophosphate. CDR may regulate this process by regulating
the flexibility of the domain. Interestingly, the segment from amino acid position 209
to 258 of this protein, which highly coincides with the CDR (203-260), is predicted to
be a polar region by MobiDB-lite [7]. Since this protein can catalyse the hydrolysis of
CAMP, the disordered polar region may be responsible for increasing the affinity of

PDEase_II to water molecules.

Which physico—chemical characteristic of amino acid was correlated with values

of P matrix?

The degree of disorder is determined by the physical-chemical properties of amino acid
residues within the domain regions and the amino acid residues close to the domain
regions [8]. The relationship between the amino acid physical-chemical properties and
the values of the P matrix used in the IUPred [8, 9] method was investigated (Table S8).
The correlation between values in P matrix [8] and the average values of the
hydrophobicity index (Table S8) was significantly negative (R =—0.47, P = 6.8e—013,
Figure S20A). But there are no such significant correlations between values in P matrix
and average values of molecular weight (Figure S20B) or isoelectric points (Figure
S20C). This result indicated that hydrophobicity of amino acid residues plays important

roles in determining the degree of disorder.

The relationship between DSDR variation and organism complexity

Fifty-one eukaryotes were selected for correlation analysis. We found that there was a

significant positive correlation between the number of ‘high-variation” domains and the



number of cell types, which indicates that variation of the disorder degree of protein
domains substantially contribute to organism complexity (Table S9). We speculated the
high variation of domain disorder may lead to its versatility and regulate the complex
signal networks more precisely. However, after normalized by the total number of
repeating domains, this correlation disappeared. We can see from table S9 that there is
a stronger correlation between the number of repeating domains and organism
complexity. Thus, if we calculate the correlation between the percentages of ‘high-

variation’ domains and cell type numbers in a species, there is no significant correlation.
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Supplemental figure legends

Figure S1. Distribution of IDDs (CDRN > 1) across the three superkingdoms
(related to figure 1). A. The percentage of IDDs (CDRN = 1) in each species from
archaea (light green), bacteria (lime) and eukaryotes. Each bar indicates the results of
a species. All species are arranged according to taxonomy information from NCBI
database. The superkingdoms are separated by solid lines and the kingdoms in
eukaryotes, including protists (light blue), metazoa (aqua), fungi (yellow) and plant
(pale goldenrod), are separated by dashed lines. Each phylum is filled with different
colors in the middle circle. The outer circle represents different classes. The detailed
information about the names and colors of each species, class and phylum is presented
in supplementary table S1-S3. The abbreviations in this figure: Ha, the class of
Halobacteria; CDRN, consecutive disordered region number. B. Box-plot of the
percentage of intrinsically disordered (CDRN = 1) domain (purple) or domain
families (red) in each species across the three superkingdoms (C, excluding
halobacterias). For box-plots, the values of upper and lower quartile are indicated as
upper and lower edges of the box, and the median values are indicated as a bar in the
box. The differences in the percentage of disordered domain distribution between
different categories are examined by Mann—Whitney U test. The corrected P values are
shown at the top of each panel. D. Cumulative probability of the percentage of
intrinsically disordered domain (solid line) or domain family (dashed line) in archaea

(blue), bacteria (green) and eukaryotes (red) (E, excluding halobacterias).



Figure S2. Distribution of IDDs across 25 representative species using MobiDB-
lite data. Box-plot of the percentage of intrinsically disordered (DSDR>30% in A, B,
or CDRN =1 in C, D) domain (purple) or domain families (red) in each species (B, D,
excluding halobacterias). For box-plots, the values of upper and lower quartile are
indicated as upper and lower edges of the box, and the median values are indicated as
a bar in the box. The differences in the percentage of disordered domain distribution
between different categories are examined by Mann—Whitney U test. The corrected P
values are shown at the top of each panel.

Figure S3. Diagram of ‘dominant category’ approach for the disorder degree
classification of domain families. The yellow rectangles represent one domain family
and they have eight repeats among three proteins. Each repeat has a DSDR value and a
CDRN value. We calculated the percentage of each DSDR and CDRN grade and the
dominant grade (> 0.5) was the DSDR and CDRN dominant category of this domain
family, which represented the disordered feature of this domain family.

Figure S4. Calculation of the degree of domain disorder in archaea using different
methods, including a corrected method. Box-plots show the percentage of disordered
domain in each species in different phyla of Archaea. SPOT-D (A and B), [UPred (C
and D), ESpritz (E and F) and ESpritz (PSI-BLAST) (G and H) were used for intrinsic
disorder prediction. Both results based on DSDR (A, C, E and G) and CDRN (B, D, F
and H) are shown.

Figure S5. Scatter-plot of the median repetition number of completely structured

domains (blue triangle) and IDDs (red circle). Each species has two corresponding



domain repetition counts. The numbers of domains are shown on the label of the X-axis
(number of species in which completely structured domain repetition counts is larger
than more disordered domain repetition counts/number of all species in each
superkingdom).

Figure S6. The correlation between structural disorder and organism complexity
analyzed based on MobiDB-lite data. (A) Protein disorder degree was measured by
the average of all representative proteins (the longest one for each gene) in each species.
(B) Proteins with more than 30% disordered amino acids (PSDR > 30%) were regarded
as disordered proteins. Protein disorder degree was measured by the percentage of
disordered proteins in each species. (C, D) At domain level, structural disorder of each
species was measured by the percentage of IDDs (C, DSDR > 30%, or D, CDRN > 1).
(E, F) At domain family level, domain families were defined using dominant category
method; structural disorder of each species was measured by the percentage of
intrinsically disordered domain families (E, family DSDR > 30%, or F, family CDRN
> 1). Scatter plots was made for organism complexity and structural disorder values
obtained by different methods in fifty-one eukaryotes. Spearman method was used for
the correlation analysis. The correlation coefficients (R) and P values (P) are shown in
the inset, among which the significant results (P<0.01) are shown as red.

Figure S7. Box-plot of the percentage of intrinsically disordered (CDRN = 1)
domains (left panel) or domain families (right panel) in each species across the
different phyla of eukaryotes. The four kingdoms of eukaryotes are marked on the

bottom of the figure. The values of the upper and lower quartile, and the median values



are indicated as bars in the boxes. The differences in the percentage of disordered
domain distribution between different categories are examined by Mann - Whitney U
test. The corrected P values are marked as stars in sub-figure G (*, p < 0.05; **, p <
0.01).

Figure S8. The distribution of IDDs in each age grade of the 25 representative
species (related to figure 3C). Domains of each representative species are divided into
different age grades. A. The distribution of IDDs (CDRN > 1) in each age grade of the
25 representative species using SPOTD disorder degree results. B, C. The same
analysis to figure 3C and A in this figure, using MobiDB-lite disorder degree results.
Figure S9. Comparison of the normalized DSDR values of the same domain
families in evolutionarily more complex species and simpler species (related to
figure 3D). Scatter-plot shows the median normalized DSDR values of the same domain
families in complex species (top half of the figure) and simple species (bottom half of
the figure). The red dots represent the difference of the median normalized DSDR value
of each domain family between complex species and simple ones. The number and
percentage of domain families belonging to each differential category are shown in
brackets.

Figure S10. The number and functions of special IDDs in archaeal halobacteria.
A. The difference between the IDDs in halobacterias and other archaea was shown in
Venn diagram. B. Function analysis of the halobacterias-specific IDDs. C, D. Two
examples of halobacterias-specific IDDs.

Figure S11. The special functions of IDDs in Ascomycota and Basidiomycota



revealed by the enriched mutant phenotypes. Over- or under-representation analysis
of biological process (BP) and cellular component (CC) for the disordered domains.
The values of £log(P) were transformed into 14 grades (=7 to +7): =7, log(P) <—8; —6,
—8 <log(P) < —6; -5, -6 <log(P) < —4; —4, -4 <log(P) < —2; -3, —2<log(P) < —1.5;
—2,-1.5 <log(P) <—1.301; —0.25, —1.301 <log(P) < 0; 0.25, 0 < —log(P) < 1.301; 2,
1.301 < -log(P) <1.5; 3, 1.5< —log(P) < 2; 4, 2 < —log(P) < 4; 5, 4 < —log(P) < 6; 6, 6
<-log(P) <8; 7, —log(P) > 8.

Figure S12. Over- or under-representation analysis of BPs for IDDs with different
ages and different distribution width. The IDDs are divided into 6 categories. The
over- or under-representation strengths of each class were represented by -log (P) or
log (P), respectively. Heat map showing the grades of over- or under-representation
strengths, scoped from -7 to 7 (See Method for detail).

Figure S13. The examples for the domains classified by domain age and disorder
width (related to figure S12). The heatmaps show the normalized DSDR values of
each domain in different clades. One protein instance for each domain was shown. The
domain features, including domain age, disorder ratio, are at the bottom of each panel.
Figure S14. Comparison of the PTM site proportion in different type of
domains/regions classified according to disorder degree. Box-plot of the PTM site
proportion in protein domains with different disorder degree classified according to
DSDR (A) or CDRN (B), or in CDR regions or other regions in domains (C). The values
of upper and lower quartile, and the median values are indicated as bars in the boxes.

The differences between the neighboring categories are examined by Mann-Whitney U



test. The corrected P values are shown. Six species were included in the analysis.
Figure S15. Scatter plot of the percentage of disordered domain families in each
species of the three superkingdoms (related to figure SA-C). Each point represents
a species. The dashed diagonal line represents the line where Y and X are equal. The
equations in each subfigure were obtained by fitting a straight line based on the data of
all species of archaea (A), bacteria (B) and fungi or metazoan (C).

Figure S16. Scatter plot of the percentage of non-domain disordered regions in
each species of the three superkingdoms (related to figure SA-C). The N-terminal,
C-terminal and linker regions in proteins were included in the analysis. See figure S7
for detailed descriptions.

Figure S17. The special features of the IDDs with a consecutive disorder region
(CDR) but a low disorder ratio (DSDR<30%) (related to figure 5K). A. Comparison
of the length between the class II and IV domains. B. Disorder prediction of
transcriptional activator SEF1. C. The structure of a part of the sequence of SEFI,
modeled by SWISS-MODEL. D. Disorder prediction of 3',5'-cyclic-nucleotide
phosphodiesterase. E. The structure of 3',5'-cyclic-nucleotide phosphodiesterase
modeled by SWISS-MODEL. The dashed lines in subfigure B and D represent the start
and end positions of the protein domains and CDRs in them.

Figure S18. The distribution of IDDs and young domains in different repeating
domain categories. Distribution of IDDs (A, B) and young domains (C) in different
repeating domain categories of the twenty-five representative species. Dark spots

represent statically significant differences of IDDs in the domains encoded only once



in the genome, tested by Fisher’s exact test. Dark spots above the red dashed line
represent that the domains encoded only once in the genome are over-represented
compared to other types, while those below the blue dashed line represent they are
under-represented. The abbreviations: Hs, Homo sapiens; Sp, Strongylocentrotus
purpuratus;, Dm, Drosophila melanogaster;, Cel, Caenorhabditis elegans; To,
Thalassiosira oceanica;, Em, Eimeria mitis;, Eb, Enterocytozoon bieneusi; Up,
Umbilicaria pustulata; Sc, Saccharomyces cerevisiae; At, Arabidopsis thaliana; Cr,
Chlamydomonas reinhardtii; Ct, Chloroherpeton thalassium,; Cex, Caldisericum exile;
Ai, Alistipes inops; N, Nitrospina sp. SCGC _AAA799 A02; Ks, Kytococcus sedentarius,
Td, Thermosulfurimonas dismutans, Ec, Escherichia coli; Lf, Leptospirillum
ferriphilum; H, Hydrogenivirga sp. 128-5-R1-1; Cp, Chlamydia psittaci; Ht,
Haloterrigena turkmenica;, Kc, Candidatus korarchaeum cryptofilum;, My,
Metallosphaera yellowstonensis, No, Candidatus nitrocosmicus oleophilus.

Figure S19. The method for the normalization of DSDR values and the
classification of DSDR variation. A. Normalized curve for the DSDR values.
Interpolation method was used to normalize the DSDRs. Four points were used to
calculate the equation: (0, 0), (10, 1), (30, 2) and (100, 3). B. Grades of DSDR variation.
The values denote the difference values of each pair of normalized DSDRs. C. Diagram
of DSDR variation dominant category approach. Each domain pair has a DSDR
variation value. We calculated the percentage of each DSDR variation grade and the
dominant grade (> 0.5) was the DSDR variation dominant category of this domain

family, which represented the level of variation of this domain family.



Figure S20. Correlation between the values of physico—chemical characteristics of
amino acid and the values in P matrix. Physico—chemical characteristics of amino
acids, such as hydropathy index (A), molecular weight (B) and isoelectric points (C)
may influence the value of disorder score of each amino acid residue, then affect the
values of DSDR. The cross represents the median of equal-sized bins. Whiskers
encompass the range from a quarter to three quarters of values. The correlation
coefficients (R) and P values (P) are shown in the inset.

Figure S21. The correlation between DSDR variation values and domain sequence
similarity (A-D) and supplemental results about the distribution and functional
features of domains with different DSDR variations (E-F). A-B. Correlation
between DSDR variation and domain sequence similarity of each repeating domain pair.
Scatter diagrams of human DSDR variation and domain sequence similarity in the
domains repeating in the same proteins (A) or the domains repeating in multiple
proteins (B). Each panel was divided into four regions according to the threshold
low/high variation (DSDR variation = 1) and low/high similarity (40%). The bold
numbers denote the numbers of domain pairs in each region. The abbreviations: LS,
low similarity; HS, high similarity; LV, low variation; HV, high variation. C-D.
Heatmap shows the numbers and percentages of four types of domain pairs in the 25
representative species. The percentages of low-similarity domain pairs (LS/Total) and
the percentages of low-DSDR variation domain pairs among the low-similarity domain
pairs (LS&LV/LS) in each species are listed on the right of the heat map. Sub-figure C

shows for the domains repeating in the same proteins and D shows the domains



repeating in multiple proteins. E. Distribution of No-variation dominant categories of
DSDR variation in the domains repeating in the same proteins and the domains
appearing among multiple proteins of the 25 representative species using MobiDB-lite
disorder result. The DSDR variation value was calculated by the difference of
normalized DSDR. Black spots represent statically significant differences, tested by the
Fisher’s exact test. Black spots above the dashed line represent significant over
representations. The abbreviations: Hs, Homo sapiens; Sp, Strongylocentrotus
purpuratus;, Dm, Drosophila melanogaster; Cel, Caenorhabditis elegans; Eca,
Enterospora canceri; Lp, Lasallia pustulata; Sc, Saccharomyces cerevisiae; To,
Thalassiosira oceanica; Cc, Cyclospora cayetanensis, At, Arabidopsis thaliana, Cr,
Chlamydomonas reinhardtii; Ct, Chloroherpeton thalassium, Cex, Caldisericum exile;
Ai, Alistipes inops; N, Nitrospina sp. SCGC _AAA799 A02; Ks, Kytococcus sedentarius,
Td, Thermosulfurimonas dismutans, Ec, Escherichia coli; Lf, Leptospirillum
ferriphilum; H, Hydrogenivirga sp. 128-5-RI1-1; Cp, Chlamydia psittaci; Hd,
Haloterrigena daqingensis; Kc, Candidatus korarchaeum cryptofilum; My,
Metallosphaera yellowstonensis, No, Candidatus nitrocosmicus oleophilus. F.
Examples of ‘no-variation’ domains. DSDR was normalized by interpolation method.
Heatmap shows the normalized DSDR values of the same domain family in different
proteins of different species. Each column represents a different species, and each row
represents the corresponding orthologs. The abbreviations of the species: Han,

Helianthus annuus; Gs, Galdieria sulphuraria; Cc, Chondrus crispus; Cm,



Cyanidioschyzon merolae; Dc, Daucus carota;, Atr, Amborella trichopoda,; At,
Arabidopsis thaliana; Bn, Brassica napus, Mt, Medicago truncatula.

Figure S22. Comparison of domain length among the protein domains with
different disorder degrees. Protein domains were classified according to CDRN (A-
C) or DSDR (D-F) grades. The protein domains from archaea (A, D), bacteria (B, E)
and eukaryotes (C, F) were analyzed respectively. The values of upper and lower
quartile are indicated as upper and lower edges of the box, and the median values are
indicated as a bar in the box. The differences in the domain length between different
categories are examined by Mann—Whitney U test. The corrected P values are shown

at the top of each panel.
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Figure S5
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