Supplementary Information

Jia-Wei Wang et al.

Supplementary Figures

Supplementary Figure 1 | H-bonding mode. Schematic presentation of the H-bonding between two layers of Co-MOF.

Supplementary Figure 2 | Crystallographic structure of Co-MOF. Presentation of crystallographic 3D structure of Co-MOF, stacked by the 2D metal-organic layers. The H atoms are omitted for clarity.

Supplementary Figure 3 | Crystallographic structure of Cd-MOF. Presentation of crystallographic 3D structure of Cd-MOF, stacked by the 2D metal-organic layers. The H atoms are omitted for clarity.

Supplementary Figure 4 | Crystallographic structure of Zn-MOF. Presentation of crystallographic 3D structure of Zn-MOF. The H atoms are omitted for clarity.

Supplementary Figure 5 | PXRD patterns for Cd-based samples. Simulated Cd-MOF (gray), as-prepared Cd-MOF (blue) and Cd-MOL@GO (green).

Supplementary Figure 6 | PXRD patterns for Zn-based samples. Simulated Zn-MOF (brown), as-prepared Zn-MOF (red), envisioned "Zn-MOF@GO" sample (orange).

Supplementary Figure 7 | SEM. SEM images of bulky Co-MOF with the bar of 1 μm.

Supplementary Figure 8 | EDS mapping. EDS mapping of Co-MOL@GO, indicating the presence of Co and N elements on the GO.

Supplementary Figure 9 | TEM for Co-MOL@GO with different loading amounts. TEM images for the Co-MOL@GO samples prepared with different loading amounts of Co^{2+} , including **a** 0.1, **b** 0.3, **c** 0.5 and \mathbf{d} 1.0 mL aqueous solution of CoCl₂ 6H₂O (0.1 M).

Supplementary Figure 10 | PXRD results for Co-MOL@GO with different loading amounts of Co^{2+} . PXRD patterns of the Co-MOL@GO samples prepared with 0.1, 0.3, 0.5 or 1.0 mL aqueous solution of $CoCl₂ 6H₂O (0.1 M)$. The simulated PXRD pattern of Co-MOF is shown for comparison.

Supplementary Figure 11 | TEM and EDX characterizations on Cd-MOL@GO. a TEM images of Cd-MOL@GO, showing a range of MOL diameter of 20-30 nm. **b-d** EDX results of Cd-MOL@GO.

of CO and H₂ **a** yields in µmol or **b** yields in mmol g_{MOL}^{-1} , with 10 mg L⁻¹ Co-MOL@GO samples prepared with 0.1, 0.3, 0.5 or 1.0 mL aqueous solution of $CoCl₂6H₂O$ (0.1 M). Other conditions: 0.4 mM RuPS and 0.3 M TEOA in 5 mL CO₂-saturated CH₃CN/H₂O (v:v = 4:1) solution. With the comprehensive estimation of CO yield, Co-MOL@GO-0.5mL was chosen as the optimal catalyst.

Supplementary Figure 13 | Photocatalysis. Time profiles of CO (black star) and H_2 (red pentagon) evolution catalyzed by 10 mg L^{-1} Co-MOL@GO in a five-times scaling-up reaction system.

Supplementary Figure 14 | Photocatalysis. Time profiles of CO (star) and H_2 (pentagon) evolution catalyzed by 10 mg L⁻¹ Co-MOL@GO (red) and Co@GO (green) under irradiation in the presence of 0.4 mM RuPS and 0.3 M TEOA in 5 mL CO₂-saturated CH₃CN/H₂O (v:v = 4:1) solution.

Supplementary Figure 15 | TGA. TGA curve of Co-MOF.

Supplementary Figure 16 | PXRD. PXRD patterns of as-prepared Co-MOF sample (orange) and that soaked in a CO_2 -saturated CH_3CN/H_2O (*v*:*v* = 4:1) solution containing 0.3 M TEOA for 1 d (black).

Supplementary Figure 17 | PXRD. PXRD patterns of as-prepared Co-MOL@GO (black) and the one experienced 12 h photo-reaction in a CO_2 -saturated CH_3CN/H_2O ($v:v = 4:1$) solution containing 0.3 M TEOA (red).

Supplementary Figure 18 | Quenching experiments. Fluorescence spectra of a CH_3CN/H_2O (v : $v = 4:1$) solution containing 0.4 mM RuPS in the presence of 0~0.5 g L^{-1} of Co-MOF.

Supplementary Figure 19 | TPV. TPV curves of dry GO (blue), Co-MOF (orange) and RuPS (green) powders in air.

Supplementary Figure 20 | Cyclic voltammetry. a CVs of Co-MOL@GO (red) or GO (black solid line) under N₂, **b** CVs of Co-MOF under N₂ (black) or CO₂ (orange) on a glass carbon disk electrode (3 mm diameter) in CH₃CN/H₂O (v : $v = 4$:1) solution at 0.1 V s⁻¹ scan rate. The CV obtained with bare glass carbon disk electrode is shown for comparison (black dashed line in Supplementary Figure 20a).

Supplementary Figure 21 | Calculated mechanism of Co-MOF. Calculated mechanism with the molecular unit of Co-MOF for catalytic proton reduction to H_2 and CO_2 reduction to formate, showing the calculated redox potentials and free energy changes.

Supplementary Tables

Supplementary Table 1 | Crystallographic data. Crystallographic data of Co-MOF, Cd-MOF and Zn-MOF.

Entry	$V_{\rm{Co}}$	Sample	Co contents	Co-MOL	yields CO/H ₂	CO/H ₂ yields
	$(mL)^{[a]}$		$(w\%)$	contents $(w\%)$	$(\mu \text{mol})^{\text{[b]}}$	$\pmod{g^{-1}MOL}^{[b]}$
1	0.1	Co-MOL@GO	0.51 ± 0.01	2.93	4.42/0.059	3017/40.3
$\overline{2}$	0.3	$Co-MOL@GO$	0.94 ± 0.02	5.40	6.67/0.082	2471/30.2
3	0.5	Co-MOL@GO	1.20 ± 0.02	6.90	10.81/0.56	3133/162
$\overline{4}$	1.0	$Co-MOL@GO$	2.41 ± 0.06	14.8	11.11/1.19	1501/80.4

Supplementary Table 2 | Co amounts of Co-MOL@GO determined by ICP-MS and the photocatalytic performance.

 $^{[a]}V_{Co}$ is the added volume of 1.0 M CoCl₂ solution.

^[b]10 mg L^{-1} Co-MOL@GO was used for 10 h photocatalysis.

Supplementary Table 3 | Photocatalytic performances of MOF catalysts for CO₂ reduction to CO with

Ru-based PSs.

Entry	Intermediates	singlet	doublet	triplet	quartet
1	Co ^{II}	N.A.	23.32	N.A.	$\overline{0}$
$\overline{2}$	Co ^I	22.62	N.A.	$\mathbf{0}$	N.A.
3	$CoII-CO2$	N.A.	0.08	N.A.	$\overline{0}$
$\overline{4}$	$CoII-COOH$	N.A.	$\mathbf{0}$	N.A.	0.05
5	$CoII-CO$	N.A.	11.28	N.A.	$\overline{0}$
6	$CoIII-H$	7.85	N.A.	$\mathbf{0}$	N.A.
7	$CoII-H$	N.A.	1.13	N.A.	$\overline{0}$
8	$CoII-H2$	N.A.	20.97	N.A.	$\overline{0}$
9	$CoII$ -HCOO	N.A.	18.30	N.A.	$\boldsymbol{0}$

Supplementary Table 4 | Relative free energy in kcal mol⁻¹ for intermediates at different spin states.^a

 $^{[a]}$ For each lowest energy spin state, the free energy is set as reference point, 0 kcal mol⁻¹.

Supplementary Table 5 | Calculated Co^{III} reduction potentials by different functional with def2SVP basis set.

Supplementary References

- 1. Zheng, H. L., et al. Photochemical in situ exfoliation of metal-organic frameworks for enhanced visible-light-driven CO₂ reduction. *Angew. Chem. Int. Ed.* DOI: 10.1002/anie.202012019 (2020), .
- 2. Wang, X.-K., et al. Monometallic catalytic models hosted in stable metal–organic frameworks for tunable CO₂ photoreduction. *ACS Catal.* 1726-1732 (2019).
- 3. Dong, H.*, et al.* Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO₂ reduction reaction. *Appl. Catal. B-Environ* DOI: 10.1016/j.apcatb.2020.119173 (2020).
- 4. Wang, Y., Huang, N. Y., Shen, J. Q., Liao, P. Q., Chen, X. M. & Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO₂ reduction. *J. Am. Chem. Soc.* **140**, 38-41 (2018).
- 5. Liu, D. C.*, et al.* Anchoring Co(II) ions into a thiol-laced metal-organic framework for efficient visible-light-driven conversion of CO² into CO. *ChemSusChem* **12**, 2166-2170 (2019).
- 6. Wang, S., Yao, W., Lin, J., Ding, Z. & Wang, X. Cobalt imidazolate metal-organic frameworks photosplit $CO₂$ under mild reaction conditions. *Angew. Chem. Int. Ed.* **53**, 1034-1038 (2014).
- 7. Wang, M., et al. Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO₂: The role of the morphology effect. *J. Mater. Chem. A* **6**, 4768-4775 (2018).
- 8. Niu, K., *et al.* A spongy nickel-organic CO₂ reduction photocatalyst for nearly 100% selective CO production. *Sci. Adv.* **3**, e1700921 (2017).
- 9. Zhu, W., et al. Selective reduction of $CO₂$ by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. *Appl. Catal. B-Environ* **238**, 339-345 (2018).
- 10. Han, B., et al. Nickel metal-organic framework monolayers for photoreduction of diluted CO₂: Metal-node-dependent activity and selectivity. *Angew. Chem. Int. Ed.* **57**, 16811-16815 (2018).
- 11. Qin, J., Wang, S. & Wang, X. Visible-light reduction CO₂ with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. *Appl. Catal. B-Environ* **209**, 476-482 (2017).