Supporting Information

Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases

Bhargavi M. Boruah^{1,†}, Renuka Kadirvelraj^{2,†}, Lin Liu¹, Annapoorani Ramiah¹, Chao Li³, Guanghui Zong³, Gerlof P. Bosman⁴, Jeong-Yeh Yang¹, Lai-Xi Wang³, Geert-Jan Boons¹, Zachary A. Wood^{2*}, and Kelley W. Moremen^{1,2*}

¹Complex Carbohydrate Research Center, University of Georgia, Athens, GA;
 ²Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA;
 ³Department of Chemistry and Biochemistry, University of Maryland, College Park, MD;
 ⁴Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.

[†]These authors contributed equally to this work.

* Correspondence: Kelley Moremen: email: <u>moremen@uga.edu</u> and Zachary A. Wood: email: <u>zaw@uga.edu</u>

This Supplementary Information includes:

Supplementary Table S1: Kinetic parameters for wild type human FUT8 using GDP-Fucose as donor and various glycan acceptor substrates.

Supplementary Table S2. Data collection and refinement statistics

Supplementary Table S3: Kinetic parameters for wild type human FUT8 and mutants.

Supplementary Table S4: Primer sequences used for site directed mutagenesis.

Supplementary Figure S1. FUT8 expression, purification, and tag/glycan cleavage.

Supplementary Figure S2. Structural alignment of fucosyltransferase structures using the PROMALS3D server.

Supplementary Figure S3. Sequence and structural alignment of FUT8 with other related GTs.

Acceptor Substrates ^a	$k_{ m cat}$	$K_{ m m}$	$k_{ m cat}/K_{ m m}$	
	S ⁻¹	μM	$mM^{-1}s^{-1}$	
M5N2-Asn-Fmoc	0.2 ± 0.1	949 ± 506	0.21 ± 0.22	
NM5N2-Asn	6.9 ± 0.8	214 ± 64	32 ± 13	
M3N2-Asn	N.D.			
A1-Asn	5.9 ± 0.7	22.5 ± 7.7	260 ± 120	
A2-Asn	13.7 ± 0.8	51.7±9.7	265 ± 65	
G1-Asn	8.7 ± 0.6	159 ± 30	55 ± 14	
A3-Asn	7.0 ± 0.5	556 ± 82	12 ± 3	
A3'-Asn	9.6 ± 0.9	149 ± 39	64 ± 23	
A4-Asn	N.D.			

Supplementary Table S1: Kinetic parameters for wild type human FUT8 using GDP-Fucose as donor and various glycan acceptor substrates.

N.D. not detectable

^a Fucosyltransferase assays were performed in duplicate with the respective glycan substrates using a GDP-Glo assay format as described in Experimental Procedures. Steady state parameters of k_{cat} and K_m were calculated using a GDP standard curve and nonlinear curve fitting in GraphPad Prism 6 software.

Data collection	Fut8:GDP	Fut8:GDP:A2	Fut8:GDP:A3'	Fut8:GDP:A3	Fut8:GDP:NM5N2
Wavelength (Å)	1.0000	1.0000	1.0000	1.0000	1.0000
Space group	P65	P6522	P6522	P65	P65
Cell dimensions (a, b, c in Å)	173.5, 173.5 207.4	149.9, 149.9, 480.9	150.5, 150.5, 480.3	151.7, 151.7, 474.1	154.0, 154.0, 466.9
Molecules in asymmetric unit	4	2	2	8	8
Completeness (%)	99.2 (97.1) ^a	99.3 (97.1) ^{<i>a</i>}	89.4 (93.6) ^{<i>a</i>}	99.8 (100) ^a	99.3 (99.9) ^a
Total number of reflections	837360 (49014)	1290703 (103944)	149167 (11496)	1120885 (87009)	367570 (28430)
Unique reflections	165616 (11970)	124545 (8849)	44367 (3352)	219502 (16316)	102079 (7647)
Redundancy	5.1 (4.1)	10.4 (11.7)	3.4 (3.4)	5.1 (5.3)	3.6 (3.7)
I / σ(I)	10.4 (1.5)	18.4 (2.3)	7.9 (1.8)	10.7 (1.4)	5.7 (1.2)
R_{meas}^{b} (%)	15.8 (109.7)	15.3 (146.6)	19.2 (92.9)	12.0 (105.3)	25.9 (139.7)
CC _{1/2} (%)	99.5 (55.6)	99.9 (76.1)	99.0 (68.9)	99.7 (50.5)	98.5 (50.9)
Refinement					
Resolution and highest-resolution shell (Å)	2.25 (2.31-2.25)	2.4 (2.46-2.4)	3.3 (3.39-3.3)	2.47 (2.53-2.47)	3.2 (3.28-3.2)
$R_{ m work}$ / $R_{ m free}$	0.17 / 0.20	0.205 / 0.23	0.20 / 0.22	0.167 / 0.20	0.19 / 0.236
No. of atoms Protein / Ligand / Solvent	14987 / 98 / 1351	7639 / 236 / 634	7600 / 268 / 26	30384 / 474 / 769	30432 / 752 / 264
<i>B</i> -factor (Å ²) Protein / Ligand / Solvent	41.8 / 32.4 / 50.1	50.1 / 45.8 / 56.1	69 / 66 / 73.6	50.8 / 50.3 / 54.4	61.8 / 68.7 / 53.7
Wilson <i>B</i> -factor (Å ²)	31.7	43	77.1	54.6	64.1
Stereochemical Ideality					
Bond lengths (Å ²)	0.009	0.010	0.01	0.005	0.006
Bond angles (°)	0.99	1.26	1.3	0.97	0.98
Ramachandran favored (%)	97.2	97.2	95.6	96.9	97.0
Ramachandran allowed (%)	2.8	2.8	4.4	3.1	3.0
PDB code	6X5H	6X5R	6X5S	6X5T	6X5U

^aValues in parentheses are for highest-resolution shell as defined under Resolution.

 ${}^{b}R_{meas}$ is the redundancy independent merging *R*-factor of Diederichs and Karplus (118).

Supplementary Table S3: Kinetic parameters for wild type human FUT8 and mutants using GDP-Fucose as donor and A2 substrate as acceptor^a.

		Acceptor				Donor			
	GFP				<u>k_{cat}/K_m</u> d				$\underline{k_{\text{cat}}/K_{\text{m}}}^{\text{d}}$
Enzyme form	fluorescenceb	$k_{\rm cat}$	$K_{ m m}$	$k_{\rm cat}/K_{ m m}$	$k_{\text{cat}}/K_{\text{m}}(\text{wt})$	k_{cat}	$K_{ m m}$	$k_{\text{cat}}/\mathbf{K}_{\text{m}}$	$k_{\text{cat}}/K_{\text{m}}(\text{wt})$
		S ⁻¹	μM	$\mu M^{-1}s^{-1}$		S^{I}	μM	$\mu M^{-1}s^{-1}$	
WT(293F)e	624	13.7 ± 0.8	51.7 ± 9.7	0.26		11.2 ± 0.8	67.9 ± 13.0	0.16	
WT(293S) ^c	434	5.2 ± 0.4	57.6 ± 18.0	0.09		2.0 ± 0.3	71.6 ± 22.8	0.03	
K216A°	170	0.08 ± 0.01	53.8±16.2	0.0015	0.006	0.05 ± 0.01	66.0 ± 32.5	0.0007	0.004
D295A°	381	N.D.				N.D.			
Q470A°	547	0.23 ± 0.03	85.9 ± 26.8	0.0027	0.010	0.25 ± 0.19	352 ± 381	0.0007	0.004
R473A°	161	N.D.				N.D.			
D494A°	165	0.06 ± 0.01	55.5 ± 15.7	0.001	0.0045	0.04 ± 0.01	227 ± 129	0.0002	0.001
D495A°	388	0.04 ± 0.01	152 ± 98	0.0003	0.0010	0.03 ± 0.01	271 ± 173	0.0001	0.0006
Q502A°	195	0.16 ± 0.02	13.1 ± 5.7	0.01	0.05	0.016 ± 0.003	79.8 ± 35.4	0.0002	0.001
H535A°	311	0.70 ± 0.03	30.4 ± 4.7	0.02	0.09	-	$> 1000^{f}$	-	-
K541A°	428	5.8 ± 0.4	38.8 ± 9.8	0.15	0.58	5.2 ± 0.6	183 ± 35	0.03	0.18
Y498A°	301	N.D.				N.D.			
R365A°	357	N.D.				N.D.			
D368A°	271	N.D.				N.D.			
K369A°	71	N.D.				N.D.			
E373A°	363	N.D.				N.D.			
Y382A°	197	N.D.				N.D.			
D409A°	253	N.D.				N.D.			
D453A°	191	N.D.				N.D.			
S469A°	285	N.D.				N.D.			

^a Fucosyltransferase assays were performed in duplicate with the A2-Asn acceptor and GDP Fucose as donor substrates using a GDP-Glo assay format as described in Experimental Procedures.

^b The relative expression and secretion of the GFP-FUT8 fusion proteins in transiently transfected HEK293 cells was determined by measuring the fluorescence of the recombinant proteins secreted into the media.

^c The GFP-FUT8 fusion protein expressed in HEK293S (GnTI-) cells was purified by Ni²⁺-NTA chromatography, cleaved to remove tag sequences and further purified as described for crystallography of the enzyme catalytic domain.

^d Values for k_{cat}/K_m for all FUT8 mutants were compared with k_{cat}/K_m values for wild type FUT8 expressed in HEK293F (wild type) cells.

^e The GFP-FUT8 fusion protein (and all FUT8 mutants) were expressed in HEK293F (wild type) cells and purified by Ni²⁺-NTA chromatography. The fusion protein tags were retained for the indicated wild type FUT8 and mutant forms of the enzyme during kinetic analyses.

^fCatalytic activity was detected, but values for k_{cat} and K_m could not be determined. N.D. not detectable **Supplementary Table S4: Primer sequences used for site directed mutagenesis.** Lower case letters represent bases that were mutated using the Q5 site-directed mutagenesis kit (see Experimental Procedures).

Mutant	Primer Name	Primer sequence
K216A	Mut-1_F	TAATATCAACgcaGGCTGTGGGCTATG
	Mut-1_R	CACACCAGCTTTTTGGCT
D295A	Mut-2_F	TCCCATTGTAgccAGTCTTCATC
	Mut-2_R	AGCTCGACCACTTGAACA
Q470A	Mut-3_F	TTTTTCATCCgcgGTCTGTCGAGTTG
	Mut-3_R	GTACACACTAGGAAGTCTG
R473A	Mut4_F	CCAGGTCTGTgcaGTTGCTTATG
	Mut4_R	GATGAAAAAGTACACACTAG
D404A	Mut5_F	CCATTCTTTAgctGACATCTACTATTTTG
D494A	Mut5_R	AAGTTTGCAGAGGCATCAG
D405A	Mut6_F	TTCTTTAGATgccATCTACTATTTTGGG
D495A	Mut6_R	TGGAAGTTTGCAGAGGCA
05024	Mut7_F	TTTTGGGGGCgcgAATGCCCACAATC
Q502A	Mut7_R	TAGTAGATGTCATCTAAAGAATGG
LI525 A	Mut8_F	GGCTGGAAATgctTGGGATGGCTATTC
H535A	Mut8_R	ACACCAATGATATCTCCAG
V541A	Mut9_F	TGGCTATTCTgcaGGTGTCAACAG
K341A	Mut9_R	TCCCAATGATTTCCAGCC
V408A	Mut10_F	TGACATCTACgcTTTTGGGGGGCC
1490A	Mut10_R	TCTAAAGAATGGAAGTTTGC
D265A	Mut11_F	AGTCCATGTCgcaCGCACAGAC
кэоэа	Mut11_R	CCAATAACTGGATGTTTG
D268A	Mut12_F	AGACGCACAgcTAAAGTGGGAAC
DJUOA	Mut12_R	GACATGGACTCCAATAAC
K260A	Mut13_F	ACGCACAGACgcaGTGGGAACAG
KJU9A	Mut13_R	CTGACATGGACTCCAATAAC
E272 A	Mut14_F	GTGGGAACAgcaGCTGCCTTC
ESTSA	Mut14_R	TTTGTCTGTGCGTCTGAC
Y382A	Mut15_F	CATTGAAGAGgccATGGTGCATGTTGAAG
	Mut15_R	GGATGGAAGGCAGCTTCT
D409A	Mut16_F	TTGGCCACAGcTGACCCTTCT
	Mut16_R	ATACACTCTTTTTTTGTCCACTTG
D453A	Mut17_F	GTGATCCTGGcTATACATTTTCTC
	Mut17_R	TCCACGAAGTGAATTTTC
\$460.4	Mut18_F	TACTTTTTCAgccCAGGTCTG
3409A	Mut18_R	CACACTAGGAAGTCTGCC

Supplementary Figure S1. FUT8 expression, purification, and tag/glycan cleavage. (A) Diagrammatic representation of the recombinant FUT8 fusion protein coding region is shown. The fusion protein has an NH₂-terminal signal sequence followed by an 8xHis tag, AviTag, superfolder GFP, TEV protease cleavage site, and the catalytic domain of FUT8. (B) Expression of the recombinant product in HEK293F cells resulted in secretion of the fusion protein into the culture medium (*Crude media*), and subsequent Ni²⁺-NTA purification yielded a highly-enriched enzyme preparation (*IMAC1 elution*). Cleavage of the enzyme with TEV protease resulted in removal of the tag sequences (*TEV cleavage*). Ni²⁺-NTA chromatography separated the unbound FUT8 catalytic domain (*IMAC2 elution*) from the bound tag sequences and TEV protease, as the latter were both His-tagged. The enzyme was further purified over Superdex 75 (*Superdex 75 gel filtration*). (C) The purified FUT8 catalytic domain following cleavage with TEV was further characterized by size exclusion-multiangle light scattering (SEC-MALS, see Materials and Methods). A₂₈₀ is shown by the green line, refractive index in blue, light scattering in red and calculated molar mass in black. The molecular mass derived from SEC-MALS analysis (132 kDa) is in close agreement with a dimer of the calculated mass for the FUT8 catalytic domain following cleavage with TEV protease (62.6 kDa)

Supplementary Figure S2. Structural alignment of fucosyltransferase structures using the PROMALS3D server. The structure of the human FUT8:GDP:A2-Asn complex was aligned with the mouse POFUT1:GDP-Fuc:EGF domain complex (PDB 5KY3 (38)), the *C. elegans* POFUT2:GDP:thrombospondin repeat complex (PDB 5FOE (39), the human POFUT2:GDP-Fuc complex (PDB 4AP6 (40)), the NodZ:GDP complex (PDB 3SIX (35)), and the AtFUT1:GDP:xylo-oligosaccahride complex (PDB 5KOR (29) using default parameters in the PROMALS3D server (97). Conserved secondary

structure elements are indicated as helices (h) or beta strands (e) and consensus amino acid positions are classified by amino acid character (aliphatic (l), aromatic (@), hydrophobic (h), alcohol (o), polar (p), tiny (t), small (s), bulky (b), positively charged (+), negatively charged (-), and charged (c)) or as bold uppercase for conserved. Red boxes represent the three conserved sequence elements previously identified by primary sequence alignment (94, 95). Conserved secondary structure elements for the fucosyltransferases that are indicated in the structural alignment in *Fig. 10* are indicated by the blue boxes. The putative catalytic bases for FUT8 and *C. elegans* POFUT1 are indicated with the bold magenta 'E' with a green circle.

Supplementary Figure S3. Sequence and structural alignment of FUT8 with other related GTs. The structures of FUT8:GDP:A2-Asn, mouse POFUT1:GDP-Fuc:EGF domain complex (PDB 5KY3 (38)), C. elegans POFUT2:GDP:thrombospondin repeat complex (PDB 5FOE (39), human POFUT2:GDP-Fuc complex (PDB 4AP6 (40)), NodZ:GDP complex (PDB 3SIX (35)), and Arabidopsis FUT1:GDP:xylooligosaccahride complex (PDB 5KOR (29) were aligned in Coot (111) followed by manual adjustment in PyMOL. (A) Individual structures are displayed in surface representation (Surface) or cartoon representation (*Cartoon*) with bound GDP or GDP-Fuc shown in white stick representation. Acceptor ligands are shown as yellow sticks (glycan acceptors) or cartoon (POFUTs) representations. Conserved regions identified in the PROMALS3D alignment (blue boxes in Fig. 9) were extracted and shown as cartoon representations (Conserved). A zoom-in to the GDP-Fuc donor binding site (Donor Binding Site) is shown with the respective protein in cartoon representation and the donor in stick representation. For each of the donor binding site structures a representation of GDP-Fuc derived from the human POFUT2 structure is also superimposed to indicate the position of the bound intact sugar donor where the other complexes contained only GDP. The latter GDP-Fuc molecule is represented with the Fuc residue in cyan sticks and the C1 as a green sphere. When the acceptor structure is present, the hydroxyl nucleophile is represented as a magenta sphere. (B) The conserved structural elements identified in the PROMALS3D analysis (Conserved column in Panel A) are displayed as an overlay of the respective structures in two different orientations. (C) Thirteen residues were completely conserved among the six structures. These conserved residues are shown within the FUT8:GDP:A2-Asn structure (magenta stick representation), where 9 residues are associated with the GDP binding site. GDP shown in white stick representation and the A2-Asn acceptor shown in yellow stick representation.