MOTS-c promotes phosphorodiamidate morpholino oligomer uptake and

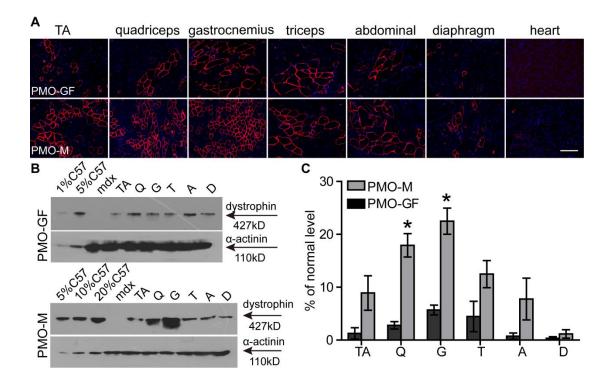
efficacy in dystrophic mice

Ning Ran¹[§], Caorui Lin¹[§], Ling Leng¹, Gang Han², Mengyuan Geng¹, Yingjie Wu¹,

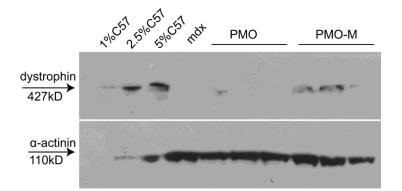
Scott Bittner³, Hong M Moulton³, HaiFang Yin^{1,4}*

APPENDIX.

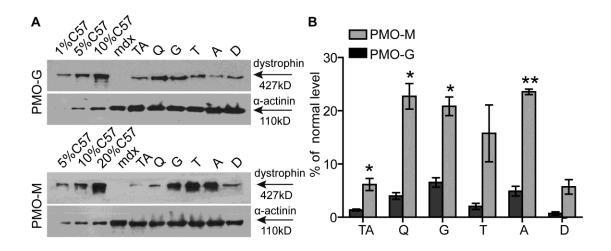
Contents: Appendix Figures S1 – S4

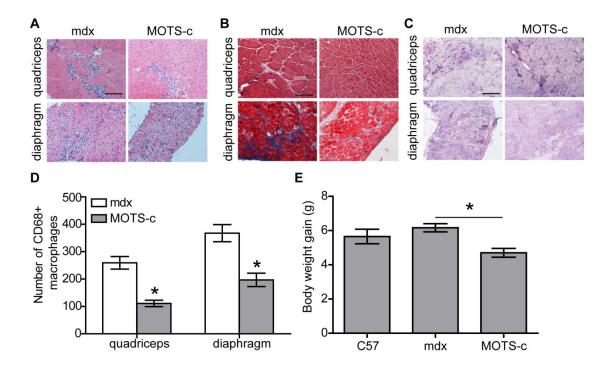

Appendix Figure S1 – Page 2 Systemic comparison between PMO-M and PMO in GF (PMO-GF) in adult *mdx* mice under identical conditions.

Appendix Figure S2 – Page 3 Western blot to examine dystrophin expression in the hearts of treated *mdx* mice.


Appendix Figure S3 – Page 4 Comparison between PMO-M and PMO in glycine (PMO-G) in adult *mdx* mice under identical conditions.

Appendix Figure S4 – Page 5 Morphological and pathological assessment of *mdx* mice treated with MOTS-c.


Appendix Table S1 – Page 6 Summary of exact P-values in figures


Appendix Figure S1. Systemic comparison between PMO-M and PMO in GF (PMO-GF) in adult *mdx* mice under identical conditions. PMO (12.5 mg/kg/week) mixed with MOTS-c (500 µg) or PMO-GF (12.5 mg/kg/week) was administered into adult *mdx* mice for 3 weeks intravenously, respectively. (A) Immunohistochemistry of dystrophin-positive fibers in body-wide muscles from treated *mdx* mice (scale bar=100 µm). Western blot (B) and quantitative analysis (C) for dystrophin expression in body-wide muscles from treated *mdx* mice (n=3; *p<0.05, two-tailed t test). TA-tibialis anterior, Q-quadriceps, G-gastrocnemius, T-triceps, A-abdominal muscle, D-diaphragm. 0.5 µg, 2.5 µg, 5 µg and 1 µg total protein from *C57BL/6* and 50 µg of muscle samples from untreated and treated *mdx* mice were loaded. α -actinin was used as the loading control. Data were presented as mean±sem.

Appendix Figure S2. Western blot to examine dystrophin expression in the hearts of treated *mdx* mice. PMO-M was administered intravenously into adult *mdx* mice at the PMO dose of 12.5 mg/kg/week for 3 weeks followed by 12.5 mg/kg/month for 3 months and tissues were harvested two weeks after last injection. 1 μ g, 5 μ g and 10 μ g total protein from *C57BL/6* and 100 μ g of muscle samples from untreated and treated *mdx* mice were loaded. α -actinin was used as the loading control.

Appendix Figure S3. Systemic comparison between PMO-M and PMO in glycine (**PMO-G**) in adult *mdx* mice under identical conditions. PMO (25 mg/kg/week) mixed with MOTS-c (500 µg) or PMO-G (25 mg/kg/week) was administered into adult *mdx* mice for 3 weeks intravenously, respectively. Western blot (**A**) and quantitative analysis (**B**) for dystrophin expression in body-wide muscles from *mdx* mice treated with PMO-G (n=4) or PMO-M (n=3) (*p<0.05, **p<0.001, two-tailed t test). The abbreviation is the same as Appendix Figure S1B. 0.5 µg, 2.5 µg, 5 µg and 10 µg total protein from *C57BL/6* and 50 µg of muscle samples from untreated and treated *mdx* mice were loaded. α-actinin was used as the loading control. Data were presented as mean ±sem.

Appendix Figure S4. Morphological and pathological assessment of mdx mice treated with MOTS-c. MOTS-c (500 µg) was administered into adult mdx mice weekly for 3 weeks, followed by monthly injection for 3 months intravenously. Muscles were harvested 2 weeks after last injection. (A) H&E staining of quadriceps and diaphragm from treated mdx mice (scale bar=100 µm). (B) Masson's trichrome staining for quadriceps and diaphragm from treated *mdx* mice (scale bar=100µm). Immunohistochemistry (C) and quantitative analysis (D) of $CD68^+$ macrophages in quadriceps and diaphragm from mdx mice treated with MOTS-c (n=4) or untreated *mdx* controls (n=3) (scale bar=100 μ m) (*p<0.05, two-tailed t test). (E) Measurement of body-weight changes of *mdx* mice treated with MOTS-c (n=4), untreated *mdx* (n=3) wild-type (*p<0.05, way-ANOVA and controls (n=3) One post hoc Student-Newman-Keuls test). Data were presented as mean ±sem.

Figure		comparison	P value	Statistical test
Fig.1A	30min	H2Kmdx v.s H2Kmdx	0.013	two-tailed t test
-		+MOTSc		
	40min	H2Kmdx v.s H2Kmdx	0.001	two-tailed t test
		+MOTSc		
	50min	H2Kmdx v.s H2Kmdx	0.011	two-tailed t test
		+MOTSc		
	30min	H2K v.s H2K+MOTSc	0.002	two-tailed t test
	40min	H2K v.s H2K+MOTSc	0.028	two-tailed t test
	50min	H2K v.s H2K+MOTSc	0.006	two-tailed t test
Fig.1B		H2K v.s H2Kmdx	0.005	two-tailed t test
Fig. 1C		NC v.s MOTS-c	0.041	two-tailed t test
		(H2Kmdx)		
Fig. 1D	ТА	NC v.s MOTS-c	0.045	two-tailed t test
	Q	NC v.s MOTS-c	0.045	two-tailed t test
	G	NC v.s MOTS-c	0.039	two-tailed t test
	Т	NC v.s MOTS-c	0.034	two-tailed t test
	А	NC v.s MOTS-c	0.041	two-tailed t test
	D	NC v.s MOTS-c	0.26	two-tailed t test
	Н	NC v.s MOTS-c	0.41	two-tailed t test
	Li	NC v.s MOTS-c	0.00017	two-tailed t test
	S	NC v.s MOTS-c	0.15	two-tailed t test
	Lu	NC v.s MOTS-c	0.02	two-tailed t test
	K	NC v.s MOTS-c	0.14	two-tailed t test
Fig.1E	Q	NC v.s MOTS-c	0.023	two-tailed t test
	D	NC v.s MOTS-c	0.006	two-tailed t test
	А	NC v.s MOTS-c	0.004	two-tailed t test
Fig.2A		Fluorescence intensity	4.448E-07	two-tailed t test
Fig.2C	TA	PMO v.s PMO-M	0.191	two-tailed t test
	Q	PMO v.s PMO-M	0.003	two-tailed t test
	G	PMO v.s PMO-M	0.034	two-tailed t test
	Т	PMO v.s PMO-M	0.187	two-tailed t test
	А	PMO v.s PMO-M	0.027	two-tailed t test
	D	PMO v.s PMO-M	0.921	two-tailed t test
	Н	PMO v.s PMO-M	0.641	two-tailed t test
	Li	PMO v.s PMO-M	0.932	two-tailed t test
	S	PMO v.s PMO-M	0.463	two-tailed t test
	Lu	PMO v.s PMO-M	0.196	two-tailed t test
	K	PMO v.s PMO-M	0.032	two-tailed t test
Fig.2E		PMO v.s PMO-M	0.000884	two-tailed t test

Appendix Table S1: Summary of exact p-values in each figure

Fig.2F		PMO v.s PMO-M	0.0143	two-tailed t test
Fig.2I	ТА	PMO v.s PMO-M	0.018	two-tailed t test
	Q	PMO v.s PMO-M	0.02	two-tailed t test
	G	PMO v.s PMO-M	0.028	two-tailed t test
	Т	PMO v.s PMO-M	0.001	two-tailed t test
	А	PMO v.s PMO-M	0.015	two-tailed t test
	D	PMO v.s PMO-M	0.020	two-tailed t test
Fig.3F	ТА	PMO v.s PMO-M	0.1	two-tailed t test
	Q	PMO v.s PMO-M	0.002	two-tailed t test
	G	PMO v.s PMO-M	0.002	two-tailed t test
	Т	PMO v.s PMO-M	0.1	two-tailed t test
	А	PMO v.s PMO-M	0.013	two-tailed t test
	D	PMO v.s PMO-M	0.1	two-tailed t test
Fig.3H	ТА	PMO v.s PMO-M	0.218	two-tailed t test
	Q	PMO v.s PMO-M	0.044	two-tailed t test
	G	PMO v.s PMO-M	0.024	two-tailed t test
	Т	PMO v.s PMO-M	0.115	two-tailed t test
	А	PMO v.s PMO-M	0.7	two-tailed t test
	D	PMO v.s PMO-M	0.506	two-tailed t test
Fig.4C	ТА	PMO v.s PMO-M	0.00065	two-tailed t test
	Q	PMO v.s PMO-M	0.00091	two-tailed t test
	G	PMO v.s PMO-M	2.85E-05	two-tailed t test
	Т	PMO v.s PMO-M	0.000363	two-tailed t test
	А	PMO v.s PMO-M	0.03	two-tailed t test
	D	PMO v.s PMO-M	0.000276	two-tailed t test
Fig.4E	TA	PMO v.s PMO-M	0.019	two-tailed t test
	Q	PMO v.s PMO-M	0.002	two-tailed t test
	G	PMO v.s PMO-M	0.006	two-tailed t test
	Т	PMO v.s PMO-M	0.001	two-tailed t test
	А	PMO v.s PMO-M	0.004	two-tailed t test
	D	PMO v.s PMO-M	0.030	two-tailed t test
Fig.4F	6 Weeks	mdx v.s PMO	0.469	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		mdx v.s PMO-M	0.021	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.032	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test

	10 Weeks	mdx v.s PMO	0.412	One way ANOVA next
	10 weeks		0.412	One way-ANOVA post hoc
				Student-Newman-Keuls
			0.004	test
		mdx v.s PMO-M	0.004	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.006	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
	14 Weeks	mdx v.s PMO	0.22	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		mdx v.s PMO-M	0.000959	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.000912	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
	16 Weeks	mdx v.s PMO	0.749	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		mdx v.s PMO-M	0.002	One way-ANOVA post
			0.002	hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.002	One way-ANOVA post
		1 110 1.5 1 110-111	0.002	hoc
				Student-Newman-Keuls
				test
Fig.4G		mdx v.s PMO	0.688	One way-ANOVA post
11g.40			0.000	hoc
				Student-Newman-Keuls
			0.025	test
		mdx v.s PMO-M	0.025	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test

		PMO v.s PMO-M	0.021	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
Fig.5A		mdx v.s PMO	0.754	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		mdx v.s PMO-M	0.026	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.019	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
Fig.5D	Quadriceps	mdx v.s PMO	0.461	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		mdx v.s PMO-M	4.44E-05	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	1.92E-05	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
	Triceps	mdx v.s PMO	0.884	One way-ANOVA post
				hoc
				Student-Newman-Keuls
				test
		mdx v.s PMO-M	0.000462	One way-ANOVA post
				hoc
				Student-Newman-Keuls
			0.000101	test
		PMO v.s PMO-M	0.000131	One way-ANOVA post
				hoc Student Neuman Kaula
				Student-Newman-Keuls
Fig 5E	<500		0.13	test two-tailed t test
Fig.5E	<500	PMO v.s PMO-M		
	500-1000	PMO v.s PMO-M	0.042	two-tailed t test
	1000-1500	PMO v.s PMO-M	0.363	two-tailed t test
	1500-2000	PMO v.s PMO-M	0.383	two-tailed t test

	2000-2500	PMO v.s PMO-M	0.881	two-tailed t test
	2500-3000	PMO v.s PMO-M	0.15	two-tailed t test
	3000-3500	PMO v.s PMO-M	0.224	two-tailed t test
	3500-4000	PMO v.s PMO-M	0.543	two-tailed t test
	4000-4500	PMO v.s PMO-M	0.434	two-tailed t test
	>4500	PMO v.s PMO-M	0.870	two-tailed t test
Fig.6A	AST	mdx v.s PMO	0.859	One way-ANOVA post
115.011			0.057	hoc
				Student-Newman-Keuls
				test
		mdx v.s PMO-M	0.019	One way-ANOVA post
			0.017	hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.016	One way-ANOVA post
			0.010	hoc
				Student-Newman-Keuls
				test
	ALT	mdx v.s PMO	0.84	One way-ANOVA post
	ALI		0.04	hoc
				Student-Newman-Keuls
				test
		mdx v.s PMO-M	0.005	One way-ANOVA post
			0.005	hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.014	One way-ANOVA post
			0.014	hoc
				Student-Newman-Keuls
				test
	GGT	mdx v.s PMO	0.753	One way-ANOVA post
	001		0.755	hoc
				Student-Newman-Keuls
				test
		mdx v.s PMO-M	0.051	One way-ANOVA post
		110A 1.5 I 110-111	0.001	hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.288	One way-ANOVA post
			5.200	hoc
				Student-Newman-Keuls
				test
Fig.6E	CD68-Quadriceps	mdx v.s PMO	0.012	One way-ANOVA post
1.5.01			0.012	hoc
		1		100

			Student-Newman-Keuls
			test
	mdx v.s PMO-M	0.00083	One way-ANOVA post
		0.00085	hoc
			Student-Newman-Keuls
			test
	PMO v.s PMO-M	0.003	One way-ANOVA post
		0.005	hoc
			Student-Newman-Keuls
			test
CD68-Diaphgram	mdx v.s PMO	0.370	One way-ANOVA post
			hoc
			Student-Newman-Keuls
			test
	mdx v.s PMO-M	0.003	One way-ANOVA post
			hoc
			Student-Newman-Keuls
			test
	PMO v.s PMO-M	0.005	One way-ANOVA post
			hoc
			Student-Newman-Keuls
			test
CD11b-Quadriceps	mdx v.s PMO	0.011	One way-ANOVA post
			hoc
			Student-Newman-Keuls
			test
	mdx v.s PMO-M	0.0009446	One way-ANOVA post
			hoc
			Student-Newman-Keuls
			test
	PMO v.s PMO-M	0.005	One way-ANOVA post
			hoc
			Student-Newman-Keuls
			test
CD11b-Diaphgram	mdx v.s PMO	0.208	One way-ANOVA post
			hoc
			Student-Newman-Keuls
		0.000	test
	mdx v.s PMO-M	0.009	One way-ANOVA post
			hoc
			Student-Newman-Keuls
		0.027	test
	PMO v.s PMO-M	0.027	One way-ANOVA post
			hoc

				Student-Newman-Keuls
	CD3-Quadriceps	mdx v.s PMO	0.804	test One way-ANOVA post
				hoc
				Student-Newman-Keuls
		mdx v.s PMO-M	0.021	test One way-ANOVA post
			0.021	hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.013	One way-ANOVA post
				hoc Student-Newman-Keuls
				test
	CD3-Diaphgram	mdx v.s PMO	0.754	One way-ANOVA post
				hoc
				Student-Newman-Keuls
		mdx v.s PMO-M	0.049	test
			0.049	One way-ANOVA post hoc
				Student-Newman-Keuls
				test
		PMO v.s PMO-M	0.035	One way-ANOVA post
				hoc
				Student-Newman-Keuls test
Fig.EV1	ТА	PMO-M vs PMO	0.005	t test
Ũ	G	PMO-M vs PMO	0.008	t test
Fig.EV2B		PMO-M vs PMO	0.0009125	One way-ANOVA post
				hoc Student-Newman-Keuls
				test
		PMO-M vs. Seperated	0.130	One way-ANOVA post
				hoc
				Student-Newman-Keuls
		Separated vs. DMO	0.0012	test
		Seperated vs. PMO	0.0012	One way-ANOVA post hoc
				Student-Newman-Keuls
				test
Fig.EV2D		PMO-M vs PMO	0.004	One way-ANOVA post
				hoc Student-Newman-Keuls
				test
L			I	

		PMO-M vs. Seperated	0.649	One way-ANOVA post hoc Student-Newman-Keuls test
		Seperated vs. PMO	0.003	One way-ANOVA post hoc Student-Newman-Keuls test
Fig.	Soleus	PMO-M vs PMO	0.005	two-tailed t test
EV3B	EDL	PMO-M vs PMO	0.014	two-tailed t test
Fig.	Soleus	PMO-M vs PMO	0.0012	two-tailed t test
EV4B	EDL	PMO-M vs PMO	0.003	two-tailed t test
Fig.EV5	0 week	PMO-M vs PMO-M(+MOTS-c)	0.529	two-tailed t test
	1 week	PMO-M vs PMO-M(+MOTS-c)	0.637	two-tailed t test
	2 week	PMO-M vs PMO-M(+MOTS-c)	0.18	two-tailed t test
	4 week	PMO-M vs PMO-M(+MOTS-c)	0.017	two-tailed t test
	Body weight gain	PMO-M vs PMO-M(+MOTS-c)	0.031	two-tailed t test
Appendix	ТА	PMO-M vs PMO-GF	0.09	two-tailed t test
S1C	Q	PMO-M vs PMO-GF	0.003	two-tailed t test
	G	PMO-M vs PMO-GF	0.003	two-tailed t test
	Т	PMO-M vs PMO-GF	0.106	two-tailed t test
	А	PMO-M vs PMO-GF	0.154	two-tailed t test
	D	PMO-M vs PMO-GF	0.387	two-tailed t test
Appendix	ТА	PMO-M vs PMO-G	0.048	two-tailed t test
S3C	Q	PMO-M vs PMO-G	0.011	two-tailed t test
	G	PMO-M vs PMO-G	0.005	two-tailed t test
	Т	PMO-M vs PMO-G	0.122	two-tailed t test
	А	PMO-M vs PMO-G	0.000465	two-tailed t test
	D	PMO-M vs PMO-G	0.061	two-tailed t test
Appendix	Quadriceps	mdx vs MOTS-c	0.001	two-tailed t test
S4D	Diaphragm	mdx vs MOTS-c	0.008	two-tailed t test
Appendix S4E		mdx vs. MOTS-c	0.027	One way-ANOVA post hoc Student-Newman-Keuls test
		mdx vs. C57	0.304	One way-ANOVA post hoc Student-Newman-Keuls

			test
	C57 vs. MOTS-c	0.062	One way-ANOVA post
			hoc
			Student-Newman-Keuls
			test