| Uniprot ID | Protein Name                         | Gene Name | Control | PD-1.3F | PD-1.3F/<br>Control |
|------------|--------------------------------------|-----------|---------|---------|---------------------|
| Q9Y5B9     | FACT complex subunit<br>SPT16        | SUPT16H   | 102     | 51983   | 507.44              |
| O00182     | Galectin-9                           | LGALS9    | 2406    | 52710   | 21.90               |
| P84243     | Histone H3.3                         | H3F3A     | 15477   | 133080  | 8.60                |
| P05141     | ADP/ATP translocase 2                | SLC25A5   | 100828  | 374705  | 3.72                |
| P18621     | 60S ribosomal protein<br>L17         | RPL17     | 20253   | 65915   | 3.25                |
| O60825     | 6-phosphofructo-2-<br>kinase         | PFKFB2    | 43065   | 126575  | 2.94                |
| Q15366     | Poly(rC)-binding protein 2           | PCBP2     | 23514   | 61835   | 2.63                |
| O60234     | Glia maturation factor<br>gamma      | GMFG      | 59795   | 144035  | 2.41                |
| P16104     | Histone H2AX                         | H2AFX     | 324660  | 748660  | 2.31                |
| P11142     | Heat shock cognate 71<br>kDa protein | HSPA8     | 180175  | 370465  | 2.06                |



а

**Supplementary Fig. 1. Galectin-9 is a PD-1-binding Protein. a**, Putative PD-1-binding proteins identified by immunoprecipitation-mass spectrometry. **b**, PD-1-transduced Jurkat cell lysates were treated with or without peptide-N-glycosidase F, and subjected to Western blotting with PD-1 (left) or Gal-9 (right) antibodies. **c**, Binding of indicated Fc-fusion proteins to Gal-1 or Gal-8 coated on MaxiSorp plate. **d**, Binding of PD-1-biotin to indicated proteins immobilized on plate in the presence or absence of Gal-9 or Nivo. **e**, Binding of PD-1.Fc to indicated immobilized proteins in the absence or presence of PD-L1. Data are representative of three (**b**) or two (**c-e**) independent experiments. Source data are provided as a Source Data file.



Supplementary Fig. 2. Cell type-selective induction of apoptosis by Gal-9. a, Preactivated human T cells were incubated with or without 2 ug/ml Gal-9 for one day. Cell death was assessed using annexin V binding assay. Numbers indicate percentage of cells in quadrants. b and c, Preactivated human T cells were incubated with increasing concentrations of Gal-9 for one day and stained for CD4 and CD8. Viable cells were gated according to normal scatter (FSC/SSC) parameters and PI exclusion, and CD4 and CD8 T cells quantified using counting beads. Numbers indicate cell count in quadrant. Viable cell number in the absence of Gal-9 was taken as 100%. d, Survival of CD8 or CD4 T cells after treatment with wildtype Gal-9 or loss-of-function mutants of individual CRDs. e, Dose-dependent induction of CD8 T cell apoptosis by Gal-9 or GST-fusion proteins of its individual CRDs, as measured by annexin V-binding/PI staining assay. f. Flow cytometric analysis of PD-1 expression in CD8 T cells under indicated treatment conditions. Numbers denote percentage of PD-1<sup>+</sup> cells. Data are representative of three independent experiments. g, Differential sensitivity of various cell types to Gal-9-induced cell death. Cell survival was determined by MTS assay. OD values in the absence of Gal-9 was taken as 100%. Mean values +/- SEM of three independent experiments. h, Western blot showing expression of TIM-3 in cell types used in g. Data are representative of two independent experiments. i, A coculture system of engineered T cell cytotoxicity toward tumor cells. Target cancer cells were engineered to express Fcy receptor 2A fused with the luciferase Luc2 at the C-terminus, and then incubated with CD8 T cells and the CD3 antibody OKT3. After incubation, target cell survival was determined by luciferase assay. j, Correlation analysis of CD8 T cell and target cancer cell survival in the co-culture. Mean values +/- SEM of three independent experiments. Source data are provided as a Source Data file.



**Supplementary Fig. 3. Gal-9 is a target for cancer immunotherapy. a**, Dot plot showing Gal-9 gene expression profile across all tumor samples (T, red dots) and paired normal tissues (N, green dots) in TCGA. Names of cancer types with significantly altered Gal-9 expression are shown in red. Each dot represent expression of one sample. Line represents median expression. Lgals9 expression in normal (N) and tumor (T) samples was compared using unpaired two-tailed t-test. **b**, Kaplan-Meier survival estimated using KM-Potter showing the relationship between Gal-9 expression in human cancers and overall survival of patients. Log-rank (Mantel-Cox) test.



Supplementary Fig. 4. Effects of anti-Gal-9 and combination therapies in mouse tumor models. a, Average tumor growth of C57BL/6J mice inoculated with MC-38 mouse colon cancer cells and subjected to the indicated treatments. n=8 animals in control IgG, aGal-9, and Combo groups; n=7 animals in aGITR group. Control IgG vs combo, P=0.0023; aGITR vs combo, P=0.0087. b. Survival of C57BL/6J mice inoculated with MC-38 mouse colon cancer cells and subjected to the indicated treatments. Error bars represent SEM of the means. Statistical differences of tumor growth kinetics between treatment groups were assessed using unpaired twotailed t-tests to compare area under the curves. Control IgG vs combo, P=0.0124; αGal-9 vs combo, P=0.0349. c, d, The average tumor growth and survival of C57BL/6J mice inoculated with B16F10 mouse melanoma cells and subjected to the indicated treatments. n=6 animals in control IgG, αGal-9, and Combo groups; n=7 animals in αGITR group. e-h, Response of BALB/cJ mice inoculated with EMT-6 mouse triple negative breast cancer cells to anti-Gal-9/anti-PD-L1 treatment. e, Treatment schedule. f. Individual tumor growth curves. g. Average tumor growth curves. n=8, 8, 8, 6 animals in control IgG, aGal-9, aPD-L1, and Combo group, respectively. Error bars represent SEM of the means. Statistical differences of tumor growth kinetics between treatment groups were assessed using unpaired two-tailed t-tests to compare area under the curves. Control IgG2b vs aGal-9, P=0.0166. h. Survival curves of mice in each treatment group. Log-rank (Mantel-Cox) tests were used for comparison of survival curves. Rat IgG2b vs combo, P=0.0374. Source data are provided as a Source Data file.



**Supplementary Fig. 5. CyTOF analysis of tumor-infiltrating lymphocytes (TILs) after indicated treatments of mice with established MC-38 tumors.** vi-SNE and FlowSOM analyses generated 8 color-coded clusters for TILs isolated from each sample (n =4 in each treatment group).



**Supplementary Fig. 6. Marker expression in TIL clusters. a-c,** t-SNE plot of TILs overlaid with the expression of selected markers for T cells (**a**), myeloid cells (**b**), and immune checkpoint molecules (**c**), in a sample from a representative mouse of the anti-Gal-9 treatment group.



Supplementary Fig. 7. Characterization of CD8 T cells and Treg cells that responded to anti-Gal-9 antibody treatment. a. Density plots of CyTOF data showing enrichment of Tregs (CD25<sup>+</sup>FoxP3<sup>+</sup>) in MC-38 TIL CD4 T cells in control and anti-Gal-9 treated mice but not in anti-GITR or Combo treated mice. **b** and **c**, Activated human T cells were treated with or without Gal-9 and then subjected to flow cytometric analysis of viable cell counts with counting beads. **b**, Gating strategy. **c**. Survival of T cell subsets after Gal-9 treatment. n = 3 independent experiments. d-f, Determination of T cell frequency and CD8 T cell/Treg ratio in MC-38 TILs after indicated treatments by flow cytometry. d, Gating strategy. e, Frequency of CD4 T cells, CD8 T cells, and  $T_{reg}$  cells. n = 3, 4, 3, and 4 mice in control IgG,  $\alpha$ Gal-9,  $\alpha$ GITR, and combo groups, respectively. CD4 T cells, control IgG2b vs combo, P=0.0196; CD8 T cells, control IgG2b vs combo, P=0.0380; T<sub>reg</sub> cells, control IgG2b vs combo, P=0.0064. f, CD8 T/T<sub>reg</sub> ratios in TILs from the 4 treatment groups. n = 3, 4, 3, and 4 mice in control IgG,  $\alpha$ Gal-9,  $\alpha$ GITR, and combo groups, respectively. Control IgG2b vs combo, P=0.0469; αGal-9 vs combo, P=0.0242. g-j, Central memory (g), exhaustion (h), and proliferation (i, j) marker expression in anti-Gal-9expanded CD8 T 1 subset. Unpaired two-tailed t tests were used for comparing means between treatment groups. Each circle represents one mouse. Error bars represent SEM. Source data are provided as a Source Data file.



**Supplementary Fig. 8. Regulation of Gal9 expression. a**, High-density oligonucleotide array analysis of a panel of 79 human tissues/cell types showing that Gal-9 is preferentially expressed by immune cells (purple. See inset for cell types), especially antigen presenting cells. (data source: BioGPS). b and c, Flow cytometric analysis of permeabilized (b) and nonpermeabilized (c) PBMCs for detection of total (b) and surface (c) Gal-9 in lymphocytes and monocytes. d, Flow cytometric analysis of nonpermeabilized PBMCs for detection of surface Gal-9 on CD3<sup>+</sup> T cells and CD14<sup>+</sup> monocytes. e-h, Expression of Gal-9 protein after indicated treatment of representative cancer cell lines from humans (e-g) and mice (h). Experiments were repeated twice with similar results. Source data are provided as a Source Data file.



**Supplementary Fig. 9.** Co-expression of *LGALS9* with interferon-stimulated gens (ISGs) in multiple cancer types. **a**, Scatter plots showing co-expression of *LGALS9* with ISGs in multiple cancer types in TCGA. Two-tailed Pearson's correlation test. **b**, Pearson correlation coefficients of *LGALS9* and ISG expression in multiple cancer types in TCGA and corresponding cell lines in CCLE.

| Target             | Label | Clone       | Specificity  | Source       | Catalog # |
|--------------------|-------|-------------|--------------|--------------|-----------|
| Ly-6G/Ly-6C, Gr-1  | 141Pr | RB6-8C5     | Mouse        | BioLegend    | 108402    |
| KLRG1              | 142Nd | 2F1         | Mouse        | BD           | 562190    |
| CD357, GITR        | 143Nd | DTA1        | Mouse        | DVS-Fluidigm | 3143019B  |
| CD69               | 145Nd | H1.2F3      | Mouse        | BioLegend    | 104533    |
| CD8a               | 146Nd | 53-6.7      | Mouse        | DVS-Fluidigm | 3146003B  |
| CD223, LAG-3       | 147Sm | C9B7W       | Mouse        | BioLegend    | 125202    |
| CD11b              | 148Nd | M1/70       | Mouse        | DVS-Fluidigm | 3148003B  |
| CD19               | 149Sm | 6D5         | Mouse        | DVS-Fluidigm | 3149002B  |
| CD25               | 150Nd | 3C7         | Mouse        | BioLegend    | 101902    |
| TIGiT, Vstm3       | 151Eu | 1G9         | Mouse        | BioLegend    | 142102    |
| CD3, CD3e          | 152Sm | 145-2C11    | Mouse        | BioLegend    | 100302    |
| Caspase 3, cleaved | 153Eu | D3E9        | Human, Mouse | CST          | 9579BF    |
| CD274, PD-L1       | 154Sm | 10F.9G2     | Mouse        | BioLegend    | 124303    |
| Foxp3              | 158Gd | FJK-16s     | Mouse, Rat   | DVS-Fluidigm | 3158003A  |
| CD279, PD-1        | 159Tb | 29F.1A12    | Mouse        | BioLegend    | 135202    |
| CD62L              | 160Gd | MEL-14      | Mouse        | DVS-Fluidigm | 3160008B  |
| T-bet              | 161Dy | 4B10        | Human, Mouse | DVS-Fluidigm | 3161014B  |
| TIM3, CD366        | 162Dy | RMT3-23     | Mouse        | DVS-Fluidigm | 3162029B  |
| CD152, CTLA-4      | 163Dy | 9H10        | Mouse        | BioLegend    | 106202    |
| Ly-6A/E, Sca-1     | 164Dy | D7          | Mouse        | DVS-Fluidigm | 3164005B  |
| CD44               | 166Er | IM7         | Human, Mouse | BioLegend    | 103002    |
| Ki67               | 168Er | B56         | Mouse, Human | BD           | 556003    |
| CD14               | 169Tm | Sa14-2      | Mouse        | BioLegend    | 123302    |
| CD127, IL-7Ra      | 170Er | A7R34       | Mouse        | BioLegend    | 135029    |
| CD4                | 172Yb | RM4-5       | Mouse        | BioLegend    | 100506    |
| I-A/I-E MHC-II     | 174Yb | M5/114.15.2 | Mouse        | DVS-Fluidigm | 3174003B  |
| CD38               | 175Lu | 90          | Mouse        | DVS-Fluidigm | 3175014B  |
| CD278, ICOS        | 176Yb | 7E.17G9     | Mouse        | DVS-Fluidigm | 3176014B  |
| CD11c              | 209Bi | N418        | Mouse        | DVS-Fluidigm | 3209005B  |
| CD45               | 89Y   | 30-F11      | Mouse        | DVS-Fluidigm | 3089005B  |

## Supplementary Table 1. CyTOF antibody list

| Supplementary | Table 2. | Other | antibodies | used | in the s | study |
|---------------|----------|-------|------------|------|----------|-------|
|---------------|----------|-------|------------|------|----------|-------|

| REAGENT or RESOURCE                                                    | Supplier                     | Catalog #   | Used at                 |
|------------------------------------------------------------------------|------------------------------|-------------|-------------------------|
| FITC anti-human CD4 Antibody, clone RPA-T4                             | BioLegend                    | 300506      | 1:20                    |
| PE anti-human CD8a Antibody, clone HIT8a                               | BioLegend                    | 300908      | 1:20                    |
| APC anti-human CD279 (PD-1) Antibody, clone<br>EH12.2H7                | BioLegend                    | 329908      | 1:50                    |
| PE anti-human CD366 (Tim-3) Antibody, clone F38-2E2                    | BioLegend                    | 345006      | 1:50                    |
| eFluor 660 anti-human Galectin 9 Monoclonal Antibody,                  | Thermo Fisher                | 50-9116-42  | 1:20                    |
| clone 9M1-3                                                            | Scientific                   |             |                         |
| FITC anti-human CD3 Antibody, clone HIT3a                              | BioLegend                    | 300306      | 1:20                    |
| PE anti-human CD14 Antibody, clone 63D3                                | BioLegend                    | 367104      | 1:20                    |
| FoxP3 Antibody, anti-human, APC, REAfinity                             | Miltenyi Biotec              | 130-125-580 | 1:50                    |
| Anti-mouse CD3-APC/Cy7                                                 | BioLegend                    | 100221      | 1:20                    |
| Anti-mouse CD8-APC                                                     | BioLegend                    | 100711      | 1:20                    |
| Anti-mouse CD4-FITC                                                    | BD Biosciences               | 553046      | 1:200                   |
| Anti-mouse FoxP3-PE                                                    | Invitrogen                   | 12-5773-80  | 1:20                    |
| LEAF™ Purified anti-human CD3 antibody, clone OKT3                     | BioLegend                    | 317304      | Specified in<br>Methods |
| LEAF™ Purified anti-human CD28 antibody, clone<br>CD28.2               | BioLegend                    | 302914      | Specified in<br>Methods |
| Purified anti-mouse Galectin-9 Antibody, clone 108A2                   | BioLegend                    | 137901      | 0.5 μg/ml               |
| Purified Rat Anti-Mouse CD16/CD32 (Mouse BD Fc<br>Block™), Clone 2.4G2 | BD Biosciences               | 553142      | 1:50                    |
| Human TruStain FcX™ (Fc Receptor Blocking Solution)                    | BioLegend                    | 422302      | 1:20                    |
| PD-1 (D4W2J) XP® Rabbit mAb                                            | Cell Signaling<br>Technology | 86163       | 1:1000                  |
| Mouse anti-GALECTIN-9 Antibody, clone OTI1G3                           | Bio-Rad                      | VMA00212    | 1:1000                  |
| Peroxidase AffiniPure Goat Anti-Human IgG, Fcγ                         | Jackson                      | 109-035-098 | 1:10000                 |
| fragment specific                                                      | ImmunoResearch               |             |                         |
|                                                                        | Inc.                         |             |                         |
| Peroxidase-AffiniPure Goat Anti-Rabbit IgG (H+L)                       | Jackson                      | 111-035-003 | 1:10000                 |
| antibody                                                               | ImmunoResearch               |             |                         |
|                                                                        | Inc.                         |             |                         |
| Peroxidase-AffiniPure Goat Anti-Mouse IgG (H + L)                      | Jackson                      | 115-035-003 | 1:10000                 |
| antibody                                                               | ImmunoResearch               |             |                         |
|                                                                        | Inc.                         | DE0040      | 400 /                   |
| Anti-mouse Galectin-9 antibody InVivoMAb, clone RG9-<br>1              | Bio X Cell                   | BE0218      | 100 μg/mouse            |
| Anti-TIM-3 Rabbit antibody                                             | R&D Systems                  | MAB23652    | 2 μg/ml                 |
| Anti-mouse GITR antibody InVivoMab, clone DTA-1                        | Bio X Cell                   | BE0063      | 100 μg/mouse            |
| Rabbit Anti-Stat1, phospho (Tyr701) Monoclonal                         | Cell Signaling               | 9167        | 1:1000                  |
| Antibody, Unconjugated, Clone 58D6                                     | Technology                   |             |                         |
| Rat IgG2b isotype control antibody InVivoMab                           | Bio X Cell                   | BE0090      | 100 μg/mouse            |
| InVivoMAb anti-mouse PD-L1 (B7-H1)                                     | Bio X Cell                   | BE0101      | 100 μg/mouse            |
| Mouse IgG1, kappa Isotype Ctrl PE                                      | BioLegend                    | 400112      | 1:20                    |
| Mouse IgG1, κ Isotype Ctrl Antibody APC                                | BioLegend                    | 400120      | 1:20                    |

## Supplementary Table 3. List of primers

| Name                                       | Sequence                         |  |  |
|--------------------------------------------|----------------------------------|--|--|
| Primers for mutagenesis                    |                                  |  |  |
| Gal-9(R65A)_F                              | CTTCAACCCTgccTTTGAAGATGGAGGG     |  |  |
| Gal-9(R65A)_R                              | TGGAAGGCAATGTCATTTC              |  |  |
| Gal-9(R239A)_F                             | CCTGAACCCCgccTTTGATGAGAATGCTG    |  |  |
| Gal-9(R239A)_R                             | TGGAAGGCGATGTGGTTC               |  |  |
| PD-1(N49Q)_F                               | CGAAGGGGACcagGCCACCTTCAC         |  |  |
| PD-1(N49Q)_R                               | GTCACCACGAGCAGGGCT               |  |  |
| PD-1(N58Q)_F                               | CAGCTTCTCCcagACATCGGAGAG         |  |  |
| PD-1(N58Q)_R                               | CAGGTGAAGGTGGCGTTG               |  |  |
| PD-1(N74Q)_F                               | GAGCCCCAGCcagCAGACGGACA          |  |  |
| PD-1(N74Q)_R                               | ATGCGGTACCAGTTTAGCAC             |  |  |
| PD-1(N116Q)_F                              | GGCCCGGCGCcagGACAGCGGCA          |  |  |
| PD-1(N116Q)_R                              | CTGACCACGCTCATGTGGAAGTCACGC      |  |  |
|                                            |                                  |  |  |
|                                            |                                  |  |  |
|                                            |                                  |  |  |
| Primers for real-time P                    | CR                               |  |  |
| QPCR Gal-9_F                               | TCTGGGACTATTCAAGGAGGTC           |  |  |
| QPCR Gal-9_R                               | CCATCTTCAAACCGAGGGTTG            |  |  |
| QPCR GAPDH_F                               | GGAGCGAGATCCCTCCAAAAT            |  |  |
| QPCR GAPDH_R                               | GGCTGTTGTCATACTTCTCATGG          |  |  |
|                                            |                                  |  |  |
|                                            |                                  |  |  |
|                                            |                                  |  |  |
| Primers for recombinant protein expression |                                  |  |  |
| EcoRI_Gal9_F                               | GAATTCatggccttcagcggttcc         |  |  |
| Xhol_Gal9_R                                | gCTCGAGctatgtctgcacatgggt        |  |  |
| Xhol_Gal9N_R                               | gCTCGAGctactggaagctgatgtaggacagc |  |  |
| EcoRI_Gal9C_F                              | GAATTCttcatcaccaccattctggg       |  |  |
| Ndel_Leg9_F                                | gCATATGgccttcagcggttcccagg       |  |  |
| Xhol_Leg9_R                                | gCTCGAGctatgtctgcacatgggtcagc    |  |  |
| Xhol_Leg9N_R                               | gCTCGAGctactggaagctgatgtaggacagc |  |  |
| Ndel_Leg9C_F                               | gCATATGttcatcaccaccattctggg      |  |  |