PNAS www.pnas.org

Supplementary Information for:

A Glycan FRET Assay for Detection and Characterization of Catalytic Antibodies to the *Cryptococcus neoformans* Capsule

Conor J Crawford^{1,2}, Maggie P. Wear², Daniel F. Q. Smith², Clotilde d'Errico¹,

Arturo Casadevall^{2*}, Stefan Oscarson^{1*}

¹Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland, ²Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe Street, Baltimore, MD 21205, USA

ORCID ID

Conor Crawford <u>orcid.org/0000-0002-1314-1019</u>, Arturo Casadevall <u>orcid.org/0000-0002-9402-9167</u> E-mail: <u>acasade1@jhu.edu</u>, Stefan Oscarson <u>orcid.org/0000-0002-8273-4918</u> E-mail: <u>stefan.oscarson@ucd.ie</u>

Arturo Casadevall, Stefan Oscarson

*Arturo Casadevall, Stefan Oscarson share senior authorship

Email: stefan.oscarson@ucd.ie and acasade1@jhu.edu

This PDF file includes:

Supplementary text Figures S1 to S10 Tables S1 Compound Characterization SI References

Supporting Information

Table of Contents

Synthetic methods3
Chromatography3
Synthetic Materials3
Instrumentation
Figure S1. 2H1 mAb and P1 Peptide4
Figure S2. Mass Spectrometry Spectra of P1 Peptide Post Incubation with mAb 2H1.
Figure S3. Fluorescence Spectrum of Oigosaccharide FRET Probe
Figure S4. The FRET and FRET-OAc Probes are Hydrolysed Following Michaelis- Menten Kinetics
Table S1. Supplemental Michaelis-Menten Kinetics Data. ^a
Figure S5. Effect of Acetylation on GXM Conformation.
Figure S6. Docking Results of Acetylated GXM Decasaccharide with 2H1
Figure S7. Fluorescent Microscopy of Heat-Killed <i>C. neoformans</i> cells Incubated Catalytic Antibodies Over Time11
Figure S8. Fluorescent Microscopy of Heat-Killed <i>C. neoformans</i> Cells Incubated Catalytic Antibodies on Day 312
Figure S9. Mass Spectrum of 18B7 and Decasaccharide Incubation
Figure S10. Mass Spectrum of 2H1 mAb and Decasaccharide Suggests Lyase Activity
NMR Nomenclature
Modeling Data
NMR Spectra

General methods

Synthetic methods

Unless otherwise noted all reactions containing air- and moisture-sensitive reagents were carried out under an inert atmosphere of nitrogen in oven-dried glassware with magnetic stirring. N₂-flushed stainless cannulas or plastic syringes were used to transfer air- and moisture-sensitive reagents. All reactions were monitored by thin-layer chromatography (TLC) on Merck DC-Alufolien plates precoated with silica gel 60 F254. Visualization was performed with UV-light (254 nm) fluorescence quenching. Evaporation in vacuo/under vacuum refers to the removal at 40 °C, unless otherwise stated, of volatiles on a Buchi rotary evaporator with an integrated vacuum pump.

Chromatography

Silica gel flash chromatography was carried out using Davisil LC60A (40-63 μ m) silica gel or with automated flash chromatography systems, Buchi Reveleris® X2 (UV 200-500 nm and ELSD detection, Reveleris® silica cartridges 40 μ m, BÜCHI Labortechnik AG) and Biotage® SP4 HPFC (UV 200-500 nm, Biotage® SNAP KP-Sil 50 μ m irregular silica, Biotage AB).

Synthetic Materials

All chemicals for the synthesis were purchased from commercial suppliers (Acros, Carbosynth Ltd, Fisher Scientific Ltd, Glycom A/S, Merck, Sigma-Aldrich, VWR, STREM Chemicals) and used without purification. Dry DCM and THF were obtained from a PureSolv-ENTM solvent purification system (Innovative Technology Inc.). All other anhydrous solvents were used as purchased from Sigma-Aldrich in AcroSeal® bottles.

Instrumentation

¹H NMR (400, 500 or 600 MHz), 13C NMR (101 MHZ or 125 MHz) spectra were recorded on Varian-inova at 25 °C in chloroform-d1 (CDCl₃), methanol-d4 (CD₃OD), water-d2 (D₂O), ¹H NMR spectra were standardized against the residual solvent peak $(CDCI_3, \delta = 7.26 \text{ ppm}; CD_3OD, \delta = 3.31 \text{ ppm}; D_2O, \delta = 4.79 \text{ ppm}; d6-DSS \delta = 0.0 \text{ ppm}$ or internal tetramethylsilane, $\delta = 0.00$ ppm). Bruker instrumentation spectrometers were equipped with Avance II console and triple resonance, TCI cryogenic probe with z-axis pulsed field. ¹³C NMR spectra were standardized against the residual solvent peak (CDCl₃, δ = 77.16 ppm; CD₃OD, δ = 49.00 ppm. All ¹³C NMR are ¹H decoupled. All NMR data is represented as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of doublets of doublets, dt = doublet of triplets, m = multiplet, br = broad signal, ad = apparent doublet, at = apparent triplet), coupling constant in Hz, integration. Assignments were aided by homonuclear ¹H-¹H (COSY, TOCSY), and ¹H-¹³C heteronuclear (HSQC, HMBC) two-dimensional correlation spectroscopies. ¹³C chemical shifts were reported with one digit after the decimal point, unless an additional digit was reported to distinguish overlapping peaks. Software for data processing: MestReNova, version 11.0.0-17609 (MestReLab Research S.L.). High-resolution mass spectrometry (HRMS) data were recorded on a Waters micromass LCT LC-Tof instrument using electrospray ionization (ESI) in either positive or negative mode. Low-resolution mass spectrometry (LRMS) experiments were recorded on a Waters micromass Quattro Micro LC-MS/MS instrument using electrospray ionization (ESI) in either positive or negative mode.

Figure S1. 2H1 mAb and P1 Peptide. A Known crystal structure of 2H1 mAb with P1 peptide (shown in green) in binding site. Calculated electrostatic surface potential of 2H1 mAb was complete using adaptive Poisson-Boltzmann solve (APBS) in PyMOL (+10 kT to -10 kT). Electrostatic surface potentials are colored red for negative charges, blue for positive charges, and white color represents neutral residues. B Modelling interactions between 2H1 and its decasaccharide substrate. Molecular model of known crystal structure of anti-GXM Mab 2H1. **C** Monoclonal antibody 18B7's catalytic activity against the P1q FRET peptide. **D** Monoclonal antibody 2H1 has catalytic activity against the P1q FRET peptide. The P1q FRET probe (200 uM) was incubated with 375 ug/mL of 2H1 or alone (No Mab). All measurements were performed at 37 °C with an excitation wavelength of 320 nm, an emission wavelength of 405 nm, and an emission cut-off filter of 325 nm. Change in fluorescence at 405 nm indicated hydrolysis of the FRET probe. Incubations were set up in triplicate, with error bars shown.

Figure S2. Mass Spectrometry Spectra of P1 Peptide Post Incubation with mAb 2H1. Fragment 1 769 *m*/z is in noise, while fragment 2 [+Na] is seen as 690 *m*/z.

Figure S3. Fluorescence Spectrum of Oigosaccharide FRET Probe. Excitation at 325 nm, Fluorescence at 410 nm.

Figure S4. The FRET and FRET-OAc Probes are Hydrolyzed Following Michaelis-Menten Kinetics. FRET probes 17 and 16 was incubated at varying micromolar concentrations. It was not possible to determine the catalytic activity of $3E5-IgG_3$ towards FRET probe 17. The initial velocity (V₀) of each reaction was

determined and plotted as a function of substrate concentration, the data was fit to the Michaelis-Menten equation for a single-step bimolecular reaction using nonlinear regression. K_m and k_{cat} were calculated using Prism 8. Each point represents n = 3 and bars represent the mean ±SD.

Entry	Antibody	FRET Probe	<i>K</i> _m [μΜ] 95% CI	<i>k_{cat}</i> [s⁻¹] 95% Cl
1	18B7	FRET	30.0 - 102.4 x10 ⁻³	26.0 - 45.5 x10 ⁻³
2	2H1	FRET	36.1 - 113.1 x10 ⁻³	35.9 - 62.5 x10 ⁻³
3	3E5-IgG₁	FRET	16.0 - 158.5 x10 ⁻³	19.5 -56.1 x10 ⁻³
4	3E5-IgG₃	FRET	ND	ND
5	18B7	FRET-OAc	36.4 - 61.1 x10 ⁻³	21.6 - 27.4 x10 ⁻³
6	2H1	FRET-OAc	30.8 - 91.5 x10 ⁻³	31.7 - 51.9 x10 ⁻³
7	3E5-IgG₁	FRET-OAc	48.2 - 196.4 x10 ⁻³	19.5 -56.1 x10 ⁻³
8	3E5-IgG ₃	FRET-OAc	25.7 - 62.6 x10 ⁻³	25.8 - 37.5 x10 ⁻³

Table S1. Supplemental Michaelis-Menten Kinetics Data.^a

^{*a*} The initial velocity (V₀) of each reaction was determined and plotted as a function of substrate concentration, the data was fit to the Michaelis-Menten equation for a single-step bimolecular reaction using nonlinear regression. K_m and k_{cat} were calculated using Prism 8. Each experiment was repeated in triplicate.

GXM-6-O-Acetylation

GXM

Figure S5. Effect of Acetylation on GXM Conformation. GLYCAM carbohydrate builder was used to predict conformation of acetylated and deacetylated GXM.(37–39) Mannan backbone is decorated with xylose and glucuronic substituents acid facing outwards from helical conformation. Acetylation does not cause change in conformation but creates new epitopes.

Figure S6. Docking Results of Acetylated GXM Decasaccharide with 2H1.

Figure S7. Fluorescent Microscopy of Heat-Killed *C. neoformans* cells Incubated Catalytic Antibodies Over Time. Heat-killed cells were incubated with 18B7, 2H1, anti-human IgG or no antibody (no mAb) and imaged on day 3 and 7. An aminooxy probe was used to visualize the change in capsule architecture after exposure to catalytic antibodies over time. Scale bar 5 μ m.

Figure S8. Fluorescent Microscopy of Heat-Killed *C. neoformans* Cells Incubated Catalytic Antibodies on Day 3. Scale 5 µm.

Figure S9. Mass Spectrum of 18B7 and Decasaccharide Incubation. Ion 1116.08 m/z corresponds to hexasaccharide fragment + [NMe₂ + 45], dimethylamine is a commonly observed adduct when using preconditioning deprecation strategy as described by Crawford *et al.* .(28)

Figure S10. Mass Spectrum of 2H1 mAb and Decasaccharide Suggests Lyase Activity.

NMR Nomenclature

Compound Characterization

Ethyl 2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$ -4,6-di-O-benzyl-3-O-(3-phthalimdo-propyl)- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylo-pyranosyl- $(1\rightarrow 2)$]-6-O-acetyl-4-O-benzyl-1-thio- α -D-mannopyranoside (9)

Tetrasaccharide 8 (100 mg, 66.57 µmole, 1 eq) was dissolved in dry DMF (0.6 mL, 0.1M) and stirred with 4 Å MS for 1 h at room temperature, under nitrogen a atmosphere. The reaction was cooled to 0 °C, and 60% dispersion in mineral oil NaH was added (5.5 mg, 133.15 µmole, 2 eq). The reaction was left to stir for 5 minutes and N-(3-Bromopropyl)phthalimide (90 mg, 332.88 µmole, 5 eq) was added and the reaction was allowed to raise to room temperature. Once complete, the reaction was guenched with acetic acid dissolved in 1 mL ethyl acetate at 0 °C and concentrated in vacuo and subsequently purified via flash chromatography (cyclohexane:acetone, gradient) to yield 9 (88 mg, 78%) as a colorless syrup. Rf (cyclohexane:acetone, 80:20) = 0.2 ¹**H NMR** (500 MHz, Chloroform-d) δ 7.78 – 7.69 (m, 2H, H_{ar}), 7.69 – 7.60 $(m, 2H, H_{ar}), 7.50 - 7.03 (m, 45H, H_{ar}), 5.29 (s, 1H, H^{-1}_{M2}), 5.26 (s, 1H, H^{-1}_{M2}), 5.13$ -4.91 (m, 4H), 4.91 - 4.74 (m, 4H), 4.72 - 4.46 (m, 9H), 4.45 - 4.18 (m, 10H, H-1_{X1}), 4.02 – 3.69 (m, 10H, H-1_{x2}), 3.69 – 3.30 (m, 8H), 3.14 – 2.98 (m, 1H, H-5_{axial x1}), 2.82 $(t, J = 10.8 \text{ Hz}, 1H, H-5_{axial X2}), 2.63 - 2.43 (m, 2H, SCH_2CH_3), 2.11 - 1.91 (m, 2H, 2H)$ (Phth)NCH₂CH₂CH₂O), 1.84 (s, 3H, C(=O)CH₃), 1.22 (t, J = 7.4 Hz, 3H, SCH₂CH₃). ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.6, 139.2, 138.8, 138.6, 138.4, 138.4, 138.3, 138.1, 138.1, 133.8, 132.1, 128.8, 128.5, 128.5, 128.3, 128.2, 128.2, 128.2, 128.1, 127.9, 127.8, 127.6, 127.6, 127.5, 127.4, 127.4, 127.3, 127.1, 123.1, 103.9 ($C1_{X1}$), 103.8 (C1_{x2}), 100.7, 83.8, 83.5, 82.8, 81.3, 80.9, 78.9, 77.5, 77.3, 75.8, 75.5, 75.3, 75.0, 74.9, 74.9, 74.7, 73.4, 73.0, 72.5, 72.1, 70.1, 70.0, 67.2, 63.7, 63.4, 63.2, 35.3, 29.2 (PhthNCH₂CH₂CH₂O), 25.5 (SCH₂CH₃), 20.6 (C(=O)CH₃), 15.0 (SCH₂CH₃). **HRMS (ESI)** [M + Na]⁺ m/z Calc. for C₁₀₀H₁₀₇NO₂₁NaS 1712.6954 Found: 1712.6954.

2-Azidoethyl 2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1 \rightarrow 2)$ -4,6-di-O-benzyl-3-O-(3-phthalimdo-propyl)- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylo-pyranosyl- $(1 \rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -[benzyl 2,3,4-tri-O-benzyl- β -D-glucopyranosyluronate- $(1 \rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1 \rightarrow 2)$]-4,6-di-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-xylopyranosyl- $(1 \rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -

Tetrasaccharide donor 9 (50 mg, 30.5 µmole, 1.5 eq) and Hexasaccharide acceptor 7 (48 mg, 20 µmole, 1 eq) were dissolved in dry diethylether (2 mL, 0.01M) at room temperature, under nitrogen. 4 Å MS were added, and the reaction was stirred for 1 h. The reaction was cooled to 0 °C, and DMTST (15 mg, 61 µmole, 3 eq) was added, the reaction was monitored via TLC (cyclohexane:acetone, 80:20, v/v) once complete ca. 4 h, the reaction was quenched with triethylamine, and left stir for 5 minutes. The reaction was filtered through a bed of Ceilte® and concentrated in vacuo, the resulting residue was purified by flash chromatography (cyclohexane:acetone, gradient) to yield 10 (57 mg, 85%) as a colourless oil. Rf (cyclohexane-acetone, 80:20) = 0.3. ¹H NMR (600 MHz, Chloroform-d) δ 7.73 (dd, J = 5.4, 2.9 Hz, 1H), 7.71 – 7.67 (m, 2H), 7.67 – 7.49 (m, 3H), 7.47 – 7.34 (m, 12H, H_{ar}), 7.34 – 7.02 (m, 116H, H_{ar}), 5.45 (s, 1H, H- 1_{M5}), 5.33 (s, 1H, H- 1_{M3}), 5.23 – 5.19 (m, 3H, H- 1_{M2} , H- 1_{M4}), 5.14 – 4.98 (m, 6H), 4.94 (d, J = 11.6 Hz, 4H), 4.89 – 4.72 (m, 11H), 4.73 – 4.47 (m, 27H), 4.45 – 4.23 (m, 17H), 4.23 – 4.08 (m, 16H), 4.08 – 3.82 (m, 14H), 3.82 – 3.61 (m, 11H), 3.62 – 3.46 (m, 7H), 3.44 (td, J = 9.5, 9.0, 3.8 Hz, 3H), 3.42 - 3.26 (m, 11H), 3.26 - 3.15 (m, 2H), 3.05 (t, J = 10.7 Hz, 1H, H-5 _{axial X}), 2.85 (t, J = 10.8 Hz, 1H, H-5 _{axial X}), 2.63 – 2.56 (m, 2H, PhthNCH₂CH₂CH₂O), 2.03 – 1.88 (m, 3H), 1.85 (s, 3H, (C=O)CH_{3 M1}), 1.54 (d, J = 3.4 Hz, 6H, (C=O)CH_{3 M3}, (C=O)CH_{3 M4}). ¹³C NMR (151 MHz, Chloroform-d) δ 170.6, 170.4, 168.2, 168.1, 167.7, 139.3, 139.1, 138.9, 138.8, 138.8, 138.6, 138.6, 138.5, 138.4, 138.3, 138.3, 138.2, 138.1, 138.0, 137.9, 135.3, 133.8, 133.7, 133.7, 132.1, 132.1, 129.3, 128.8, 128.8, 128.8, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 128.3, 128.3, 128.27, 128.23, 128.19, 128.1, 128.1, 128.0, 127.9, 127.9, 127.8, 127.8, 127.7, 127.7, 127.6, 127.6, 127.5, 127.5, 127.5, 127.4, 127.4, 127.4, 127.3, 127.3, 127.3, 127.2, 127.2, 127.1, 127.0, 126.8, 126.6, 126.0, 123.1, 123.0, 104.3 (C-1_{x1}), 103.3 (C-1_{X3}), 103.2 (C-1_{X4}), 102.8 (C-1_{X2}), 102.3 (C-1_{G1}), 101.9 (C-1_{M4}), 101.0 (C-1_{M2}), 100.1 (C-1_{M3}), 99.8 (C-1_{M5}), 98.2 (C-1_{M1}), 83.8, 83.4, 83.3, 83.3, 83.2, 81.5, 81.4, 81.3, 81.1, 80.7, 80.3, 79.5, 79.2, 78.8, 78.5, 78.2, 78.0, 77.5, 75.4, 75.4, 75.3, 75.2, 75.2, 75.2, 75.1, 75.0, 74.9, 74.8, 74.6, 74.5, 74.4, 74.4, 74.3, 74.0, 73.6, 73.5, 73.1,

72.9, 72.9, 72.7, 72.2, 72.0, 71.6, 70.4, 70.0, 69.7, 69.5, 68.9, 67.1, 67.1, 66.6, 63.7, 63.5, 63.2, 63.1, 63.0, 62.9, 50.2 ($OCH_2CH_2N_3$), 35.3 ($PhthNCH_2CH_2CH_2O$), 29.2 ($PhthNCH_2CH_2CH_2O$), 20.6 ($C(=O)CH_{3 M1}$), 20.5 ($C(=O)CH_3$) 20.4 ($C(=O)CH_3$). **Mass (ESI)** [M + H]⁺ m/z Calc. for C₂₃₆H₂₄₉N₄O₅₃ 3986.69 Found: 3986.68.

2-Azidoethyl 2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$ -4,6-di-O-benzyl-3-O-(3-tert-butyloxycarbonylpropyl)- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[benzyl 2,3,4-tri-O-benzyl- β -D-glucopyranosyluronate- $(1\rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$]-4,6-di-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$]-4,6-di-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4-tri-O-benzyl- β -D-xylopyranosyl- $(1\rightarrow 2)$]-6-O-acetyl-4-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$]-6-O-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ - $(1\rightarrow$

Compound **10** (50 mg, 12.54 µmole, 1 eg) was dissolved in *n*-BuOH (0.6 mL, 0.2M) and ethylene diamine (41 µL, 627 µmole, 100 eq) was added, the reaction was heated to 90°C in a sealed microwave vial under nitrogen, and left overnight (Rf 0.65, toluene:acetone, 80:20 + drop of AcOH, v/v). The reaction was then concentrated in vacuo and co-evaporated with toluene (1 mL X3). The residue was then dissolved in THF:H₂O (2 mL, 70:30, v/v). Then NaHCO₃ (10 mg, 119 µmole, 9.5 eq) and Boc₂O (2.8 µL, 45.87 µmole, 3.65 eq) were added. Once complete the reaction was diluted with DCM and the organic layer was extracted and washed with MilliQ water, and then concentrated in vacuo. The resulting residue was purified by flash column chromatography (cyclohexane:ethyl acetate, gradient) to yield 12 (28 mg, 57%) as a colorless oil. **Rf** (toluene:ethyl acetate, 80:20) = 0.8. ¹**H NMR** (600 MHz, Chloroformd) δ 7.47 – 7.32 (m, 12H H_{ar}), 7.39 – 6.76 (m, 108H, H_{ar}), 5.45 (s, 1H, H-1_{M5}), 5.33 (s, 1H, H-1_{M5}), 5.20 (dd, J = 11.9, 7.4 Hz, 3H, H-1_{M5}), 5.14 – 5.06 (m, 2H, H-1_{M5}), 5.07 – 5.01 (m, 2H), 5.01 – 4.94 (m, 1H), 4.91 – 4.80 (m, 7H), 4.80 – 4.73 (m, 4H), 4.73 – 4.67 (m, 2H), 4.68 – 4.57 (m, 10H), 4.57 – 4.44 (m, 10H), 4.44 – 4.23 (m, 17H), 4.23 - 4.01 (m, 19H), 4.00 - 3.86 (m, 9H), 3.87 - 3.78 (m, 3H), 3.79 - 3.57 (m, 8H), 3.57 -3.48 (m, 3H), 3.48 - 3.40 (m, 4H), 3.42 - 3.26 (m, 8H), 3.21 - 3.10 (m, 1H), 3.05 (s, 1H), 2.78 (s, 1H), 2.61 (t, J = 10.7 Hz, 1H, H-5_{axial X}), 2.60 – 2.49 (m, 1H), 1.84 (s, 3H, (C=O)CH₃), 1.81 – 1.65 (m, 2H, PhthNCH₂CH₂CH₂O), 1.59 (s, 3H, (C=O)CH₃), 1.54 (s, 3H, (C=O)CH₃), 1.40 1.46 – 1.34 (m, 12H, 3 X CH₃ Boc). ¹³C NMR (151 MHz, Chloroform-d) δ 170.6, 170.4, 139.2, 138.9, 138.8, 138.4, 138.3, 138.3, 128.9, 128.8, 128.7, 128.6, 128.5, 128.5, 128.3, 128.3, 128.2, 128.2, 128.2, 128.2, 128.1, 128.1, 128.0, 127.8, 127.7, 127.7, 127.6, 127.6, 127.5, 127.5, 127.5, 127.4, 127.4, 127.3, 127.3, 127.2, 127.2, 126.7, 126.6, 126.0, 104.3, 102.5, 83.7, 83.4, 83.3, 83.2, 81.5,

81.4, 81.1, 80.1, 79.2, 78.2, 75.3, 75.2, 75.2, 75.0, 74.6, 74.4, 74.3, 74.1, 73.6, 73.5, 73.1, 72.9, 72.7, 72.1, 71.6, 70.4, 69.7, 68.9, 67.1, 66.5, 63.6, 63.5, 63.2, 63.1, 63.0, 50.2, 38.0, 29.9, 28.5, 26.9, 20.6. **HRMS (ESI)** $[M + Na]^+$ m/z Calc. for $C_{233}H_{254}N_4O_{53}Na$ 3978.7201 Found: 3978.7369.

7-methoxycoumarin-4-acetic acid-2-aminoethyl- β -D-xylopyranosyl- $(1\rightarrow 2)$)-6-*O*-acetyl-3-*O*-(aminopropyl-*N*-(2,4-dinitrophenyl)glycine)- α -D-mannopyranosyl- $(1\rightarrow 3)$ - β -D-xylopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-glucopyranosyluronic acid- $(1\rightarrow 2)$]-6-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- β -D-xylopyranosyl- $(1\rightarrow 2)$]- β -D-xylopyranosyl- $(1\rightarrow 2)$]- β -D-xylopyranosyl- $(1\rightarrow 2)$ - β -D-xylopyranosyl- $(1\rightarrow 2)$]- β -D-xylopyranosyl- $(1\rightarrow 2)$ - β -D-xylopyranosyl- $(1\rightarrow 2)$

Compound 12 was dissolved in THF:^tBuOH:PBS (100 mM, pH 5.5) (2 mL,60:10:30, v/v/v) and "pre-treated 5% Pd/C catalyst" (370 mg, 0.5 eq per benzyl) was added. The reaction was put under an atmosphere of hydrogen (10 bar) and vigorously stirred for 2 days. The reaction was then filtered through a bed of Celite® and concentrated in vacuo. The residue was then dissolved in MilliQ water and purified via an automated size-exclusion chromatography system (P2 Biogel, flow rate 0.4 mL/min, eluent H_2O :^tBuOH, 99:1, v/v), then desired fractions were then collected and lyophilized to vield 8.1 mg (66%) of the desired deprotected intermediate. The intermediate was then dissolved in dry DMSO (0.5 mL) and 7-Methoxycoumarin-4-acetic Acid N-Succinimidyl Ester (7.2 mg, 5 eg) was added. The reaction was carried out in the dark and monitored via MALDITOF spectrometer (Super-DHB Matrix, Reflectron mode). Once complete, the unreacted NHS-ester was hydrolysed by the addition of water and stirred for 1 hour and concentrated. The resulting residue was purified via a Sep-Pak C18 cartridge (MeCN:H₂O, 95:5, v/v), then desired fractions were then collected and lyophilized to yield 7.7 mg of the fluorescently labelled intermediate. The sugar was dissolved in 3M HCI MeOH:H₂O (1 mL, 50:50, v/v) and stirred for ca. 1.5 hours, once complete removal of the tert-Butyloxycarbonyl was confirmed via MALDITOF (Super-DHB Matrix, Reflectron mode), the reaction was concentrated in vacuo. The resulting residue was dissolved in dry DMSO (500 µL) and NEt₃ was added adjust the pH to 8. Then NHS activated N-(2,4-Dinitrophenyl) glycine (7.3 mg, 5 eq) was added and the reaction was stirred for 4 hours. The reaction mixture was then purified via an automated size-exclusion chromatography system (P2 Biogel, flow rate 0.4 mL/min, eluent H₂O:^tBuOH, 99:1, v/v), then desired fractions were then collected and lyophilized to yield 5.4 mg (56%) of the oligosaccharide FRET probe 16. **Rf** (acetonitrile:water, 60:40) = 0.3. ¹**H NMR** (400 MHz, Deuterium Oxide) δ 9.16 (d, J = 2.7 Hz, 1H, H_{ar DNP}), 8.42 – 8.28 (m, 1H, H_{ar DNP}), 7.84 – 7.62 (m, 1H, H_{ar DNP}), 7.09 -7.02 (m, 2H, H_{ar MCA}), 6.96 (d, J = 9.6 Hz, 1H, H_{ar MCA}), 6.40 - 6.33 (m, 1H, H_{ar MCA}) 5.33 (s, 1H, H-1_{M5}), 5.25 (s, 1H, H-1_{M3}), 5.22 (s, 1H, H-1_{M2}), 5.16 (s, 1H, H-1_{M4}), 4.95 (s, 1H, H-1_{M1}), 4.54 (d, J = 8.1 Hz, 1H), 4.48 – 4.36 (m, 7H), 4.34 – 4.25 (m, 3H), 4.21

(s, 1H), 4.17 - 3.96 (m, 8H), 3.96 - 3.72 (m, 15H), 3.72 - 3.55 (m, 7H), 3.56 - 3.47 (m, 1H), 3.47 - 3.36 (m, 7H), 3.36 - 3.18 (m, 9H), 2.28 - 2.13 (m, 5H), 1.88 - 1.78 (m, 2H). ¹³**C NMR** (126 MHz, Deuterium Oxide) δ 126.5, 111.4, 122.0, 128.2, 103.2, 115.4, 114.4, 102.4, 102.2, 103.9, 99.9, 104.9, 76.0, 76.2, 105.6, 105.7, 48.1, 79.5, 80.8, 81.6, 80.5, 80.3, 75.2, 78.0, 75.5, 80.3, 77.3, 67.2, 68.2, 68.9, 58.0, 62.5, 75.7, 68.2, 57.6, 67.2, 62.4, 62.4, 67.9, 79.7, 71.7, 38.6, 69.3, 79.3, 64.7, 38.4, 72.2, 64.5, 71.3, 68.0, 69.2, 73.7, 75.2, 64.5, 41.1, 77.5, 74.5, 74.7, 68.2, 67.2, 30.6, 23.8. **HRMS (ESI)** [M + Na]⁺ m/z Calc. for C₈₇H₁₂₃N₅O₆₀Na 2220.6625 Found: 2220.6735.

7-methoxycoumarin-4-acetic acid-2-aminoethyl- β -D-xylopyranosyl- $(1\rightarrow 2)$ -3-*O*-(aminopropyl-*N*-(2,4-dinitrophenyl)glycine)- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-glucopyranosyluronic acid- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 2)$]- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[β -D-xylopyranosyl- $(1\rightarrow 3)$

Compound 6 (3 mg) was dissolved in $H_2O - 5\%$ trimethylamine and left for 6 hours. The reaction was then concentrated and purified via an automated size-exclusion chromatography system (P2 Biogel, flow rate 0.4 mL/min), and lyophilized to yield 2 mg of **17**. **R***f* (acetonitrile:water, 60:40) = 0.22. ¹**H NMR** (500 MHz, Deuterium Oxide) $\delta 8.63 - 8.59$ (m, 1H, H_{ar DNP}), 8.20 - 8.14 (m, 2H, H_{ar DNP}), 7.78 (d, J = 8.5, 1.6 Hz, 1H, $H_{ar DNP}$), 7.70 (d, J = 8.8 Hz, 1H, $H_{ar MCA}$), 7.10 – 7.03 (m, 2H, $H_{ar MCA}$), 6.35 (s, 1H, H_{ar MCA}), 5.34 (s, 1H, H-1_{M5}), 5.22 (s, 2H, H-1_{M3}, H-1_{M2}), 5.12 (s, 1H, H-1_{M4}), 4.95 (s, 1H, H-1_{M1}), 4.51 – 4.46 (m, 9H), 4.44 – 4.33 (m, 5H), 4.31 – 4.24 (m, 4H), 4.23 – 4.19 (m, 2H), 4.14 - 4.05 (m, 2H), 4.01 (d, J = 16.3 Hz, 3H), 4.02 - 3.96 (m, 1H), 3.95 (s, 3H), 3.91 - 3.82 (m, 7H), 3.82 - 3.78 (m, 2H), 3.70 - 3.63 (m, 3H), 3.60 - 3.50 (m, 2H), 3.50 – 3.41 (m, 6H), 3.26 (s, 1H), 3.26 – 3.16 (m, 2H), 2.11 – 1.97 (m, 2H), 1.92 (s, 8H). ¹³C NMR (126 MHz, Deuterium Oxide) δ 109.1, 118.1, 119.7, 125.9, 101.0, 113.1, 112.1, 100.1, 100.0, 101.6, 97.6, 102.6, 73.7, 73.9, 103.3, 103.4, 77.2, 79.4, 78.5, 78.2, 78.0, 72.9, 75.7, 73.2, 78.0, 75.0, 65.9, 64.9, 66.6, 55.8, 60.2, 59.2, 73.4, 65.9, 55.3, 64.9, 60.1, 60.1, 59.1, 65.6, 77.4, 69.4, 36.3, 77.0, 67.1, 62.6, 62.4, 69.9, 68.1, 69.1, 62.2, 65.7, 66.9, 71.4, 72.9, 62.2, 38.8, 75.2, 72.2, 72.4, 64.9 28.3. HRMS (ESI) $[M + Na]^+$ m/z Calc. for C₈₁H₁₁₇N₅O₅₇Na 2094.6308 Found: 2094.6204.

```
2-aminoethyl-\beta-D-xylopyranosyl-(1\rightarrow 2)-\alpha-D-mannopyranosyl-(1\rightarrow 3)-[\beta-D-xylopyranosyl-(1\rightarrow 2)]-\alpha-D-mannopyranosyl-(1\rightarrow 3)-[\beta-D-glucopyranosyluronic acid-(1\rightarrow 2)]-\alpha-D-mannopyranosyl-(1\rightarrow 3)-[\beta-D-xylopyranosyl-(1\rightarrow 3)-[\beta-D-xylopyr
```


Acetylated decasaccharide(20) (4 mg) was dissolved in H₂O (0.5 mL), and sodium methoxide (0.5 mg, 9.40 µmole, 4 eq) was added to the reaction and it was left overnight. The reaction was then concentrated and purified *via* an automated size-exclusion chromatography system (P2 Biogel, flow rate 0.4 mL/min), and lyophilized to yield 3.7 mg of **18**. ¹**H NMR** (600 MHz, Deuterium Oxide) δ 5.17 (s, 1H), 5.08 (s, 3H), 4.99 (s, 1H), 4.85 (s, 1H), 4.37 (d, *J* = 7.8 Hz, 1H), 4.32 (s, 1H), 4.30 (d, *J* = 7.8 Hz, 1H), 4.27 (s, 1H), 4.23 (s, 1H), 4.15 – 4.01 (m, 7H), 3.99 – 3.80 (m, 11H), 3.79 – 3.57 (m, 16H), 3.52 (s, 3H), 3.34 (s, 1H), 3.28 (s, 3H), 3.24 – 3.08 (m, 8H). ¹³**C NMR** (151 MHz, Deuterium Oxide) δ 100.2, 100.2, 101.6, 98.0, 102.4, 101.9, 103.3, 103.4, 78.4, 77.4, 78.3, 77.6, 77.9, 77.3, 72.9, 75.9, 77.8, 63.5, 63.4, 65.0, 65.1, 73.3, 69.4, 66.2, 60.2, 63.4, 77.1, 67.0, 69.0, 69.1, 75.4, 72.2, 72.5, 38.9, 65.1. **HRMS (ESI)** [M + H]⁺ m/z Calc. for C₅₈H₉₈NO₄₈Na 1576.5230 Found: 2094.6204.

Modeling Data Highest scoring docking output

MODEL 2 REMARK	22 VINA RESUL	г: _1	0.2	2.59	8	3,173
REMARK	0 active t	torsions		2.03	0	0.170
REMARK	status: ('A' for A	Active:	'T' fo	r Tna	ctive)
REMARK	T	between	atoms:	01 2	and	C1 3
REMARK	- Т	between	atoms:	C_{2}^{-1}	and	02_{15}
REMARK	Ť	between	atoms:	C3 5	and	03 14
REMARK	- Т	between	atoms:	$C4^{-6}$	and	04 12
REMARK	I	between	atoms:	C57	and	C6 8
REMARK	I	between	atoms:	C6 8	and	06 9
REMARK	I	between	atoms:	03 14	and	C1 16
REMARK	I	between	atoms:	02 15	and	C1 ¹ 20
REMARK	I	between	atoms:	C2_17	and	02 28
REMARK	I	between	atoms:	C3_18	and	0327
REMARK	I	between	atoms:	C4_19	and	0425
REMARK	I	between	atoms:	C5_20	and	C6_21
REMARK	I	between	atoms:	C6_21	and	0622
REMARK	I	between	atoms:	0327	and	C1_29
REMARK	I	between	atoms:	02 28	and	C1_108
REMARK	I	between	atoms:	C2_30	and	02_41
REMARK	I	between	atoms:	C3_31	and	0340
REMARK	I	between	atoms:	C4_32	and	04 38
REMARK	I	between	atoms:	C5_33	and	C6_34
REMARK	I	between	atoms:	C6_34	and	06_35
REMARK	I	between	atoms:	0340	and	C1_42
REMARK	I	between	atoms:	02_41	and	C1_93
REMARK	I	between	atoms:	C2_43	and	02_54
REMARK	I	between	atoms:	C3_44	and	03_53
REMARK	I	between	atoms:	C4_45	and	04_51
REMARK	I	between	atoms:	C5_46	and	C6_47
REMARK	I	between	atoms:	C6_47	and	06_48
REMARK	I	between	atoms:	03_53	and	C1_55
REMARK	I	between	atoms:	02_54	and	C1_81
REMARK	I	between	atoms:	C2_56	and	02_68
REMARK	I	between	atoms:	C3_57	and	03_66
REMARK	I	between	atoms:	C4_58	and	04_64
REMARK	I	between	atoms:	C5_59	and	C6_60
REMARK	I	between	atoms:	C6_60	and	06_61
REMARK	I	between	atoms:	02_68	and	C1_69
REMARK	I	between	atoms:	C4_72	and	04_73
REMARK	I	between	atoms:	C3_75	and	03_76
REMARK	I	between	atoms:	C2_78	and	02_79
REMARK	I	between	atoms:	C4_84	and	04_85
REMARK	I	between	atoms:	C3_87	and	03_88
REMARK	I	between	atoms:	C2_90	and	02_91
REMARK	I	between	atoms:	C5_95	and	C6_96
REMARK	I	between	atoms:	C4_99	and	04_100
REMARK	I	between	atoms:	C3_102	and	03_103

REMARK	I	between	atoms	: C2 105	and	02 106	
REMARK	I	between	atoms	: C4_111	and	04_112	
REMARK	I	between	atoms	: C3 ¹¹⁴	and	03 115	
REMARK	I	between	atoms	: C2_117	and	02_118	
REMARK	I	between	atoms	: C4_123	and	04_124	
REMARK	I	between	atoms	: C3_126	and	03_127	
REMARK	I	between	atoms	: C2_129	and	02_130	
ROOT							
HETATM	1 HO1	ROH	1	-7.397	15.200	8.251	1.00
0.00	0.212 HD						
HETATM	2 01	ROH	1	-6.853	14.411	8.189	1.00
0.00	-0.369 OA						
HETATM	3 C1	ZMA	2	-7.311	13.438	9.139	1.00
0.00	0.289 C						
HETATM	4 C2	ZMA	2	-6.422	12.187	9.027	1.00
0.00	0.211 C						
HETATM	5 C3	ZMA	2	-6.768	11.323	3 7.801	1.00
0.00	0.190 C						
HETATM	6 C4	ZMA	2	-8.268	10.999	7.731	1.00
0.00	0.181 C						
HETATM	7 C5	ZMA	2	-9.108	12.290	7.736	1.00
0.00	0.179 C						
HETATM	8 C6	ZMA	2	-10.624	12.054	7.784	1.00
0.00	0.198 C		_				
HETATM	9 06	ZMA	2	-11.290	13.309	7.590	1.00
0.00	-0.398 OA		-				
HETATM	10 H6O	ZMA	2	-11.054	13.665	6.730	1.00
0.00	0.209 HD		-				
HETATM	11 05	ZMA	2	-8.736	13.089	8.932	1.00
0.00	-0.349 OA		0	0 51 6	1 0 0 0 0		1 0 0
HETATM	12 04	ZMA	2	-8.516	10.298	6.500	1.00
0.00	-0.390 OA		0	0 000	0 475		1 0 0
HETATM	13 H4O	ZMA	2	-8.020	9.4//	6.496	1.00
	0.210 HD		0		10 075		1 0 0
HETATM	14 03	ZMA	Ζ	-2.988	10.0/5) /.8/8	1.00
	-0.346 UA	17 N I 7	2	6 610	11 201	10 261	1 0 0
A OO	15 02	ZMA	Z	-0.019	11.391	10.201	1.00
	-0.340 OA	$\nabla M \lambda$	3	-5 242	0 667	6 676	1 00
		ZIMA	5	-3.242	9.007	0.070	1.00
0.00 нгтатм	$17 C^{2}$	7 M D	З	-1 660	8 273	6 962	1 00
0 00	1, 02		5	4.000	0.270	0.902	1.00
О.ОО НЕТАТМ	18 C3	7.MZ	З	-3 487	8 350	7 950	1 00
0 00	0 190 C	21.11.1	5	0.107	0.000	1.550	1.00
нетатм	19 C4	7.MA	3	-2 395	9315	7 446	1 00
0.00	0.181 C		-	2.000	J • U ± U	, , , , , , 0	±•00
HETATM	20 C5	ZMA	3	-2.996	10.723	3 7,268	1.00
0.00	0.179 C		-		,		
HETATM	21 C6	ZMA	3	-2.029	11.776	6.716	1.00
0.00	0.198 C				-		-

HETATM	22 06 ZMA	3	-2.666	13.058	6.788	1.00
	-0.390 UA	С	2 000	12 25/	7 7 1	1 00
		5	-2.000	13.234	/./UI	1.00
0.00 HETATM	24 05 7Ma	З	-4 152	10 620	6 341	1 00
0 00	-0.348 OA	5	1.102	10.020	0.011	1.00
HETATM	25 04 ZMA	3	-1.345	9.373	8.424	1.00
0.00	-0.390 OA	U U	1.010			
HETATM	26 H40 ZMA	3	-0.985	8.493	8.556	1.00
0.00	0.210 HD					
HETATM	27 O3 ZMA	3	-2.951	7.011	8.179	1.00
0.00	-0.348 OA					
HETATM	28 O2 ZMA	3	-4.187	7.680	5.692	1.00
0.00	-0.346 OA					
HETATM	29 C1 ZMA	4	-2.904	6.567	9.585	1.00
0.00	0.292 C					
HETATM	30 C2 ZMA	4	-2.237	5.187	9.589	1.00
0.00	0.211 C					
HETATM	31 C3 ZMA	4	-3.186	4.132	9.010	1.00
0.00	0.190 C	Δ	4 500		0 700	1 0 0
HETATM	32 C4 ZMA	4	-4.509	4.0/4	9.789	1.00
	U.181 C 22 C5 7MD	Λ	5 204	5 116	0 707	1 00
	0.170 C	4	-5.204	5.440	9.107	1.00
0.00 нгтатм	31 C6 7MA	Λ	-6 503	5 562	10 512	1 00
0 00	0 198 C	Т	0.000	5.502	10.012	1.00
HETATM	35 06 7MA	4	-7.128	6.811	10.187	1.00
0.00	-0.398 OA	-	,	0.011	10.10/	1.00
HETATM	36 H60 ZMA	4	-7.345	6.825	9.252	1.00
0.00	0.209 HD					
HETATM	37 05 ZMA	4	-4.257	6.482	10.201	1.00
0.00	-0.348 OA					
HETATM	38 O4 ZMA	4	-5.356	3.081	9.190	1.00
0.00	-0.390 OA					
HETATM	39 H4O ZMA	4	-4.916	2.228	9.220	1.00
0.00	0.210 HD					
HETATM	40 03 ZMA	4	-2.498	2.836	9.015	1.00
0.00	-0.348 OA	Δ	1 010	4 700	10 075	1 0 0
HETATM	41 OZ ZMA	4	-1.910	4./99	10.975	1.00
	-0.346 UA	5	-2 305	2 1 9 0	7 7 1	1 00
	42 CI $2MA$	J	-2.595	2.100	/./OI	1.00
0.00 HETATM	43 $C2$ $7Ma$	5	-1 740	0 817	7 943	1 00
0.00	0.211 C	0	1.140	0.01/	1.545	1.00
HETATM	44 C.3 7MA	5	-0.237	0.975	8.213	1.00
0.00	0.190 C	0	0.20,	0.070	0.210	1.00
HETATM	45 C4 ZMA	5	0.444	1.665	7.019	1.00
0.00	0.181 C					
HETATM	46 C5 ZMA	5	-0.127	3.094	6.921	1.00
0.00	0.179 C					

HETATM	47 C6 ZMA	5	0.433	3.964	5.790	1.00
	U.190 C	5	0 0 0 2 2	5 205	5 011	1 00
D DO	40 00 ΔMA	5	-0.082	5.295	5.944	1.00
	-0.396 OA 19 460 7MD	5	0 200	5 650	6 792	1 00
		5	0.200	5.050	0.192	1.00
0.00 нетатм	50 05 $7M$	5	-1 598	2 976	6 725	1 00
	$-0.3/8 \cap 2$	5	1.550	2.970	0.725	1.00
0.00 нгтатм	51 0/ 7MA	5	1 860	1 709	7 238	1 00
0 00	-0 390 OA	5	1.000	1.705	1.200	1.00
О.ОО НЕТАТМ	52 H40 ZMA	5	2 047	2 212	8 035	1 00
0.00	0.210 HD	0	2.01/	- • - <u>-</u>	0.000	±.00
HETATM	53 03 7MA	5	0.330	-0.352	8.500	1.00
0.00	-0.348 OA	Ũ	0.000	0.002		1.00
HETATM	54 02 7MA	5	-1.924	-0.012	6.732	1.00
0.00	-0.346 OA	-				
HETATM	55 C1 2MA	6	0.926	-0.496	9.841	1.00
0.00	0.292 C					
HETATM	56 C2 2MA	6	1.515	-1.909	9.951	1.00
0.00	0.211 C					
HETATM	57 C3 2MA	6	0.448	-2.994	10.190	1.00
0.00	0.183 C					
HETATM	58 C4 2MA	6	-0.494	-2.639	11.354	1.00
0.00	0.180 C					
HETATM	59 C5 2MA	6	-1.136	-1.256	11.141	1.00
0.00	0.179 C					
HETATM	60 C6 2MA	6	-2.006	-0.766	12.305	1.00
0.00	0.198 C					
HETATM	61 O6 2MA	6	-2.682	0.433	11.899	1.00
0.00	-0.398 OA					
HETATM	62 H6O 2MA	6	-3.271	0.235	11.166	1.00
0.00	0.209 HD					
HETATM	63 O5 2MA	6	-0.053	-0.265	10.934	1.00
0.00	-0.348 OA					
HETATM	64 04 2MA	6	-1.548	-3.616	11.398	1.00
0.00	-0.390 OA	c				
HETATM	65 H4O 2MA	6	-1.166	-4.492	11.491	1.00
0.00	0.210 HD	C	1 100	1 0 1 0	10 474	1 0 0
HETATM	66 03 2MA	6	1.106	-4.243	10.4/4	1.00
	-0.390 OA	C	1 71 5		0 7 6 1	1 0 0
AETATM	67 H30 ZMA	0	1./15	-4.431	9.761	1.00
	U.ZIU HD	C	0 470	1 01 2	11 071	1 00
AETATM	0 0 2 4 0 2 2 0 0 2 4 0 0 2 4 0 0 0 0 0 0 0 0 0 0	0	2.4/9	-1.913	11.0/1	1.00
	-0.340 UA	7	3 996	-2 142	10 704	1 00
	0.201 C	/	3.000	-2.142	10.704	1.00
	70 05 0YB	7	1 017	-3 121	9 978	1 00
0 00	$-0.356 \cap 2$	/	U/	J.441	١٠٤٠ ٢٥	1.00
HETATM	71 C.5 OXR	7	5 424	-3.762	9.586	1.00
0.00	0.205 C	,	~• <u>·</u> <u>·</u> <u>·</u> <u>·</u>	0./02	2.000	1.00

HETATM	72 C4 0XE	3 7	6.258	-3.906	10.862	1.00
	0.1/3 C	. 7	7 (01	1 0 0 0	10 455	1 00
AETATM	73 04 0XE	5 /	7.021	-4.099	10.455	1.00
	-0.391 OA) – – – – – – – – – – – – – – – – – – –	0 170	1 222	11 000	1 00
A OO	74 H4U UXE	5 /	0.1/0	-4.232	11.232	1.00
U.UU មេជាមារការ	0.210 HD 75 C3 OVE	2 7	6 173	-2 650	11 750	1 00
	192 C		0.1/5	-2.030	11.750	1.00
	76 03 0VE	> 7	6 770	-2 965	13 021	1 00
	-0 390 ON		0.770	2.905	13.021	1.00
0.00 បច្ចុក្សកាស	77 U30 OVE	2 7	6 7 2 3	-2 198	13 596	1 00
0 00	0 210 HD		0.725	2.190	13.390	1.00
О.ОО НЕТАТМ	78 C2 OXE	x 7	4 715	-2 216	12 001	1 00
0 00	0 204 C		1.710	2.210	12.001	1.00
О•ОО НЕТАТМ	79 02 0XF	3 7	4 727	-0 904	12 588	1 00
0.00	-0.388 OA	,	1., 2,	0.001	12.000	1.00
HETATM	80 H2O OXE	3 7	3.828	-0.638	12.796	1.00
0.00	0.210 HD					
HETATM	81 C1 OXE	8 8	-2.681	-1.262	6.882	1.00
0.00	0.291 C					
HETATM	82 O5 OXE	8 8	-2.078	-2.137	7.908	1.00
0.00	-0.356 OA					
HETATM	83 C5 OXE	8 8	-2.735	-3.438	8.105	1.00
0.00	0.205 C					
HETATM	84 C4 OXE	8 8	-2.625	-4.224	6.797	1.00
0.00	0.173 C					
HETATM	85 O4 OXE	8 8	-3.373	-5.438	6.971	1.00
0.00	-0.391 OA					
HETATM	86 H4O OXE	8 8	-3.268	-5.991	6.193	1.00
0.00	0.210 HD					
HETATM	87 C3 OXE	8 8	-3.207	-3.436	5.611	1.00
0.00	0.182 C		0 0 5 1	4 1 0 0	4 4 9 9	1 0 0
HETATM	88 03 0XE	8 8	-2.851	-4.129	4.402	1.00
0.00	-0.390 OA	`	2 200			1 0 0
HETATM	0 210 UNE	8 8	-3.206	-3.656	3.645	1.00
	0.210 HD) O	2 624	2 006	5 5 2 2	1 00
	90 CZ UKE		-2.034	-2.000	J.J.J	1.00
0.00 ЦЕТАТМ	91 02 0XE	2 8	-3 /18	-1 25/	1 591	1 00
0 00	$-0.388 \cap \lambda$	5 0	0.110	1.204	4.571	1.00
О.ОО НЕТАТМ	92 H20 0XF	8	-3 039	-0 378	4 488	1 00
0 00	0 210 HD	, 0	3.035	0.070	1.100	1.00
О.ОО НЕТАТМ	93 C1 07F	3 9	-0.503	4.842	11,404	1.00
0.00	0.293 C					
HETATM	94 O5 OZE	3 9	0.369	4.068	10.493	1.00
0.00	-0.340 OA					
HETATM	95 C5 OZE	3 9	1.779	3.927	10.909	1.00
0.00	0.256 C					
HETATM	96 C6 OZE	3 9	2.657	3.410	9.734	1.00
0.00	0.206 C					

HETATM	97 O6B OZB	9	3.336	2.368	9.896	1.00
0.00	-0.646 OA					
HETATM	98 O6A OZB	9	2.625	4.105	8.697	1.00
0.00	-0.646 OA					
HETATM	99 C4 OZB	9	1.787	3.107	12.214	1.00
0.00	0.189 C					
HETATM	100 O4 OZB	9	3.143	2.995	12.683	1.00
0.00	-0.390 OA					
HETATM	101 H4O OZB	9	3.670	2.543	12.019	1.00
0.00	0.210 HD					
HETATM	102 C3 0ZB	9	0.963	3.831	13.294	1.00
0.00	0.183 C	0	0 000	0 0 4 0	1 4 4 6 6	1 0 0
HETATM	103 O3 OZB	9	0.829	2.949	14.423	1.00
0.00	-0.390 OA	0	1 001	0 710		1 0 0
HETATM	104 H3O UZB	9	1./01	2.113	14./46	1.00
	0.210 HD	0	0 4 5 2	4 0 0 1	10 000	1 00
HEIAIM	105 CZ UZB	9	-0.455	4.201	12.000	1.00
	0.204 C 106 02 07P	Q	_1 005	5 156	12 720	1 00
0 00	-0.388 O	9	-1.005	J.130	13.750	1.00
0.00 нетатм	107 H20 07B	9	-1 886	5 406	13 443	1 00
0 00	0 210 HD	<u> </u>	1.000	0.100	10.110	1.00
HETATM	108 C1 0XB	10	-4.875	6.459	5.233	1.00
0.00	0.291 C	± 0	1.070	0.105	0.200	1.00
HETATM	109 05 0XB	10	-4.767	5.377	6.233	1.00
0.00	-0.356 OA					
HETATM	110 C5 OXB	10	-5.351	4.078	5.862	1.00
0.00	0.205 C					
HETATM	111 C4 OXB	10	-4.618	3.560	4.625	1.00
0.00	0.173 C					
HETATM	112 O4 OXB	10	-5.279	2.351	4.220	1.00
0.00	-0.391 OA					
HETATM	113 H4O OXB	10	-4.811	1.964	3.476	1.00
0.00	0.210 HD					
HETATM	114 C3 OXB	10	-4.673	4.583	3.477	1.00
0.00	0.182 C	1.0		4 105	0 4 0 4	1 0 0
HETATM	115 03 0XB	10	-3./94	4.125	2.434	1.00
	-0.390 OA	10	204C	1 701	1 (07	1 00
ALTAIM	0 210 UXB	ΤU	-3.846	4./24	1.00/	1.00
U.UU មេជាការ ការផ	0.210 HD 117 C2 OVB	10	_1 199	5 980	3 930	1 00
		ΤŪ	-4.199	5.900	5.952	1.00
0.00 нетатм	118 02 0YB	10	-4 530	6 923	2 900	1 00
0 00	-0 388 OA	ΞŪ	1.000	0.923	2.900	T .00
HETATM	119 H20 0XB	10	-4 214	7 794	3 150	1 00
0.00	0.210 HD	± 0			0.100	1.00
HETATM	120 C1 0XB	11	-5.448	11.249	11.148	1.00
0.00	0.291 C					
HETATM	121 O5 OXB	11	-4.368	10.497	10.480	1.00
0.00	-0.356 OA					

HETATM	122	С5	0XB	11	-3.168	10.206	11.283	1.00
0.00	0.2	05 C						
HETATM	123	C4	0XB	11	-3.587	9.355	12.482	1.00
0.00	0.1	73 C						
HETATM	124	04	0XB	11	-2.422	9.181	13.302	1.00
0.00	-0.3	91 02	A					
HETATM	125	H40	0XB	11	-2.631	8.603	14.038	1.00
0.00	0.2	10 H	D					
HETATM	126	C3	0XB	11	-4.688	10.053	13.298	1.00
0.00	0.1	82 C						
HETATM	127	03	0XB	11	-5.168	9.121	14.284	1.00
0.00	-0.3	90 02	A					
HETATM	128	HЗO	0XB	11	-5.808	9.557	14.850	1.00
0.00	0.2	10 H	D					
HETATM	129	C2	0XB	11	-5.878	10.473	12.408	1.00
0.00	0.2	04 C						
HETATM	130	02	0XB	11	-6.728	11.340	13.179	1.00
0.00	-0.3	88 02	A					
HETATM	131	H2O	0XB	11	-7.485	11.598	12.648	1.00
0.00	0.2	10 H	D					
ENDROOT								
TORSDOF	51							
ENDMDL								

Ligand

REMARK 0 active torsions: REMARK status: ('A' for Active; 'I' for Inactive) REMARK I between atoms: O1_2 and C1_3

REMARK I betwee	en atoms:	C2 4	and	02 15
REMARK I betwee	en atoms:	C3_5	and	03 14
REMARK I betwee	n atoms:	C4_6	and	04 12
REMARK I betwee	n atoms:	C57	and	C6_8
REMARK I betwee	n atoms:	C68	and	069
REMARK I betwee	n atoms:	03 14	and	C1 16
REMARK I betwee	n atoms:	02 15	and	C1 ¹ 20
REMARK I betwee	en atoms:	$C2^{-17}$	and	02_28
REMARK I betwee	en atoms:	C3 18	and	03 27
REMARK I betwee	en atoms:	C4 19	and	04 25
REMARK I betwee	n atoms:	$C5_{20}$	and	$C6_{21}$
REMARK I betwee	en atoms:	$C6_{21}$	and	06_22
REMARK I betwee	en atoms:	03_{27}	and	C1 29
REMARK I betwee	n atoms:	02^{2}	and	C1 108
REMARK I betwee	n atoms:	C_{2}^{2}	and	02 41
REMARK I betwee	n atoms:	C_{2}^{-30}	and	02_41
DEMARK I betwee	n atoms.	C1 32	and	01 38
DEMARK I Detwee	atoms.	C_{4}	and	04_30 C6_34
REMARK I DELWEE	atoms:	C_{2}	and	06 25
REMARK I DELWEE	atoms:		and	00_{30}
REMARK I DELWEE	en atoms:	03_40	and	$C1_{42}$
REMARK I Detwee	en atoms:	02_41	and	CI_93
REMARK I betwee	en atoms:	$C2_{43}$	and	02_54
REMARK I betwee	en atoms:	C3_44	and	03_53
REMARK I betwee	en atoms:	$C4_{45}$	and	04_51
REMARK I betwee	en atoms:	$C5_{46}$	and	C6_47
REMARK I betwee	en atoms:	C6_47	and	06_48
REMARK I betwee	en atoms:	03_53	and	C1_55
REMARK I betwee	en atoms:	02_54	and	C1_81
REMARK I betwee	en atoms:	C2_56	and	02_68
REMARK I betwee	en atoms:	C3_57	and	03_66
REMARK I betwee	en atoms:	C4_58	and	04_64
REMARK I betwee	en atoms:	C5_59	and	C6_60
REMARK I betwee	en atoms:	C6_60	and	06_61
REMARK I betwee	en atoms:	02_68	and	C1_69
REMARK I betwee	en atoms:	C4_72	and	04_73
REMARK I betwee	en atoms:	C3_75	and	03_76
REMARK I betwee	en atoms:	C2 78	and	02 79
REMARK I betwee	en atoms:	C4_84	and	04 85
REMARK I betwee	en atoms:	C3_87	and	03 88
REMARK I betwee	en atoms:	C2_90	and	02_91
REMARK I betwee	en atoms:	C5_95	and	C6_96
REMARK I betwee	n atoms:	C4_99	and	04 100
REMARK I betwee	en atoms:	C3 102	and	03 103
REMARK I betwee	n atoms:	C2 105	and	02 106
REMARK I betwee	en atoms:	C4_111	and	04 112
REMARK I betwee	en atoms:	C3 114	and	03 115
REMARK I betwee	en atoms:	C2 117	and	02 118
REMARK I betwee	en atoms:	C4 123	and	04 124
REMARK I betwee	en atoms:	C3 126	and	03 127
REMARK I betwee	en atoms:	C2 129	and	02 130

1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00
1.00
1.00
1.00
1.00
1 0 0
1.00
1 0 0
1.00
1 0 0
1.00
1 00
1.00
1 00
1.00
1 00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1 0 0
1.00
1 0 0
1.00
1 00
T .00
1 00
±•00

HETATM	26 H40 ZMA	3	10.441	13.402	-7.349	1.00
0.00	0.210 HD	~	0 1 0 0	1 4 0 0 0		1 0 0
HE'I'A'I'M	2/ 03 ZMA	3	8.199	14.392	-/./95	1.00
	-U.348 UA	C	7 1 2 4	1 - 170		1 00
ALTATM	28 02 $2MA$	3	/.134	15.4/3	-5.3/4	1.00
	-0.546 UA	1	0 151	13 726	_0 110	1 00
	29 CI $2MA$	4	0.131	13.720	-9.110	1.00
0.00 нгтатм	30 $C2$ $7MA$	Л	8 502	1/ 790	-10 156	1 00
0 00	0 211 C	Т	0.002	11.190	10.100	1.00
О.ОО НЕТАТМ	31 C3 7.MA	4	7 346	15 782	-10 320	1 00
0.00	0.190 C	1	/ • 0 10	10.702	10.020	1.00
HETATM	32 C4 ZMA	4	6.043	15.071	-10.717	1.00
0.00	0.181 C					
HETATM	33 C5 ZMA	4	5.662	14.063	-9.616	1.00
0.00	0.179 C					
HETATM	34 C6 ZMA	4	4.421	13.216	-9.916	1.00
0.00	0.198 C					
HETATM	35 O6 ZMA	4	4.081	12.475	-8.736	1.00
0.00	-0.398 OA					
HETATM	36 H6O ZMA	4	3.871	13.086	-8.026	1.00
0.00	0.209 HD					
HETATM	37 O5 ZMA	4	6.812	13.143	-9.404	1.00
0.00	-0.348 OA					
HETATM	38 04 ZMA	4	5.000	16.051	-10.839	1.00
0.00	-0.390 OA	4	5 0 4 4	1 6 600	11 - 10	1 0 0
HETATM	39 H4O ZMA	4	5.244	16.693	-11.510	1.00
	U.2IU HD	4		1 (700	11 010	1 0 0
HETATM	40 0.3 $2MA$	4	1.136	16./90	-11.312	1.00
	-0.540 UA	1	0 7 3 0	1 / 1 / 1	_11 /61	1 00
	-0 $3/6$ 0	4	0.759	14.141	-11.401	1.00
О.ОО НЕТАТМ	42 C1 ZMA	5	7 692	18 183	-10 837	1 00
0 00	0.292 C	0	1.052	10.100	10.007	1.00
HETATM	43 C2 7MA	5	8.036	19.066	-12.040	1.00
0.00	0.211 C	U U		20.000		
HETATM	44 C3 ZMA	5	9.538	19.002	-12.352	1.00
0.00	0.190 C					
HETATM	45 C4 ZMA	5	10.351	19.462	-11.130	1.00
0.00	0.181 C					
HETATM	46 C5 ZMA	5	10.103	18.445	-9.998	1.00
0.00	0.179 C					
HETATM	47 C6 ZMA	5	10.837	18.717	-8.680	1.00
0.00	0.198 C					
HETATM	48 06 ZMA	5	10.624	17.600	-7.803	1.00
0.00	-0.398 OA	_	10 075	1 6 9 9 5	0 000	1 0 0
HETATM	49 H6O ZMA	5	10.977	16.804	-8.209	1.00
	U.209 HD	-	0 640	10 10-	0 71 6	1 00
HETATM		Э	8.642	10.435	-9./16	T.00
0.00	-U.348 UA					

HETATM	51 04 ZMA	5	11.743	19.499	-11.470	1.00
HETATM	52 H4O ZMA	5	12.036	18.620	-11.725	1.00
0.00 HETATM	53 03 ZMA	5	9.804	19.815	-13.549	1.00
0.00	-0.348 OA					
HETATM	54 O2 ZMA	5	7.675	20.462	-11.713	1.00
0.00	-0.346 OA					
HETATM	55 C1 2MA	6	10.356	19.070	-14.696	1.00
0.00	0.292 C					
HETATM	56 C2 2MA	6	10.624	20.070	-15.828	1.00
0.00	0.211 C					
HETATM	57 C3 2MA	6	9.348	20.493	-16.579	1.00
0.00	0.183 C	c		10001		1 0 0
HETATM	58 C4 2MA	6	8.507	19.284	-17.026	1.00
0.00	0.180 C	6	0 1 0 0	10 000	1 = 0 0 0	1 0 0
HETATM	59 C5 2MA	6	8.180	18.369	-15.832	1.00
0.00	0.179 C	c				1 0 0
HETATM	60 C6 2MA	6	7.439	17.077	-16.198	1.00
0.00	0.198 C	6		1 6 4 1 0	1 4 0 0 5	1 0 0
HETATM	61 06 2MA	6	7.039	16.419	-14.98/	1.00
0.00	-0.398 OA	C	C 400	1 6 0 7 0	14 510	1 0 0
HETATM	62 H60 ZMA	6	6.420	16.9/8	-14.510	1.00
	0.209 HD	C		17 001	1 - 1 - 1	1 0 0
HETATM	63 US ZMA	6	9.452	17.991	-12.1/1	1.00
	-0.348 OA	C	7 0 0 0	10 771		1 0 0
ALTAIM	64 04 ZMA	0	7.200	19.//1	-1/.300	1.00
	-0.390 OA	C	7 440	20 276	10 000	1 00
AETATM	0 210 UD	0	7.449	20.376	-18.289	1.00
		6	0 710	21 260	17 72/	1 0 0
A O O	0 2 0 0 2 ZMA	0	9.119	21.200	-1/./34	1.00
0.00 нгтатм	-0.390 OA 67 H30 2MA	6	10 267	22 007	-17 /59	1 00
	07 IIJO ZHA 0 210 нр	0	10.207	22.007	17.400	1.00
0.00 нетати	68 02 2MA	6	11 566	19 440	-16 777	1 00
0 00	-0 346 OA	0	11.000	19.110	10.111	1.00
нетатм	69 C1 0XB	7	12 889	20 076	-16 883	1 00
0.00	0.291 C	,	12.009	20.070	10.000	1.00
HETATM	70 05 0XB	7	12.768	21.501	-17.262	1.00
0.00	-0.356 OA					
HETATM	71 C5 0XB	7	14.037	22.228	-17.423	1.00
0.00	0.205 C					
HETATM	72 C4 0XB	7	14.822	21.566	-18.559	1.00
0.00	0.173 C					
HETATM	73 O4 OXB	7	16.110	22.198	-18.606	1.00
0.00	-0.391 OA					
HETATM	74 H4O OXB	7	16.618	21.833	-19.334	1.00
0.00	0.210 HD					
HETATM	75 C3 OXB	7	15.013	20.056	-18.323	1.00
0.00	0.182 C					

HETATM	76 O3 OXB	7	15.529	19.480	-19.536	1.00
0.00	-0.390 OA	_				
HETATM	77 H3O OXB	7	15.650	18.535	-19.416	1.00
0.00	0.210 HD	_	10 60 1	10 050		1 0 0
HETATM	78 C2 0XB	./	13.684	19.350	-17.985	1.00
0.00	0.204 C	_				
HETATM	79 O2 OXB	7	13.982	18.026	-17.511	1.00
0.00	-0.388 OA					
HETATM	80 H2O OXB	7	13.162	17.555	-17.342	1.00
0.00	0.210 HD					
HETATM	81 C1 OXB	8	6.665	21.111	-12.560	1.00
0.00	0.291 C	_				
HETATM	82 O5 OXB	8	7.065	21.098	-13.982	1.00
0.00	-0.356 OA					
HETATM	83 C5 OXB	8	6.141	21.765	-14.912	1.00
0.00	0.205 C					
HETATM	84 C4 OXB	8	6.076	23.245	-14.531	1.00
0.00	0.173 C					
HETATM	85 O4 OXB	8	5.083	23.853	-15.371	1.00
0.00	-0.391 OA					
HETATM	86 H4O OXB	8	5.064	24.799	-15.209	1.00
0.00	0.210 HD					
HETATM	87 C3 OXB	8	5.677	23.434	-13.057	1.00
0.00	0.182 C					
HETATM	88 O3 OXB	8	5.873	24.819	-12.720	1.00
0.00	-0.390 OA					
HETATM	89 H3O OXB	8	5.628	24.963	-11.803	1.00
0.00	0.210 HD					
HETATM	90 C2 OXB	8	6.547	22.581	-12.111	1.00
0.00	0.204 C					
HETATM	91 O2 OXB	8	5.944	22.593	-10.806	1.00
0.00	-0.388 OA					
HETATM	92 H2O OXB	8	6.504	22.113	-10.191	1.00
0.00	0.210 HD					
HETATM	93 C1 OZB	9	10.122	14.031	-11.950	1.00
0.00	0.293 C					
HETATM	94 O5 OZB	9	10.804	15.344	-11.960	1.00
0.00	-0.340 OA					
HETATM	95 C5 OZB	9	12.150	15.372	-12.566	1.00
0.00	0.256 C					
HETATM	96 C6 OZB	9	12.894	16.691	-12.212	1.00
0.00	0.206 C					
HETATM	97 O6B OZB	9	13.330	17.411	-13.142	1.00
0.00	-0.646 OA					
HETATM	98 O6A OZB	9	13.012	16.927	-10.991	1.00
0.00	-0.646 OA					
HETATM	99 C4 OZB	9	11.982	15.032	-14.060	1.00
0.00	0.189 C					
HETATM	100 O4 OZB	9	13.282	14.994	-14.676	1.00
0.00	-0.390 OA					

HETATM 0.00	101 H4O OZB 0.210 HD	9	13.697	15.856	-14.590	1.00
HETATM 0.00	102 C3 OZB 0.183 C	9	11.336	13.643	-14.213	1.00
HETATM	103 O3 OZB	9	11.016	13.447	-15.602	1.00
HETATM	104 H3O 0ZB	9	11.816	13.522	-16.126	1.00
HETATM	105 C2 0ZB	9	10.034	13.505	-13.398	1.00
HETATM	106 02 0ZB	9	9.704	12.107	-13.323	1.00
HETATM	107 H2O 0ZB	9	8.898	11.996	-12.814	1.00
HETATM	108 C1 0XB	10	6.197	16.538	-5.777	1.00
HETATM	109 05 0XB	10	6.069	16.610	-7.246	1.00
HETATM	110 C5 0XB	10	5.216	17.684	-7.780	1.00
HETATM	111 C4 0XB	10	5.818	19.025	-7.361	1.00
HETATM	112 04 0XB	10	4.909	20.048	-7.797	1.00
HETATM	-0.391 OA 113 H4O OXB	10	5.281	20.911	-7.601	1.00
0.00 HETATM	0.210 HD 114 C3 0XB	10	5.984	19.106	-5.834	1.00
0.00 HETATM	0.182 C 115 O3 OXB	10	6.742	20.292	-5.534	1.00
0.00 HETATM	-0.390 OA 116 H3O OXB	10	6.820	20.389	-4.583	1.00
0.00 HETATM	0.210 HD 117 C2 0XB	10	6.751	17.888	-5.276	1.00
0.00 HETATM	0.204 C 118 O2 OXB	10	6.631	17.900	-3.844	1.00
0.00 HETATM	-0.388 OA 119 H2O OXB	10	7.129	17.167	-3.476	1.00
0.00 hetatm	0.210 HD 120 C1 0XB	11	6.686	8.971	-6.645	1.00
0.00 HETATM	0.291 C 121 O5 OXB	11	7.576	10.131	-6.844	1.00
0.00 hetatm	-0.356 OA 122 C5 0XB	11	8.685	9.959	-7.798	1.00
0.00 hetatm	0.205 C 123 C4 0XB	11	8.093	9.649	-9.173	1.00
0.00 hetatm	0.173 C 124 O4 OXB	11	9.194	9.378	-10.053	1.00
0.00 HETATM 0.00	-0.391 OA 125 H4O OXB 0.210 HD	11	8.865	9.234	-10.943	1.00

HETATM	126	C3	0XB	11
0.00	0.18	32 C		
HETATM	127	03	0XB	11
0.00	-0.39	90 OF	ł	
HETATM	128	HЗO	0XB	11
0.00	0.21	.0 HI)	
HETATM	129	C2	OXB	11
0.00	0.20)4 C		
HETATM	130	02	OXB	11
0.00	-0.38	88 OF	A	
HETATM	131	H2O	OXB	11
0.00	0.21	0 HI)	
ENDROOT				
TORSDOF	51			

7.171	8.419	-9.113	1.00
6.502	8.304	-10.382	1.00
5.972	7.504	-10.392	1.00
6.099	8.563	-8.011	1.00
5.459	7.287	-7.841	1.00
4.775	7.360	-7.171	1.00

NMR Spectra

Compound 9

¹H NMR δ [ppm]

¹H-¹³C-HSQC-NMR: zoomed

¹³C NMR δ [ppm]

Compound 10

¹H-¹³C-HSQC-NMR

 ^{13}C NMR δ [ppm]

Compound 12

¹H-¹³C-HSQC-NMR

¹H-¹³C-HSQC-NMR

Compound 17

¹H NMR δ [ppm]

Zoomed 'Glycan Region' ¹H-¹³C-HSQC-NMR

¹H NMR δ [ppm]

¹H-¹³C-HSQC-NMR