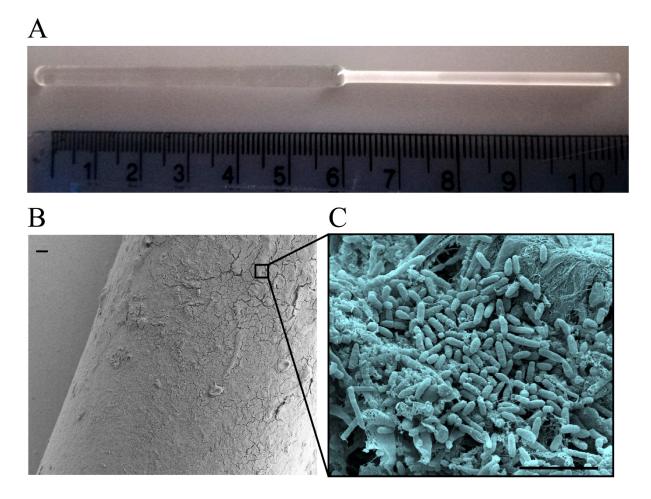
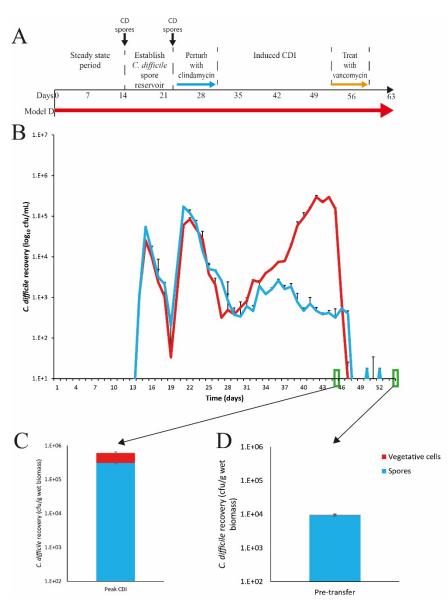

BIOFILMS HARBOUR CLOSTRIDIOIDES DIFFICILE, SERVING AS

A RESERVOIR FOR RECURRENT INFECTION:

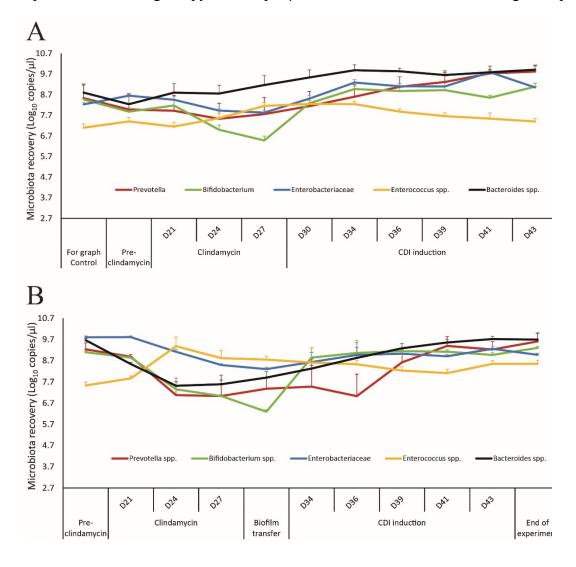

SUPPLEMENTARY MATERIAL

Supplementary figure 1

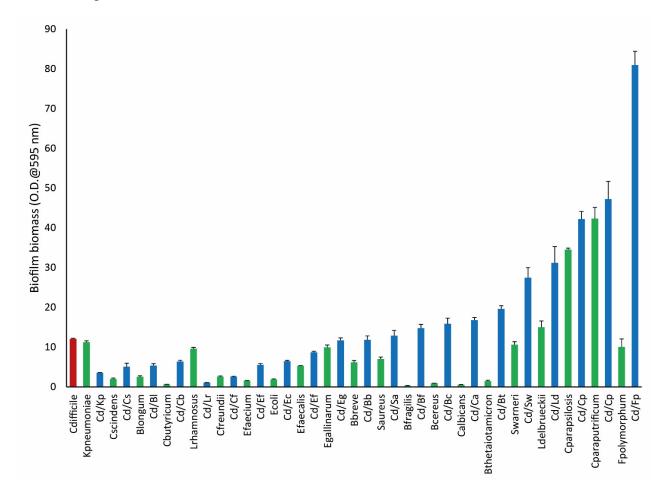
In vitro gut model and faecal microbiota transplant set up. (A) Three chemostat vessels are arranged in a weir-cascade fashion and top fed with a complex growth mixture. Each vessel mimics the physio-chemical conditions as you traverse the human colon (proximal, medial and distal colon). (B) FMT set up used in our experiments, simulating the nasal-jejunal route of administration used at Leeds General Infirmary. In this way, 50 mL of 10% w/v faecal slurry was instilled into the base of vessel 1 over one hr.


Biofilm support structures. (A) Glass etched rods were suspended from the vessel lid allowing easy removal of each rod. (B) Scanning electron microscopy of the biofilm formed on a rod after incubation within the gut model system. Image is at 95x magnification and scale bar is 100 μ m. (C) SEM of the multispecies biofilm formed on the support structures. Image is at 16,600x magnification and black scale bar is 5 μ m.

Quantitative PCR enumeration of the total sessile bacteria (Eubacteria) and sessile *C*. *difficile* recovered from the biofilm support structures. Results shown are mean copies/µl from two biological replicates (eight technical replicates in total).

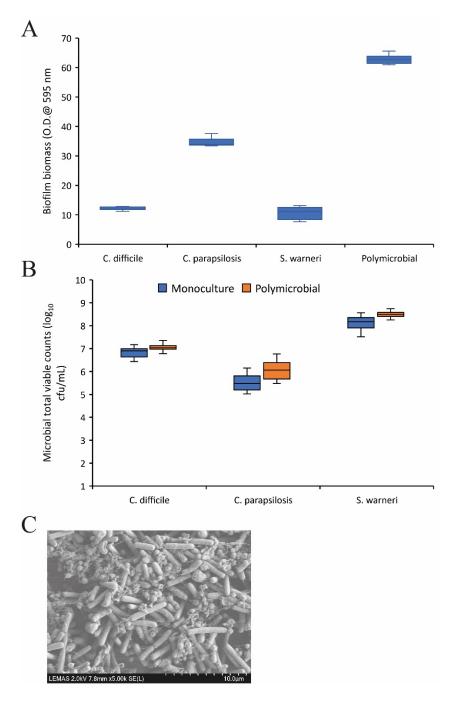


Model schematic and *C. difficile* recovery from the biofilm donor model (model D). (A) Timeline of events from the biofilm donor model prior to biofilm support structure transfer. Two doses of *C. difficile* spores were added prior to primary CDI. Simulated CDI was then treated with vancomycin reducing the luminal *C. difficile* populations to undetectable levels. (B) Recovery of *C. difficile* total viable counts (red line) and spores (blue line) from model D, and toxin detection (red arrow). Error bars represent the standard deviation from two biological replicates. (C) Recovery of sessile *C. difficile* vegetative (red bars) and spores (blue bars) from model D pre-vancomycin and (D) at time of transfer to recipient model. Error bars represent the standard deviation from six technical replicates from two biofilm support structures for each time point.

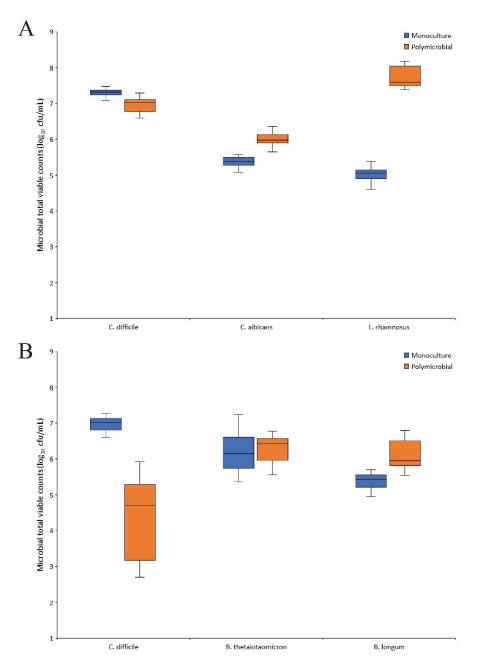


Quantitative PCR of luminal bacterial populations from control (A) and recipient (B)

models. Biofilm populations were transplanted from model D to model R on day 30. Results expressed as mean \log_{10} copy number per μ L of luminal fluid from two biological replicates.



In vitro biofilm formation of *C. difficile* (red bar), different mono-cultured species (green bars) and dual biofilms with *C. difficile* (blue bars). Results shown are mean crystal violet absorption from at least three biological replicates and 12 technical replicates. Error bars represent standard deviation.


Monoculture biofilms and mixed as a polymicrobial biofilm as shown in Figure 4G. (A)

Biomass as measured by crystal violet absorption of monoculture biofilms and polymicrobial biofilms. (B) Bacteria were enumerated using selective agars from monoculture (blue) and polymicrobial (orange) biofilms using selective agars (Supplementary Table 1). Results shown are from three biological replicates and at least 12 technical replicates. (C) SEM of the polymicrobial biofilm from (A & B).

Effect of two different combinations of antagonistic and synergistic species on C.

difficile biofilm formation. (A) Polymicrobial biofilms of *C. difficile*, *Candida albicans* (synergistic) and *Lactobacillus rhamnosus* (antagonistic), and (B) Polymicrobial biofilms of *C. difficile*, *Bacteroides thetaiotaomicron* (synergistic) and *Bifidobacterium longum* (antagonistic). Bacteria were enumerated from monoculture (blue) and polymicrobial (orange) biofilms using selective agars (Supplementary Table 1). Results shown are the total viable counts (cfu/mL) from three biological replicates and at least 12 technical replicates.

Supplementary table 1

Sessile microbial species identified by MALDI-TOF from the *in vitro* support structures from figure 2.

Acidaminococcus fermentans	Enterococcus gallinarum	
Alistipes finegoldii	Enterococcus mundtii	
Bacillus cereus	Escherichia coli	
Bacillus mycoides	Eubacterium limosum	
Bacillus thuringiensis	Eubacterium plautii	
Bacteroides ovatus	Hungatella hathewayi	
Bacteroides thetaiotaomicron	Klebsiella oxytoca	
Bifidobacterium breve	Klebsiella pneumoniae	
Bifidobacterium dentium	Lactobacillus casei	
Bifidobacterium longum	Lactobacillus delbrueckii	
Candida albicans	Lactobacillus fermentum	
Candida krusei	Lactobacillus gasseri	
Candida parapsilosis	Lactobacillus harbinensis	
Citrobacter freundii	Lactobacillus johnsonii	
Citrobacter koseri	Lactobacillus kitasatonis	
Clostridioides difficile	Lactobacillus parabuchneri	
Clostridium aminovalericum	Lactobacillus paracasei	
Clostridium butyricum	Lactobacillus reuteri	
Clostridium celerescrescens/sphenoides ^a	Lactobacillus rhamnosus	
Clostridium clostridioforme	Lysinibacillus boronitolerans	
Clostridium disporicum	Lysinibacillus fusiformis	
Clostridium innocuum	Lysinibacillus sphaericus	
Clostridium paraputrificum	Lysinibacillus spp.	
Clostridium scindens	Micrococcus luteus	
Clostridium sporogenes	Morganella morganii	
Clostridium symbiosum	Neisseria flavescens	
Clostridium tertium	Parabacteroides distasonis	
Comamonas kerstersii	Pseudomonas aeruginosa	
Eisenbergiella spp.	Staphylococcus aureus	
Enterobacter asburiae	Staphylococcus caprae	
Enterobacter cloacae	Staphylococcus epidermidis	
Enterobacter kobei	Staphylococcus haemolyticus	
Enterococcus avium	Staphylococcus hominis	
Enterococcus casseliflavus	Staphylococcus saprophyticus	
Enterococcus durans	Staphylococcus warneri	
Enterococcus faecalis	Staphylococcus gallolyticus	
Enterococcus faecium	Tissierella spp.	
^a C. celerescrescens and C. sphenoides share 98% genome homology and cannot be distinguished		
by MALDI-TOF		

Supplementary table 2

Agars used for direct enumeration and isolation of luminal and biofilm microbiota.

Target organisms	Media and Supplements	Growth environment (@ 37 °C)
<i>C. difficile</i> total viable counts	Brazier's CCEYL with 2% lysed horse blood, 5 mg/L lysozyme, 250 mg/L D-cycloserine, 8 mg/L cefoxitin, 2 mg/L moxifloxacin, 8 mg/L amphotericin B and 10 mg/L colisin	Anaerobic
<i>C. difficile</i> spores	 1:1 ethanol (100%) shock for one hour followed by enumeration on Brazier's CCEYL with 2% lysed horse blood, 5 mg/L lysozyme, 250 mg/L D-cycloserine, 8 mg/L cefoxitin 	Anaerobic
Total anaerobes and total <i>Clostridium</i> spp.	Pre-poured fastidious anaerobe agar (FAA) with 5 % horse blood	Anaerobic
Total Clostridium spores	1:1 ethanol (100%) shock for one hour followed by enumeration on pre-poured fastidious anaerobe agar (FAA) with 5 % horse blood	
Lactobacillus spp.	LAMVAB agar - 52.5 mg/L MRS broth and 20 mg/L agar technical with 0.5 g/L L-cysteine and 20 mg/L vancomycin	Anaerobic
Bifidobacterium spp.	Beerens agar - 42.5 mg/L Columbia agar and 5 mg/L agar technical with 5 mg/L glucose, 0.5 g/L L-cysteine and 5 ml propionic acid, adjusted to pH 5.	Anaerobic
Enterococcus spp.	Kanamycin aesculin azide agar with 10 mg/L nalidixic acid, 10 mg/L aztreonam, 20 mg/L kanamycin and 1 mg/L Lincomycin	Aerobic

Bacteriodes spp.	Bacteroides bile aesculin agar with 2% haemin	Anaerobic
	and 0.002 % vitamin K1.	
Total facultative	Pre-poured nutrient agar	Aerobic
anaerobes		
Lactose-fermenting	Pre-poured MacConkey agar	Aerobic
Enterobacteriaceae		
Yeast and Mould spp.	Sabouraud Dextrose agar with 100 mg/L	Aerobic (@ 22
	chloramphenicol	°C)