
1 

Supplementary Information for 
Replication-Independent Instability of Friedreich’s Ataxia GAA 
Repeats during Chronological Aging 

Alexander J. Neil1#, Julia A. Hisey1#, Ishtiaque Quasem1, Ryan J. Mcginty1, Marcin Hitczenko2, 
Alexandra N. Khristich1, Sergei M. Mirkin1* 

Sergei M. Mirkin  
Email:  sergei.mirkin@tufts.edu 

This PDF file includes: 

Supplementary text 
Figures S1 to S5 
Tables S1 to S4 
Legend for Video S1 
SI References  

Other supplementary materials for this manuscript include the following: 

Video S1 
Video S2 

mailto:sergei.mirkin@tufts.edu


Supplementary text

Bayesian analysis

Before discussing the details of our statistical model, we present a general overview of Bayesian analysis and

the benefits it offers for our data. We recommend Gelman et al. (1) and McElreath (2) for a more thorough 
discussion of the philosophy behind and mechanics of Bayesian analysis. Broadly speaking, a Bayesian

approach quantifies uncertainty about parameters of interest by defining probability distributions for those

parameters. More specifically, for parameters φ, the goal is to estimate a posterior distribution

Prob(φ | data) ∝ Prob(data | φ)Prob(φ), (1)

that, as a probability distribution, allows for intuitive statements about φ, of the form “Given the observed

data, how likely is φ to be in [some range]?” The posterior determines the plausibility of φ by balancing

how well φ fits the data, as given by the likelihood in the first term on the right-hand side of (Equation 1),

with any other information about φ one may have, captured by the prior distribution in the second term

on the right-hand side of (Equation 1). The prior can be chosen to be more or less agnostic about likely

values of φ, and its influence on the posterior decreases as more data are collected. Especially in biological

settings, where accumulation of knowledge and understanding about the mechanisms at play yields a sense

of reasonable parameter values, prior information can be very useful for estimation. In particular, if any

experiments similar to those in this paper were run in the future, the Bayesian construct would naturally

allow the incorporation of knowledge gained from our experiments into further inference, via the prior.

The alternative, frequentist approach makes statements about functions of the data that have certain de-

sirable characteristics, such as unbiasedness for point estimates or coverage for confidence intervals, upon

repeated sampling of data. Thus, these statistics are evaluated based on their average behavior over in-

finitely many hypothetical datasets. Any associated probability statements relate to the performance of

the statistical methodology itself, rather than the plausibility of the parameters. Besides having a notori-

ously awkward interpretation, such an approach may not provide useful or even sensible conclusions for the

particular dataset one has.

As a simple example, consider an experiment with 5 independent binary events, each occurring with some

unknown probability of interest p, so that the data one observes is X = 0, 1, . . . , 5 successes. A common

frequentist estimate for p is given by p̂ = X
5 . Such an approach is unbiased, in the sense that if one

repeated the experiment infinitely many times, to generate X1, X2, X3, . . ., the average of the corresponding

estimates, p̂1, p̂2, p̂3, . . . would be p for any value of p. In practice, however, we often have data from only

one experiment. Now, consider the case where X = 0, yielding p̂ = 0. Although this estimate is appropriate

for long-run unbiasedness, it seems often the case that the experimenter knows that p 6= 0, making p̂ = 0 a

somewhat nonsensical estimate. By contrast, a Bayesian approach infers a distribution for p, from which a

more meaningful posterior mean can be calculated. In this case, the prior guides how likely p is to be very

close to 0 or not (if p = 0.25, with 5 events, X will be 0 almost 25 percent of the time). This aspect of the

Bayesian approach is a key motivation for its adoption in this work.

In addition, because fitting a Bayesian model effectively reduces to evaluating and weighing strength of

evidence for parameters in the prior and data likelihood, one can readily quantify relative probability of
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more layered models and complicated parameter structures. In our context, this opens the door to fitting

hierarchical models that allow for similarities across genotypes and mutation types. While the analysis in this

paper looked at each genotype and mutation type separately, imposing monotonicity of mutation frequencies

across time was a simple extension of the basic model that greatly improved inference quality in cases with

low mutation counts by making use of data from multiple time points.

Description of statistical model

Below, we provide details of the statistical model used to estimate and compare mutation frequencies. We

fit the described model separately for each combination of genotype and mutation type, so for simplicity of

notation, we assume a generic such combination and drop any relevant indexing. The goal of the analysis is

to infer distributions for ft, the frequency of mutation at time point t, for all observed time points. In this

exposition, we focus on the most common experimental case in which data are observed at two time points.

The approach in the case of more observed time points is a trivial extension of the model presented.

At each time point, t = 0 and t = 6, we observe data from It distinct plates, which we index by i = 1, . . . , It.

Specifically, the data observed for plate i at time t are:

Nti = # of plated cells,

Mti = # resistant cells,

Kti = # resistant cells sampled,

Jti = # of sampled cells with given mutation type.

For our analysis, we decompose ft into the product of the resistance frequency, rt, and the frequency of

resistant cells with the given mutation type, pt, so that ft = rt × pt. The data likelihood for plate i at time

point t conditions on the number of cells plated and the number of resistant cells sampled, and for a given

(rt, pt) is defined by the binomial distributions

Mti | Nti ∼ Binomial (Nti, rt) ,

Jti | Kti ∼ Binomial (Kti, pt) ,
(2)

with independence assumed across plates and time points.

A key component of the analysis is our knowledge of the relative ordering among ft, rt across time points,

specifically

(a.) f0 < f6 < r6, and

(b.) f0 < r0 < r6.

Because conditions (a.) and (b.) relate directly to ft and rt, we specify the model in terms of those
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parameters, with pt = ft
rt

. Therefore, our four-parameter model is given by

logit (f0) = θ0 (3)

logit (f6) = θ0 + θ6 (4)

logit (r0) = θ0 + β0 (5)

logit (r6) = θ0 + θ6 + β6, (6)

where logit(x) = log
(

x
1−x

)
maps a probability in (0, 1) to the real line. Conditions (a.) and (b.) are

respectively satisfied by imposing the restrictions

θ6, β6 > 0 and 0 < β0 < θ0 + θ6. (7)

The logistic model framework is flexible as it it allows extensions that assume more complicated sources

of variation in the data, including commonality among similar genotypes or added variability due to plate

attributes, by restructuring the additive effects that define ft and rt.

Adopting a Bayesian approach, the posterior distribution of the four parameters can be written as

Prob (θ0, θ6, β0, β6 | {Nti}, {Mti}, {Kti}, {Jti}) ∝ Prob (θ0, θ6, β0, β6)×∏
t=0,6

It∏
i=1

Prob (Mti | Nti, rt) Prob (Jti | Kti, pt) ,

where the the first line of the right-hand side represents a prior distribution for the four parameters and

the second line represents the complete data likelihood, defined by the binomial distributions in (2) and the

mappings from θt, βt to rt, pt implied by (3)-(6).

Subject to the restrictions in (7), we adopt the following priors:

θ0 ∼ Normal(−9, 3)

θ6 ∼ Normal(0, 3)

β0 ∼ Normal(0, 10)

β6 ∼ Normal(0, 10).

The prior for θ0 represents a vaguely informative prior that reflects an expectation that mutation frequencies

are rare, with a little over 95% of the mass falling between 1e − 7 and 5e − 2. The remaining three priors

are uninformative by design, recognizing that differences between f0 and f6, and especially between ft and

rt, might be substantial on the logit scale.

Sensitivity to the choice of priors was studied by fitting models and comparing posterior distributions of

ft based on several assumed prior distributions. In cases where mutations were observed among sampled

resistant cells (Jti > 0 for some i), we found the results to be robust to the choice of priors, including other

priors based on an understanding of the general range of mutation frequencies as well as more agnostic

priors for θ0. This fact should be of no surprise as the large numbers of plated cells provide a great deal of

information about the true frequency of the mutations. The resulting impact on the posterior distribution

is that the data likelihood dominates the prior distribution. The role of the prior has a more significant
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impact on the estimated lower ranges of mutation frequencies when no mutations were observed (Jti = 0 for

all i), since the observed data are consistent with any choice of ft sufficiently near 0. In this case, our chosen

prior for θ0 guides the lower end of plausible values based on our data to include, but be very likely larger

than, 5e − 8. Most importantly, the upper end of the mutation frequency distribution remains data-driven

for biologically sensible choices of prior, since sufficiently high values of ft prove incompatible with data in

which no mutations were observed.

Models were fit using the rstan package in R. For each model, four Markov Chain Monte Carlo chains were

run for 2,000 iterations each, with the last 1,000 draws from each chain stored to generate a total of 4,000

posterior draws for each parameter. Paired values of θ0 and θ6 are converted to 4,000 paired draws of f0

and f6 per (3) and (4). These, in turn, can be used to generate a posterior sample of 4,000 estimates of the

difference, f6 − f0, from which probabilistic assessments about the changes in mutation frequency over time

can be made.
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Fig. S1. Viability and assessments of quiescence. (A) Viability determined by CFUs on YPD from 
individual cultures at QD6 divided by QD0s. Bars represent mean viability and error bars 
represent 95% confidence intervals calculated via the Wilson method. (B) Data from 24hr 
observation of QD1 cells in a microfluidics chamber in media with (+PO4) or without (-PO4) 
phosphate. Cells were considered divided if they underwent at least one division in the 24hr 
period. (C) Analysis of bud scars per cell as visualized using calcofluor white staining of QD0 
cells. Bars represent the frequency of cells with the designated number of bud scars. Error bars 
represent 95% confidence intervals calculated via the Wilson method. (D) Viability of a Ura+ and a 
Ura- strain was determined by CFUs on YPD from individual cultures at QD6 divided by QD0. 
Bars represent mean viability and error bars represent 95% confidence intervals calculated via 
the Wilson method. 

A

B Microfluidics analysis QD1
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Fig. S2. Deletion (A) and recombination (B) frequencies at the beginning and end of 
chronological aging in mismatch repair deficient strains. Bars represent median deletion 
frequency or recombination frequency at QD0 (dark grey) and QD6 (light grey) timepoints. Error 
bars represent 95% credible intervals of the estimated distributions. 

FIGURE S2

A B
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Fig. S3. Deletion and recombination frequencies at the beginning and end of quiescence in NHEJ 
and HR mutants. (A) Deletion frequencies at the beginning and end of chronological aging in 
NHEJ, Rad1, and Exo1 deficient strains. (B) Recombination frequencies at the beginning and end 
of chronological aging in HR, Rad1, and Exo1 deficient strains. Bars represent median deletion 
frequency or recombination frequency at QD0 (dark grey) and QD6 (light grey) timepoints. Error 
bars represent 95% credible intervals of the estimated distributions. 

A B

FIGURE S3
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Fig. S4. Change in recombination and deletion frequencies in mutants required for the alternate 
pathway and repair protein levels in quiescence. (A) Eliminating NHEJ does not affect gene 
conversion frequency and (B) eliminating HR does not affect deletion frequency during 
chronological aging. Bars represent the median change in recombination frequency (Δrec freq) 
(blue) (A) or deletion frequency (Δdel freq) (red) (B) between QD0 and QD6. Error bars represent 
95% credible intervals of the estimated distributions. Biological significance was defined as no 
overlap between the WT and mutant 95% credible intervals. Dashed lines indicate WT 95% 
credible interval. (C) Western blot showing abundance of myc-tagged Ku70, Msh3, and Rad52 
proteins extracted from LOG or Q cells. Western blot probed using myc or GAPDH antibodies. 
Coomassie stained membrane (right) shows each lane’s total protein in the same order as the 
western blot. 

FIGURE S4

A B
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Fig. S5. Expansion rates, frequencies, and sizes in dividing and quiescent cells. (A) Rad1 and 
Msh3 deletion do not alter expansion rate in dividing cells. Bars represent (GAA)100 expansion 
rates calculated using our FluCalc web tool. Error bars represent 95% confidence intervals. (B) 
Rev1, Ogg1 and Rad14 are not involved in expansions in chronological aging. Bars represent the 
median change in expansion frequency (Δexp freq) between QD0 and QD6. Error bars represent 
95% credible intervals of the estimated distributions. Biological significance was defined as no 
overlap between the double mutant and msh3Δ 95% credible intervals. (C) Expansion frequency 
at the beginning and end of chronological aging in strains shown in Figure 6B. Bars represent 
median expansion frequency at QD0 (dark grey) and QD6 (light grey) timepoints. Error bars 
represent 95% credible intervals of the estimated distributions. (D) Expansion length as 
determined by agarose gel electrophoresis at QD0, QD3, QD6 and QD12 in WT and msh3Δ 
strains. Black bars and whiskers represent medians and 95% confidence intervals. 

FIGURE S5
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Table S1. Strains used in this study 

Strain Genotype Comments 

CH1585 MATa, leu2-Δ1, trp1-Δ63, ura3–52, his3–200 Shishkin et al. 2009 

KS001 CH1585, bar1::HIS3 Shah et al. 2012 

KS005 KS001, ChrIII(75594-75641):: UR-(GAA)100-A3-TRP1 Shah et al. 2012 

YEG101-1/2 KS005, msh3::HphMX4 

YEG102-1/2 KS005, msh6::HphMX4 

YAN134 KS005, yku70::HphMX4 

YAN131/132 KS005, yku80::HphMX4 

YAN195/196 KS005, lif1::HphMX4 

YAN175/176 KS005, rad51::HphMX4 

YAN135/136 KS005, rad52::HphMX4 

YAN150/151 KS005, pol32::HphMX4 

YAN153/155 KS005, mre11::HphMX4 

YAN191/192 KS005, rad14::HphMX4 

YAN189/190 KS005, rad2:: HphMX4 

JAH25 KS005, mlh1:: HphMX4 

JAH41 KS005, pms1::LEU2 

JAH16 KS005, rad1::HphMX4 

JAH205 KS005, mre11-D56N 

JAH275 KS005, pms1-E707K 

JAH285 KS005, exo1::NatMX4 

YAN206 YEG101, rad14::NatMX4 

YAN207 YEG101, pol32::NatMX4 

YAN204/205 YEG101, rad52::NatMX4 

JAH39 YEG101, rad1::NatMX4 

JAH48 YEG101, rev3::NatMX4 

JAH106 YEG101, rev1::KanMX6 

JAH94 YEG101, ogg1::NatMX4 

JAH184 YEG101, pol3-Y708A 

JAH238 YEG101, mlh3::NatMX4 
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Table S2. Primers used in this study 

Name Sequence 

For making knockouts 

MSH3F gtacttttgagagccaaaagcagtgcaaatagatttattttgttgaatctattaacaataCAGCTGAAGCTTCGTACGC 

MSH3R gcataagaaattgctataccatcgtgcgtgccagtacctcttcccacttcgtctaataatCATAGGCCACTAGTGGATCT
G 

MSH6F gataagattttttaattggagcaactagttaattttgacaaagccaatttgaactccaaaCAGCTGAAGCTTCGTACGC 

MSH6R taaagcatggatgtcttaatgatttaaatttcagaaaaccatttaattgagtattcgtttCATAGGCCACTAGTGGATCTG 

YKU70F gcgctcagtcactaatgcatttggcaatagtggagaacttaacgatcaagtggatCAGCTGAAGCTTCGTACGC 

YKU70R gcctttggatgattggatcttctgacttctcagattctaaaattttatttcgCATAGGCCACTAGTGGATCTG 

YKU80F ccctggaatcattgatcatcagttggtgaatccattccagtagcacctgttCAGCTGAAGCTTCGTACGC 

YKU80R ataatgtcaagtgagtcaacaactttcatcgtggatgtttcaccatcaatCATAGGCCACTAGTGGATCTG 

LIF1F cattggatgacttatttatgtagggtgctatgtcccagctgacggagttcattagCGGATCCCCGGGTTAATTAA 

LIF1R ataggctatgtttctatatccgtttccgattctgtctgcaagcaaggttccctaTCATAGGCCACTAGTGGATCTG 

RAD51F aaatgttggaaatgcaccactaccgttcttcaaccaatctagtttagctatTTAGAACGCGGCTACAATTA 

RAD51R aaagaggagaattgaaagtaaacctgtgtaaataaatagagacaagagaccaaatacctaCCCTGATTCTGTGGAT
AACC 

RAD52F cgaatggcgtttttaagctattttgccactgagaatcaacaaatgcaaacaaggaggttGCCAGATCTGTTTAGCTTG
CCT 

RAD52R ggtttcacgcggtacttgattcccagccccttctagcatatgaggccccagttcttTATCATCGATGAATTCGAGCTCG
TT 

POL32F ataatatttcacattaactaacaaccagaaataggctttagttaactcaatcggtaattaCAGCTGAAGCTTCGTACGC 

POL32R catttgtattatacattacatcacaattagtaatggaaagtgtttggaaaaaaaagaagaCATAGGCCACTAGTGGATC
TG 

MRE11F ttaagagaatgcagacaattgacgcaagttgtacctgctcagatccgataaaactcgactCAGCTGAAGCTTCGTACG
C 

MRE11R tcgcgaaggcaagcccttggttataaataggatataatataatatagggatcaagtacaaCATAGGCCACTAGTGGAT
CTG 

RAD14F agagtttggatcttcgtagtgaaggtatcgaacgtaacgctatgactcccCGGATCCCCGGGTTAATTAA 

RAD14R tatacataaccaacatttaaatgtcaatttcttcagtttctagcccgcagCATAGGCCACTAGTGGATCTG 

RAD2F ctagtataacccattcgaacctccgtggaggcattaaaagggagagtgaaaTTAGAACGCGGCTACAATTA 

RAD2R aaggaccgtatatatctactattcctggatcggttgactttgttaacatgcagaaacaCCCTGATTCTGTGGATAACC 

MLH1F atgtctctcagaataaaagcacttgatgcatcagtggttaacaaaattGCCAGCTGAAGCTTCGTACGC 

MLH1R ttaacacctctcaaaaactttgtatagatctggaaggttggctatttccaCATAGGCCACTAGTGGATCTG 

PMS1F gtacatagctagaactctagaaagcacagattaataccgattctaatacagattCGGCATCAGAGCAGATTGT 

PMS1R attatgaacgactctggtcatagtcttcttattcagcggtttacctatcattatACTGGAACAACACTCAACCCT 

EXO1F cttttttttcttacgcgtctttagcaaaggcgggaagtacaataactagttttgtgcacaaCCCCGGGTTAATTAAGGCG 

EXO1R gtcctcacatgcggcgtgcattgttcatagcggggcaaacatacttgtggcttaatttgacGAGCGCCCAATACGCAAA
C 

RAD1F cttatctcctggagtaagctatagccacagtcaatatcgcgtctaatgaaaGGCATCAGAGCAGATTGTA 

RAD1R aaagattcaaagagcatgtctaacttataacatatacggtcgaagtcaccaaatgaataCCCTGATTCTGTGGATAAC
C 

REV3F atgtcgagggagtcgaacgacacaatacagagcgatacggttagatcatcCGGATCCCCGGGTTAATTAA 

REV3R gcgagacatatctgtgtctagattaccaatcatttagagatattaatGCTGCATAGGCCACTAGTGGATCTG 

REV1F acagattttctcaaaataaatcgatactgcatttctaggcatatccagcgCCAGATCTGTTTAGCTTGCCTCG 

REV1R gatattacaggtaatgttcgcaaactgcgtgtttactgtatgctgaaatgTATCATCGATGAATTCGAGCTCGTT 

OGG1F atgtcttataaattcggcaaacttgccattaataaaagtgagctatgtGCCAGCTGAAGCTTCGTACGC 

OGG1R ctaatctatttttgcttctttgatgtgaagatcagacaattcaactttCATAGGCCACTAGTGGATCTG 

MLH3F cataaaccagcgaggctttcaaggaagaatgaacgtgaactcgtcaactcCGGATCCCCGGGTTAATTAA 

MLH3R gcgcaatttaaaatgcaggcgacaaaccttgttccaggattaaggttctCGCATAGGCCACTAGTGGATCTG 

For checking knockouts (internal) 

MSH3_int_F GCCATTGAGTGCATTACATCC 

MSH3_int_R AAATGAGGCAACTGAGTGGT 
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MSH6_int_F CGATATTGCAGACGACAAAGAG 

MSH6_int_R CTCGTTCATCCACTAACCATTG 

YKU70_int_F GCATGAAGATATCAGACAAGAAGC 

YKU70_int_R TGCTCGATGAACGGAACC 

LIF1_int_F CTGTTGTGTTAACGATTCTTACCG 

LIF1_int_R GGAGAGTTTAACTCAGAAATTGGC 

RAD51_int_F AGATCGGAGCTGATTTGTTTGAC 

RAD51_int_R CTTCACCGCCACCAATATCC 

RAD52_int_F GCCAAGAAATCTGCCGTTAC 

RAD52_int_R TGAGCTTTCGCTGATTTCATCC 

POL32_int_F GACCACGCCAGAAGAAACAA 

POL32_int_R GCTGTCGTTTCCAACAAGTC 

MRE11_int_F GATGGTGAAGGTGACATGGTT 

MRE11_int_R GTTAGCAACACGTCCCACA 

RAD14_int_F CCGATGACCAAGAATTTGAATCTG 

RAD14_int_R CTGGATGCTCCTTAGAACACTG 

RAD2_int_F ACCGTCTCAGCAGGAGGATA 

RAD2_int_R GAGATTTAGTGGGAACGTCCTC 

MLH1_int_F GCGTTGATGGAAAGGTGTGT 

MLH1_int_R CAATGGCAGATAATTCGGCG 

PMS1_int_F TACCGCCAGAAGCGAAAGTAAT 

PMS1_int_R CACACTCCGAACCGATGACA 

EXO1_int_F CAGCGGGAGGGAAAACTGAT 

EXO1_int_R CTCTGTTGGCTAGAGGTTGGTG 

RAD1_int_F CGAACTGGCACCGAATTTCT 

RAD1_int_R CTAAAGTAGGCCCCTGAAGG 

REV3_int_F GCATGCACACCCCTCATAGTAAGT 

REV3_int_R TGGCATTTGACTCTGGCAAGTTCC 

REV1_int_F AATGTGTAGGGTCGGCATTG 

REV1_int_R TGTGCAACCATTCGTTCCTTGA 

OGG1_int_F ACTGTGGCAATCAGGACGCC 

OGG1_int_R GGCTCGAGAAGTTAGCTCCTC 

MLH3_int_F GTTTGGGGCAATAATACCACCGG 

MLH3_int_R CGAACATCAAGGATGAAGACGGG 

For checking knockouts (external) 

MSH3_chk_F GTGTTCAAATCACGGTATGTGG 

MSH3_chk_R AAGGGGCAGTCACTTAACTCAG 

MSH6_chk_F TGACATAATGAATGGCTTCTGG 

MSH6_chk_R CCCGTTAACAATCCTAATCTGG 

YKU70_chk_F TTAATTGACTCTCGGTAGCCAAGTT 

YKU70_chk_R CGTCTTTATATATTGAATTTCGGCTT 

YKU80_chk_F TGCCGAGCACTTCAACCAATTT 

YKU80_chk_R CCGTCAGGGCATTTGTTGTCAT 

LIF1_chk_F GACGTGTCAATGCATAGAACTG 

LIF1_chk_R GATGCGATACTATAATACTCTTTGCC 

RAD51_chk_F CAATTCGCAAGAAACGCACT 

RAD51_chk_R AAGTAGTCATCGGGAAGAAGAGTA 

RAD52_chk_F ACGTCGCTAAAGATGGTATGGTA 

RAD52_chk_R CTAGAGGATTTTGGAGTAATAAATAATGATG 

POL32_chk_F TTTCCACTACGGTGTAACTTTCC 

POL32_chk_R TGTCCTTCGGATGGTATATTAGG 

MRE11_chk_F CCAATCATTTCGACCGTCACTC 

MRE11_chk_R CACAAGGGGACGGTTAATGAGG 
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RAD14_chk_F CGTTTGCTAAGTTGTAGGGAGA 

RAD14_chk_R GTACGAGTGACAAATGGGATATCA 

RAD2_chk_F TTGATGTTTCCAGAGGATGTGA 

RAD2_chk_R CCCAATTCCAGAGGAGTGAT 

MLH1_chk_F GTAATCGCGCTAGCATGCTA 

PMS1_chk_F GGTTTGTGGGCGTACTGTC 

PMS1_chk_R AAATGAGCTCCAATCACGTAATTCC 

EXO1_chk_F GTATTACGTCCAAACTAAGTTCGCG 

EXO1_chk_R GACCGCTAGCGGCTTGATTAG 

RAD1_chk_F ATGTAATCAACCTGTCCCGTCC 

RAD1_chk_R AGTGGAAGATGAATTGCGGATGA 

REV3_chk_F CGAGTGCAGTGCGTCTAGAAATAGTGT 

REV1_chk_F TACGGCAACCTTTAAGCACC 

REV1_chk_R GAGTCGGCCATTCCAATACC 

OGG1_chk_R TATCTTCCAACGCCTTGGTG 

MLH3_chk_F TTTGCGTTTATTTGCGAGCG 

MLH3_chk_R GGTTTTGACAACGTGATGAGG 

For making CRISPR guides 

PMS1E707K_gRNA_F CTGCGATTTAAAAACTGTCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATA
AGG 

PMS1E707KR_gRNA_R TGACAGTTTTTAAATCGCAGCGATCATTTATCTTTCACTGCGGAG 

MRE11D56NF_gRNA_F ATTCACGTGAAAAAGATCACGTTTTAGAGCTAGAAATAGCAAGTTAAAATA
AGG 

MRE11D56NR_gRNA_
R 

GTGATCTTTTTCACGTGAATCGATCATTTATCTTTCACTGCGGAG 

POL3Y708AF_gRNA_F TAACTCTGTCTATGGTTTTACAGGAGCGAGTTTTAGAGCTAGAAATAGCA
AGTTAAAATAAGG 

POL3Y708AR_gRNA_R TCGCTCCTGTAAAACCATAGACAGAGTTACGATCATTTATCTTTCACTGCG
GAG 

For making CRISPR donor templates 

PMS1E707K_don_F TTATCATAGTGACCAGAAAAGTTGATAACAAATATGATCTGTTTATTGTCGAT
CAGCATGCAAGTGATaagAAGTATAATTTCGAAACACTGCAGGCAGTG 

PMS1E707K_don_R CTACCGGCTGAGGTATTATCAATTTCTGCGATTTAAAAACTGTCACtGCCTGC 

MRE11D56N_don_F AAAACTTTCCATGAAGTCATGATGCTGGCCAAAAATAACAACGTAGACATGG
TTGTACAGagtGGTaATCTTTTTCACGTGAATAAGCC 

MRE11D56N_don_R CTCGCAAGGCTTGTCACCCATGCAACATAATCTC 

POL3Y708A_don_F AGAAGGATCCATTCAAAAGAGATGTTTTAAATGGTAGACAATTGGCTTTG 

POL3Y708A_don_R CATAAGCAGTAACAGATGAAGAAATGGCTAAACATGGCAATTTACCCACTGT
CGCTCCTG 

For checking CRISPR mutations 

PMS1E707K_chk_F TACCGCCAGAAGCGAAAGTAAT 

PMS1E707K_chk_R AAATGAGCTCCAATCACGTAATTCC 

MRE11D56N_chk_F CCAATCATTTCGACCGTCACTC 

MRE11D56N_chk_R ATGACCCCATATCACCATATCC 

POL3Y708A_chk_F GTGCAAAGGCGCTAAAGGTG 

POL3Y708A_chk_R CCAGAATAAACCTGCATAACGC 

For detecting mutations 

expF CTCGATGTGCAGAACCTGAAGCTTGATCT 

expR GCTCGAGTGCAGACCTCAAATTCGATGA 

delF CCTTTGCCATTTATTGTCGCAGTAAGGAAAAGCGCAGA 

delR CGACCGAATTTCTTGAAGACGAAAGGGCCTCGTGATAC 

recF ATGACCCACTCAGGTGTTAAA 

recR ATGTAAATACTAGTTAGTAGATGATAGTTGATTT 

URA3_seq_1 GCCATTTATTGTCGCAGTAAGG 



15 

URA3_seq_4 CGAATTTCTTGAAGACGAAAGGG 

Delseq_1A GGAGCACAGACTTAGATTGGTAT 

Delseq_3 GCCCCTATTTATTCCAATAATATCGTG 
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Table S3. Media for starving and maintaining quiescent yeast 

Component Final Concentration 

Phosphate limited media 

Yeast Nitrogen Base – Amino Acids – Ammonium Sulfate – Sugar – 
Phosphate (Sunrise Science Products 1532) 

0.71g/L 

Potassium Chloride 1 g/L 

Ammonium Sulfate 5g/L 

Dextrose 20g/L 

Dropout mix – uracil – YNB (US Biological D9535) 2g/L 

Uracil 1g/L 

Potassium Phosphate 0.5g/L 

No Phosphate Media 

Same as above with the following modifications: 

Dextrose 2g/L 

Potassium Phosphate 0g/L 
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Table S4. Microhomologies at deletion junctions from quiescent cells 

Age Sample Microhomology 

QD0 1-9 A 

QD0 2-4 AAAG 

QD0 5-15 AGAAGAAG 

QD0 6-16 GG 

QD6 1-3 A 

QD6 1-8 GAA 

QD6 1-11 T 

QD6 2-2 G 

QD6 2-6 TTTA 

QD6 3-8 CTAA 

QD6 3-14 AAGG 

QD6 4-1 CTCA 

QD6 4-8 TC 

QD6 5-1 A 

QD6 6-8 AAG 
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Supp Video 1 (separate file): Video of 24hr observation of QD1 cells in a microfluidics chamber 
in media with (+PO4) phosphate. 1s of video is equivalent to 1.6hrs of observation. 

Supp Video 2 (separate file): Video of 24hr observation of QD1 cells in a microfluidics chamber 
in media without (-PO4) phosphate. 1s of video is equivalent to 1.6hrs of observation. 
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