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Figure S1. Picture of an encapsulated device next to a 12 mAh Li-polymer battery.



38 Heat on Heat on

50s  10s T
B .
O 34 FTULZ
E 32t AT,
5 SO[AT,
o
E 28¢ X
= 26} AT_,“
24_ v A4
22 " . . . .
00 05 10 15 20 25
Time {min})

Figure S2. Wireless read-out of the temperature change measured from NTC; (AT;) and
NTC; (AT,) as a function of time for 10 s of heating every one min. AT, = AT; - ATo.
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Figure S3. a,b. Schematic illustration of the FEA model of dual-sided (a) and single-sided (b)
sensor designs. c,d. Sensitivities of the temperature difference (4T;,) between NTC; (4T1)
and NTC, (4T,) to skin hydration level of dual-sided (c) and single-sided (d) designs 10 s
after the heater is activated.
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Figure S4. Comparison between FEA and measurement for a thick layer of S184 (a) and
S170 (b), and a thin layer of S184 (70 um, c¢; 100 um, d; 200 um, e) on top of the S170.
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Figure S5. Computational predictions of AT as a function of skin hydration level (&) with

different values of d (a; Q =20.4 mW, t = 10.0 s), and AT as a function of Q (b; d = 1.2 mm,
t=10.059).
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Figure S6. Computational prediction of ATy, with different sizes of actuators (width and
length of Ry) for 30 % (a) and 95 % (b) hydrated skin.
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Figure S7. Effect of design parameters on the temperature change. a. A simplified,
analytical model of a disk-shaped thermal actuator (radius, R) and NTCs. b. Analytical
scaling law for ATy,
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Figure S8. Ambient temperatures. Measurements of AT; (blue), AT, (red), and AT, (black)

as a function of time (min). The values of AT; and AT, fluctuate at the moment the device
enters and exits the oven (yellow background).
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Figure S9. a. Picture of conventional devices based on skin capacitance measurements for
monitoring tissue water content (MoistureMeterD; top), SC hydration levels
(MoistureMeterSC; middle top), and skin surface hydration levels (Gpskin; middle bottom),
and a BLE device (bottom). b. Picture of devices on the forearm. The commercial devices
require care by the user to hold the probe and apply a certain pressure against the skin for
each measurement.



Figure S10. Mounting positions on the body: forehead (F), right arm (Ag), left arm (AL),
right leg (Lg), and left leg (L).
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Figure S11. SD for @ tested by 3 users using BLE (@g.g) and commercial (Dcmi 1and Pewm 2)
devices at five different body locations, forehead (F), right arm (Ag), left arm (AL), right leg
(L), and left leg (L), for subject 1 to 3.
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Figure S12. Positive correlation between ®g g and ®cy 1 (black), and between ®g ¢ and
®cw 2 (red), and their linear fits (lines).
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Figure S13. Bland-Altman plots of @giecan and @cmii (), and Pgiecarz and Pemi2 (D).
Horizontal lines represent the mean (red), and mean+1.96-SD (blue) values of @®g eca —
®cm Where SD is the standard deviation. The mean+SD values of the differences (@cmi1—
DpE cait, aNd Dcem 2 — PpLe caiz) are 0.00+0.02 and 0.00+0.04, respectively.



Figure S14. Pictures of an encapsulated device mounted on a pediatric hand.
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Figure S15. SD for ATy, AT,, and ATy, at five different body locations, forehead (F), right
arm (Agr), left arm (AL), right leg (Lg), and left leg (L), for subjects 1 to 10
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Figure S16. Positive correlation between skin hydration level from wireless (®gg) and

commercial (@cmL1) devices, and its linear fit (red line). Linear fits indicate that @cy 1 =
PgLe x 0.80 — 0.20, with a coefficient of determination of R?= 0.66.
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Figure S17. A Bland-Altman plot (difference plot) of @g g can and @cm 1. Horizontal lines

represent the mean (red; ~0.00), and meant1.96-SD (blue; ~0.00£1.96-0.05) values of
Dgi e can — Pomis Where SD is the standard deviation.
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Figure S18. a. Pictures of the device on a subject’s leg before (left) and after (right) shaving
the skin. Insets show the sensing point. b. Wireless measurements of AT, (blue), AT, (red),
and ATj, (black) before and after shaving the sensing area.
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Figure S19. a. An optical image of the device mounted on the forehead of a healthy male
subject. b. Wireless measurements of ®g g before, during and after a workout. Vertical bar
denotes the error bar over 3-time measurements.



Figure S20. Optical image of the device mounted on the atopic hand of a subject 1, next to a
BLE-enabled smartphone.



Time (min) 0-10 10-30 30-35 35-45 45-81 85-91

Abrupt Airflow Airflow
change in Tg
SNR (dB) of AT, 33 43 33 44 44 41
SNR (dB) of AT, 22 32 20 32 34 30
SNR (dB) AT;» s8 59 66 61 54 66

Table S1. Signal-to-noise ratio (SNR) with different temperatures of the testing substrate (Ts)
for natural air convection and for forced air flow at rates of 0~13.6 m/s from the top.



Subject

number Age Sex Ethnicity Fitzpatrick Skin Type
1 25 F Caucasian 1
2 26 F Asian I
3 27 M Asian I
4 29 M Asian I
5 36 M Caucasian I
6 16 M Caucasian I
7 17 M Caucasian/Asian I
8 24 M Caucasian I
9 27 F Asian I
10 33 M Asian I

Table S2. Information of the 10 healthy normal subjects.



Subject

pumber Age Sex Ethnicity Pathology
1 22 Female African American AD
2 69 Male Latinx AD

Table S3. Information of the patients who participated in the moisturizer study



BLE MoistureMeterD Gpskin
®prEca S 1 Do 2
TEWL SCH
mean 5D Mean 5D mean 5D
before 0.17 0.00 0.24 0.03 0.50 0.00 17 0
AD
after 0.32 0.00 0.36 0.01 0.91 0.01 33 41
before 0.38 0.00 0.36 0.01 0.55 0.02 6 5
Control
after 0.46 0.00 0.44 0.01 0.96 0.02 21 46

Table S4. @ measurements of a young adult patient with severe AD (subject 1).



BLE MoistureMeterD Gpskin

®prEca S 1 Do 2
TEWL SCH
mean 5D mean 5D mean 5D

Before 0.29 0.00 0.31 0.03 0.55 0.02 22 5
Inflamed

After 0.46 0.00 0.44 0.01 1.00 0.00 19 53

Before 0.45 0.01 0.43 0.01 0.85 0.03 6 35

Perilesional

After 047 0.00 0.49 0.01 0.98 0.01 4 48

Before 0.49 0.00 0.44 0.01 0.79 0.05 5 29
Control

After 0.49 0.00 0.51 0.01 0.95 0.02 2 45

Table S5. @ measurements of an elderly patient with inflammatory AD (subject 2).



Text ST1. Macroscale modeling by finite element analysis (FEA).

At the macroscale, FEA establishes a relationship between ATj, and the thermal conductivity

and thermal diffusivity of the epidermis and dermis (k, a, ky and ay) based on the transient

heat transfer analysis using the software ABAQUS. A schematic illustration of the FEA
model is given in Supplementary Fig. 3a. A refined mesh (~1 million elements) with mesh
size much smaller than the finest feature size of the device (18 um, copper thickness) and a
refined time increment that limits the maximum temperature change to below 0.5 °C in each
increment ensure the simulation convergence and accuracy. The literature values of the

=377 W/(m-K), & =109 mm?/s, k

material parameters are k copper , Ko,

=0.55 W/(M-K), 0,=0.32

copper

MM?/S, Keoie=0-21 W/(M-K), a4, =0.11 mm?s.% The thermal conductivity of polyimide

Ecoflex
(P1) is determined as k,,=0.55 W-m*-K™* from the measurements on a material with known
thermal properties (S170, ks170=0.40 W-m K™, as170 =0.14 mm?-s +52 3% For validation, a
different material (S184) with known thermal properties (ks18s=0.20 W-m K™, 014 =0.11
mm?-s 5% 53) and the bi-layer material of thin S184 (70~200 um thickness) on thick S170 are
tested, and the FEA results agree well with experiments without any additional fitting

(Supplementary Fig. 4).

Text ST2. Micromechanics model for the thermal properties of hydrated skin.

A micromechanics model establishes a relationship between the thermal properties of
hydrated skin and its hydration level & (volumetric water content). The hydrated skin is
modeled as a composite of dry skin (thermal conductivity kgy = 0.2 W-m™*-K™, thermal
diffusivity agy = 0.15 mm?.s™) and water (kw= 0.6 W-m™*-K™, ayw = 0.14 mm?*.s 1) 3>,

which gives the thermal conductivity ke and thermal diffusivity oskin Of the hydrated skin as



(p+2)+2(p-1)@ k

skin

k 0=FXw
kdry (p+2)—(p—1)@ , kdry,

o

skin — aW kskin

(1- @) ayky, + Pay k,,

gy ’
respectively.
For the bi-layer model of the epidermis and dermis layers for the skin, the above

b

micromechanics model applies to each layer, with the subscript ‘skin’ replaced by ‘E’ and

‘D’ for epidermis and dermis, respectively.

Text ST3: A simplified analytical model.

A simplified model for the relationship between the NTC;-to-NTC, spacing and their
temperature difference is useful. The data in Supplementary Fig. 5 correspond to FEA results
for AT (Q = 20.4 mW, t = 10 s) as a function of @ with different distances (d) between NTC;
and NTC,, and AT as a function of Q (t = 10 s, d = 1.2 mm, @ = (.3). The value of ATy,
increases as d and Q increase, and as @ decreases. The effect of actuator size (width and
length of Ry) on ATi, is in Supplementary Fig. 6. As shown in Supplementary Fig. 7a, a disk-
shaped heater (radius R and heating power Q) and two infinitesimal sensors rest on a semi-

infinite, homogenous substrate with the properties of skin (thermal conductivity k. and

skin

thermal diffusivity o, ). The heater and sensors have negligible thicknesses. The position of

skin

NTC; is directly above the heater (r=0 in the polar coordinate system) and NTC; is at a

distance d from NTC;. The temperature changes® in NTC; and NTC, are

Qe tag, ||dx
ATl_an J'O {Jl(x)erfc(—x ?H7

skin



Q xd tag, | |dx
ATZ:an IO {JO(Fle(x)erfCL—x R—SHT

skin
respectively, where J,(X) and J,(x) are Bessel functions of the first kind with zero- and

first-orders, respectively, and erfc(x) is the complementary error function. Therefore, the
temperature difference between the two sensors can be expressed in the following

dimensionless form

(ATl_ATZ)Rkskin =£ f (taskin Ej
Q R 'R
The function f is plotted in Supplementary Fig. 7b. The measurement sensitivity increases

. t i d
Wlth L&skin or —
R? R
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