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1 Fitting the drift-diffusion model using the HDDM

In addition to fitting with the maximum likelihood approach, we also used the HDDM
python toolbox [20], which is known to have strong performance in situations with rela-
tively low numbers of trails (compared to the number of free parameters) [39]. Our fits
used 200,000 MCMC samples (discarding 20,000 for burn-in), and typical heuristics were
checked to further suggest that our Markov chains had converged (e.g. Markov chain
error < 1% and visual inspection of the converged chains). Average parameters fit using
the HDDM were almost identical to those found using the maximum likelihood approach
(Figure S1). Thus, in the main text we focused on the simpler and much faster (30s for
MLE vs 5 days for MCMC to fit on a laptop) maximum likelihood fits. All codes and data
used to reproduce the figures and analysis are available at https://github.com/sffeng/horizon_ddm.
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Figure S1: Comparison between MLE and MCMC parameter values for the full model
from horizon 1 (blue) and horizon 6 (red) games.
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2 Parameter recovery

Parameter recovery [40] was performed by fitting simulated data. In particular, we sim-
ulated 46 participants worth of data using the same parameters that we found by fitting
real data. This simulated data was fit in exactly the same way as the original data set, us-
ing the maximum likelihood approach. We then compared the recovered parameters to
the ground truth parameters from simulation. As shown in Figure S2, parameter recovery
is excellent for this model in this task. In particular, recovery of the most important pa-
rameters, as far as random exploration is concerned (c�0 and cµR) is near perfect (correlation
between simulated and fit parameters is greater than 0.93 in all cases).
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Figure S2: Parameter recovery for the full model with MLE fits for horizon 1 (blue) and
horizon 6 (red) games.
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Figure S3: Comparison between noise estimated from the logistic model and approximate
noise from Equation 9. Note one subject, who had negative drift rate parameters, was
excluded from this analysis.

3 Parameter Values for Figure 5

The parameter values for Figure 5, columns B through E were chosen by hand to visually
represent the different qualitative predictions of the logistic version of the drift-diffusion
model. The bias parameters were fixed at 0: c↵0 = c↵R = c↵I = 0 and non-decision time was
fixed at T0 = 0.05. The remaining parameters are given in Table S1.

4 Model with threshold dependent on absolute value of

�R and �I

As mentioned in the main text, having the threshold be linearly dependent on �R and
�I could be problematic both from a mathematical point of view (negative thresholds
leading to undefined behavior) and psychological point of view (threshold depends on
spatial location of bandits). To avoid these problems we fit a modified form of the model
in which the threshold depends on the absolute value of �R and �I .

� =c�0 + c�R|�R|+ c�I |�I| (S1)

First we fit the model to simulated data to check parameter recovery for this modified
model. As shown in Figure S4, parameter recovery was similarly good for this model as
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Table S1: Parameter values for Figure 5 columns B through E

threshold independent, c�R = c�I = 0

B: drift change, cµR C: threshold change, c�0

Horizon 1 Horizon 6 Horizon 1 Horizon 6
cµ0 0 0 0 0
cµR 0.06 0.0356 0.06 0.06
cµI �0.1 0.237 �0.1 0.4
c�0 0.9 0.9 0.9 0.5333
c�I 0 0 0 0
c�R 0 0 0 0

drift independent, cµR = cµI = 0

D: drift change, cµ0 E: threshold change, c�R

Horizon 1 Horizon 6 Horizon 1 Horizon 6
cµ0 2.3238 1.3771 2.3238 2.3238
cµR 0 0 0 0
cµI 0 0 0 0
c�0 0 0 0 0
c�I 0.0232 0.0232 0.0232 0.0138
c�R �0.0387 0.1549 �0.0387 0.0918
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the original model.
Next we fit the model to human behavior. As shown in Figure S5 the fit parameter val-

ues share several similarities to the original model. In particular, we see: a decrease in cµR
with horizon, consistent with a signal-to-noise ratio change driving random exploration;
an increase in cµI with horizon, consistent with an information bonus driving directed
exploration; and a decrease in c↵R with horizon.

In contrast to the original model we see no change in the baseline threshold with hori-
zon c�0 . Instead we see a significant change in the effect of reward on threshold (c�R) with
horizon. In particular, c�R is positive for horizon 1 and approximately zero for horizon 6.
This suggests that people increase their thresholds in horizon 1 when |�R| is high — that
is, they make more careful decisions in horizon 1 when the consequences of making an
error are largest.

While the modified model does not map directly onto the logistic model, both cµR and
c�R could affect behavioral variability and random exploration. To determine which of
these factors contributes most to the horizon change in behavioral variability, we simu-
lated behavior of the modified model in two conditions: first with c�R held constant with
horizon (at its horizon 1 value) and second with cµR held constant with horizon (at its hori-
zon 1 value). We then fit the resulting behavior with the logistic choice model to estimate
the effect of a horizon change in only one of c�R and cµR on behavioral variability. As shown
in Figure S6, we find that in both the [1 3] and [2 2] uncertainty conditions, the horizon
change cµR (i.e. when c�R is constant with horizon) accounts for most of the horizon change
in the noise. Thus, these results with the modified model support the conclusion that
random exploration is primarily driven by horizon changes in the signal-to-noise ratio,
not by horizon change in threshold.

Finally, as with the original model, posterior predictive simulations show that the
modified model provides a good fit to both the choice and response time data well.
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Figure S4: Parameter recovery in the modified model.
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Figure S5: Fit parameter values for the modified model.
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Figure S7: Posterior predictive for the modified model.
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