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Supplementary Information Text 

Text S1. Mental Models and Fuzzy Cognitive Maps (FCM) 

Mental models (1) are simplified internal representations of reality that allow humans to perceive 
patterns of cause-and-effect relationships through reasoning and to make decisions. Mental 
models consist of beliefs and subjective knowledge that are constructed as individuals observe, 
interact with, and experience the world around them and concurrently develop an internal model 
to understand and predict how it functions (2).  As such, they synthesize knowledge that is 
acquired through experiential, social, and formal learning. Mental models that represent causal 
knowledge (e.g., how social and ecological components are interconnected in a natural resource 
system) can be elicited through cognitive mapping (3). Cognitive maps are representations of 
mental models in the form of directed graphs. Nodes represent concepts that are part of the 
mental model and edges (arrows) are used to show the causal relationship between the 
concepts.  

Fuzzy Cognitive Maps (FCM) (4) extend causal cognitive maps to add a dynamic component to 
their analysis. These are graphical models of system components (nodes) and their causal 
relationships (edges), with numeric parameterization of edge magnitudes, forming a weighted 
directed graph (Fig. S1). Relationships (edges) are characterized by a number in the interval of [-
1, +1], corresponding to the strength and sign of causal relationships between nodes. They, 
therefore, provide a semi-quantitative system modeling technique, based on auto-associative 
neural networks and fuzzy set theory that make cognitive maps computable (see FCM 
computation section of this SI Appendix).  

A total of 32 individuals completed the online mental modeling survey including recreational 
fishers, commercial fishers, and fisheries managers, each creating their own FCM (Fig. S2). 
Table S1 shows the number of participants from each stakeholder type. In addition, the mean and 
standard deviation of the number of concepts (i.e. nodes) and connections (i.e. edges) used by 
individuals to construct FCM representing their mental models about striped bass population 
dynamics are shown in Table S1. 

Text S2. Online mental modeling instructions 

Unlike conventional mental modeling practices that are commonly organized through workshops 
(e.g., ref. (5)) and interviews (e.g., ref. (6)), we demonstrated that, participants can comfortably 
interact and familiarize themselves with the online platform, and thus knowledge elicitation 
process can be automated with no influence from researchers and facilitators. This decentralized 
process allows individuals to freely represent their system knowledge, and therefore it increases 
the probability that the whole spectrum of knowledge diversity is sampled. However, given that 
some people do not feel comfortable doing this online (e.g., older people or those without internet 
access), they may opt out of participation. 

The individuals who participated in online mental modeling survey were given a step-by-step 
instruction how to build a FCM model using the online mental modeling technology. Mental 
Modeler online tool is modeling software that helps individuals and communities capture their 
knowledge in a standardized format that can be used for scenario analysis. Based in FCM, users 
can develop semi-quantitative models of complex social and environmental issues by defining the 
important components of a system and also the relationships between these components (7). The 
following step-by-step direction was used to instruct participants:  
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“ 
Modeling the Striped Bass Fishery 

  
The purpose of this activity is to create a cognitive map that represents your understanding of the 
striped bass fishery, and the impacts of recreational and commercial fishing on its overall health. 
 

How to make a model with Mental Modeler 
To create your model, you will use the free Fuzzy Cognitive Mapping (FCM) software Mental 
Modeler (link to the software found below). FCM represents knowledge by defining three 
characteristics of a system:  

 The components (“parts) of the system  

 The positive or negative relationships (e.g. influence) between the components 

 The degree of influence that one component can have on another, defined using 
qualitative weightings (e.g. high, medium, or low influence) 

Before you begin:  

Please watch these two brief videos. In total the videos are 15 minutes long. 

    

1. Access Mental Modeler at www.mentalmodeler.org. Click the “Software” tab at the top of the 
page, then the “Use the Online Mental Modeler” link. When prompted, enter the following 
information:  

                       Username: mentalmodeler   

                        Password: mentalmodeler 

Once you have access to the online program, you will then build your model of the striped bass 
fishery by defining the following characteristics based on your understanding: (1) the components 
that are relevant to the system (boxes), (2) the directional relationships between these 
components (arrows), and (3) the degree of positive or negative influence that one component 
has on another (+/- on a sliding scale)  
 

Example Model:  
Here is an example of a mental model (see figure below). Let’s start with movie 
ticket prices as our central variable. Now we can think about factors that affect 
prices, such as the surrounding population or the number of theaters in the 
immediate area. We can also think about factors that are affected by movie ticket 
prices such as the number of the people that rent movies. In the model, as the 
population increases, it increases the number of people renting movies and 

http://www.mentalmodeler.org/
https://www.youtube.com/watch?v=By24uhIbBn4
https://www.youtube.com/watch?v=UbKzyDctkrY&t=28s
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increases movie ticket prices and increases the number of theaters in the area 
(blue arrows) Conversely as the number of theaters increase, it decreases movie 
ticket prices (see red arrow). 

 
2. Add components you think are important by clicking the “add component” button at the top 
of the modeler window. Enter text to label a component, and drag the box to reposition it. 
Components must be variables that can increase or decrease in quality or quantity. Although the 
components you define in your model will be up to you based on your understanding, please 
begin by adding the following components: 

 Striped bass population 

 Recreational fishing for striped bass 

 Commercial fishing for striped bass 
 
3. Build your model by adding additional components to the three initial components, and 
defining the relationships between them. Think about other components that are part of the 
striped bass fishery (what factors influence bass abundance?), etc. When you add a component, 
make sure that you think about its relationship to all the other components, and define them 
accordingly. The following tips will help you create your model 
 
Tip #1: “Defining Components” (e.g. boxes) need to be things that can increase or decrease in 
quality of quantity. For example, these may be things like (a) access to healthy food, (b) food 
prices, (c) cropland, (d) greenhouse gas emissions. All of these things can increase or decrease. 
The components should not be things like (e) policy, since “policy” is not something that can 
increase or decrease. You can add as many components as you think is necessary to represent 
the system, by clicking on the “add component” button at the top of the modeling screen. 
 
Tip #2: “Defining Relationships” between components can either be positive or negative. For 
example, as the amount of sunlight increases, the process of photosynthesis may also increase. 
Therefore, you might draw a positive arrow from the component “sunlight” to the component 
“photosynthesis”.  

 
 
Tip #3: “Defining Degree of influence” is the weightings you give to the positive or negative 
relationships that you define between components. For example a rain-storm may increase the 
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amount of flooding slightly (represented by a small positive relationship defined between these 
two components) but a hurricane may increase the amount of flooding a great deal (represented 
by a high positive relationship defined between these two components)  

 
 
4. Add the final components. Once your model is complete, please add the following two 
components if they are not already included: 

 Prey abundance 

 Water temperature 
Then define any relationships between these new components and the existing component. 
 
5. Your model is complete when you feel comfortable with the components you have included 
and how they interact with each other. 

6. Save the model and email it to the project email address.               ” 

 

Text S3. Intra group and inter-group variations 

In the present paper, we assume that models (i.e. FCMs) of stakeholders are more similar to their 
peers of the same stakeholder type than members of other types (e.g., recreational fishers 
construct models that are more similar to each other than commercial fishers or fisheries 
managers). Therefore, the crowd may demonstrate “modular structures”—there exist subgroups 
of individuals within the crowd, whose mental models and knowledge are more correlated. To test 
this assumption, individuals’ graphical cognitive maps were converted into adjacency matrices 
and the distances between any possible pairs of graphs were calculated using the framework 
outlined in Box S1 (also see ref (8)). For each stakeholder type 𝑘 we make two sets: 

𝑆𝑒𝑡1
𝑘 = { ∀ (𝑠𝑖 , 𝑠𝑗) ∈  𝐶 (𝑆, 2)| 𝑇𝑦𝑝𝑖 = 𝑇𝑦𝑝𝑗 = 𝑘}  

𝑆𝑒𝑡2
𝑘 = { ∀ (𝑠𝑖 , 𝑠𝑗) ∈  𝐶 (𝑆, 2)| 𝑇𝑦𝑝𝑖 ≠ 𝑇𝑦𝑝𝑗 = 𝑘}  

where 𝑆 is the total number of individuals, (𝑠𝑖 , 𝑠𝑗) is a pair of individuals, and 𝐶(𝑆, 2) is the set of 

all possible paired combinations. For each stakeholder type 𝑘 we call 𝑆𝑒𝑡1 an Intra-group set with 

all pairs of individuals who share the same type and call 𝑆𝑒𝑡2 an Inter-group set with all pairs of 
individuals from varying types. We measured the distances between pairs of matrices in both 
Intra-group and Inter-group sets for each group. Fig. S4 shows that individuals within each group 
constructs maps that are more similar to one another compared to members of other groups. For 
all three groups, the Intra-group distances are shorter than Inter-group distances, while 

independent t-tests revealed that these differences are statistically significant with 𝑝 < 0.05 for 
commercial fishers and managers. Recreational fishers demonstrate the same trend but this is 
not significant at the level of 0.05.  

Additionally, we measured the ratio of disagreement to agreement for a short-list of relationships 
(causal relationships that are mentioned by individuals significantly more frequently than other 
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edges) and compared this ratio (𝛾) within each group (i.e., Intra) and across groups (i.e., Inter). 

Comparing the 𝛾 ratio intra-group and inter-group revealed that individuals within each group 

make more similar assumptions about the causal relationships, while inter-group variations, 

relatively, demonstrate higher values for 𝛾 (Table S2).  

 

Text S4. Mental models aggregation 

Given the type of problem or the task in a collective intelligence experimental design, various 
aggregation mechanisms could be used to reach a collective solution. General aggregation 
mechanisms are average rule (i.e., using a central tendency measure like mean); addition rule 
(i.e., adding or crowdsourcing fragmented information from multiple sources to build a whole 
thing); majority rule (i.e., using voting mechanisms); and convergence rule (i.e., reaching a 
consensus by deliberation or convergence of opinions).  

In the present study, and based on theoretical assumptions about the negative impact of social 
influence on the wisdom of crowds (WOC) effect (see ref. (9)), participants were not allowed to 
socially interact with each other during the mental modeling process, and this was required to 
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meet the independence condition. Therefore, convergence rule (i.e., reaching a consensus about 
different parts of the model through social interactions and deliberation) could not be an 
appropriate aggregation mechanism due to our experiment’s objectives. On the other hand, the 
majority rule could only determine whether or not individuals agree on parts of the models (cause-
and-effect relationships) and could not be used to aggregate the magnitude of causal 
relationships (i.e., the edge weights). The most appropriate aggregation mechanisms were the 
average and addition rules and their synthetization to not only merge unique information from 
multiple individuals (add parts that are unique to only one individual), but also average the 
overlapping information presented in the maps of more than one individual and thus 
operationalize the WOC effect.        

Stakeholder-specific models (homogenous groups) 

Individual mental models represented as FCMs can be aggregated mathematically using matrix 
algebra operations on their adjacency matrices. These aggregated models—also referred to as 
“community maps”—can be used to represent the knowledge and perception of a group of 
participants and thus provide a tool for knowledge-pooling (10). To combine mental models of a 
homogeneous group with individuals from a specific stakeholder type we summed their maps 
(addition rule) and used the arithmetic mean (i.e., simple average) of edge weights that are 
shared among multiple FCMs (average rule):    

𝐴
𝑖𝑗

𝐹𝐶𝑀𝑔
= ∑ 𝐴

𝑖𝑗

𝐹𝐶𝑀𝑝

𝑁

𝑝=1

/ ∑(1 | 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝 ≠ 0)

𝑁

𝑝=1

 (𝑺𝟏) 

where 𝐴𝐹𝐶𝑀𝑝 is the adjacency matrix of the FCM of participant p, N is the total number of 

participants in a group, and 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝
 indicates the element of this matrix with the value equals to the 

weight of the edge between node i and j.  𝐹𝐶𝑀𝑔 represents the aggregated FCM of a group with 

the corresponding adjacency matrix 𝐴𝐹𝐶𝑀𝑔. We used the above aggregation method to create 
stakeholder-specific (homogeneous) models of recreational fishers (Fig. S5), commercial fishers 
(Fig. S6), and fisheries managers (Fig. S7).  

Crowd model (diverse group) 

Our sample includes individuals from three stakeholder types, and we showed that each type 
constructs models that are more similar to one another than to members of another group (Fig 
S4). Therefore, the crowd demonstrates “modular structures”—there exist subgroups of 
individuals within the crowd, whose mental models and knowledge are more correlated. In such 
cases, prior theoretical (e.g., ref. (11)) and empirical evidence (e.g., ref. (9)) demonstrated that 
the collective response can be enhanced if the aggregation takes place in two levels: aggregating 
responses within the modules, followed by an aggregation across the modules. Therefore, to 
build an aggregated mental model of diverse stakeholders (i.e. the crowd model), we used a 
multi-level aggregation technique (Fig. S3). The first level of aggregation was achieved by 
averaging the mental models of individuals from the same stakeholder type (see Eq. S1). At the 
second level, we aggregated the averaged models across groups using the median of their 
adjacency matrices: 

𝐴𝑖𝑗
𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 = 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐴

𝑖𝑗

𝐹𝐶𝑀𝑔1
, 𝐴

𝑖𝑗

𝐹𝐶𝑀𝑔2
, …  , 𝐴

𝑖𝑗

𝐹𝐶𝑀𝑔𝑛
) (𝑺𝟐) 

where 𝐴𝑖𝑗
𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 indicates the element of the adjacency matrix of the crowd model with the value 

equals to the weight of the edge between node i and j. In our case, there are three types of 
stakeholders: recreational fishers, commercial fishers and fisheries managers. Thus, we used the 
median of edge-weights across three averaged stakeholder-specific maps (i.e. 𝐹𝐶𝑀𝑔1, 𝐹𝐶𝑀𝑔2, 

and 𝐹𝐶𝑀𝑔3) to build the diverse crowd model (Fig. S8).  
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How does median outperform other mechanisms?  

At the second level of aggregation, we could use the arithmetic mean of averaged maps to 
aggregate across the stakeholder types; however, prior to aggregate across types, we formed 
stakeholder-specific models that consist of same-type individuals and this could likely amplify the 
accumulation of stakeholder-specific biases. Thus, the distribution of models across the 
stakeholder types could most likely be skewed to some degree. In such cases, median has been 
shown to outperform the arithmetic mean in likely skewed distributions (see ref. (12)). Yet, voting 
mechanism (the majority rule) could be used to specify whether or not groups agree on causal 
interdependences; however, as stated earlier, the voting mechanism could not aggregate causal 
relationships’ strength or the magnitude of links (i.e. edge weights). Therefore, we decided to use 
the median of group maps to address these issues. To more comprehensibly demonstrate the 
supremacy of median over mean and majority we used made-up examples and compared the 
performance of different aggregation mechanisms (see Box S2). 

 

Example 1 represents a case where all three groups have a positive link from node A to node B 
and the distribution of edge weights across groups is symmetric. In this case, the majority agrees 
on a positive relationship between A and B and both mean and median produce the same results. 
Example 2 represents a case where two groups have a positive link from node A to node B, while 
one group does not have such a link, and the distribution of edge weights across groups is 
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symmetric. Similarly, in this case, the majority agrees on a positive relationship between A and B 
and both mean and median produce the same results.  

However, in many cases, the distribution of edge weights across groups is likely skewed (not 
symmetric) and/or groups do not agree on parts of the models.  Example 3 represents a case 
where one group has a positive link, one group has a negative link, and one group does not have 
a link from node A to node B. In this case, there is no majority agreement on the existence of a 
link between A and B. Among mean and median, the latter aligns with this lack of agreement 
while the former still maintains a link in the aggregated map. 

Example 4 represents a case where only one group has a positive link from node A to node B 
while the other two groups have no link. Similarly, the majority agrees on no link between A and B 
in this case. Again, the median aligns with this agreement while the mean still maintains a link in 
the aggregated map, which does not properly represent the majority opinion.  

Example 5 represents a case where two groups have a negative link, while the other group has a 
positive link from node A to node B, and the sum of negative edge weights equals the positive 
edge weight. In this case, the majority agrees on a negative link between A and B. Among mean 
and median, the latter aligns with this agreement while the former causes the loss of a link in the 
aggregated map because the mean of edge weights is zero.  

Example 6 is the same as the previous example, but in this case the sum of negative edge 
weights is smaller than the positive edge weight. Again, the majority agrees on a negative link 
between A and B; however, only median aligns with this agreement while using the mean yields a 
positive link from A to B in the aggregated map, which is opposed to the majority opinion.  

In all of these examples, median produces aggregated results which agree with the majority 
opinion regarding the presence, absence, or the sign of the link, while also mimics an average-
like mechanism to aggregate edge weights. However, in four out of six cases, the mean produces 
results that do not correctly represent the majority opinion. These examples clearly demonstrate 
how median outperforms the mean in aggregating group models across stakeholder types.  

Text S5. Fuzzy cognitive maps computation 

FCM models are semi-quantitative simulation models (13) that can be used to assess the 
perceived dynamic behavior of the system they represent (10, 14, 15). Here, we used FCM 
computational analysis to demonstrate how stakeholders, based on their collective perceptions 
and knowledge, predict the changes in the state of system’s elements (e.g., striped bass 
population) given an initial change in one or combination of concepts called scenario inputs (e.g., 
decrease water quality or increase water temperature) (also see refs. (16, 17) for details about 
scenario analysis). An increase (or a decrease) in a concept affects all concepts that are causally 
dependent upon it and thus triggers a cascade of changes to other system concepts. 
Subsequently, the newly activated concepts affect other concepts they have causal 
interdependency with, and this iterative propagation of the initial change continues until the 
system converges into a new so-called “system state” (18). By comparing the system states (i.e. 
the activation of concepts) before and after initiation of a change, FCM can be used to implement 
“what if” scenario analysis, and therefore represent the perceived dynamic behavior of the system 
(in this case, striped bass fisheries). 

To run a scenario, the activation value of one or more concepts (i.e., scenario nodes) in a FCM 
was manipulated and forced to stay at either +1 (an increase) or -1 (a decrease). This initial 
change passes through the network of nodes and connections including feedback loops until the 
system reaches a new state. The consequent alterations in the state of other system concepts 
were calculated by subtracting their initial values from their values after the scenario was 
introduced and system converged into a new state. The initial value of each concept—also known 
as the “steady state”—is calculated using the following formula: 
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𝑐𝑖
(𝑘+1)

= 𝑓 (𝑐𝑖
(𝑘)

+  ∑ 𝑐𝑗
(𝑘)

. 𝐴𝑗𝑖

𝑗

)  (𝑺𝟑) 

where 𝑐𝑖
(𝑘+1)

 is the value of concept 𝐶𝑖 at iteration step 𝑘 + 1, 𝑐𝑖
(𝑘)

 is the value of concept 𝐶𝑖 at 

iteration step 𝑘, 𝑐𝑗
(𝑘)

 is the value of concept 𝐶𝑗 at iteration step 𝑘, and 𝐴𝑗𝑖 is the weight of the edge 

relationship between 𝐶𝑗 and 𝐶𝑖. Function 𝑓(𝑥) is the threshold function (aka “activation function”), 

that was used to squash the concept values at each step to a normalized interval between -1 and 
1. Two popular kinds of activation functions which are commonly used in FCM studies are 
sigmoid and hyperbolic tangent (19–22). In this study, we used a hyperbolic tangent function (see 
ref. (20) for more details about hyperbolic tangent function and FCM dynamics): 

𝑓(𝑥) =  𝑇𝑎𝑛ℎ (𝜆𝑥) =  
𝑒𝜆𝑥 − 𝑒−𝜆𝑥

𝑒𝜆𝑥 +  𝑒−𝜆𝑥
     (𝑺𝟒) 

where 𝜆 is a real positive number (in our case 𝜆 = 0.5) which determines the steepness of the 

function 𝑓. The value of each concept under a scenario was computed using the same formula 
(Eq. S3), but here, scenario nodes were forced to take fixed values (either +1 or -1 to simulate an 
increase or a decrease respectively). The scenario outcomes were then calculated as the 
differences between the values of the system’s concepts when the system was self-administered 
and when it was forced by fixed manipulations in the state of scenario concepts (10, 18). For 
each concept 𝐶𝑖 the change in its value as a result of running a scenario is:  

𝐷𝑖
𝑠𝑐 = 𝑐𝑖

𝑠𝑠 − 𝑐𝑖
𝑠𝑐        (𝑺𝟓) 

where 𝐷𝑖
𝑠𝑐 is the change in the value of concept 𝐶𝑖, 𝑐𝑖

𝑠𝑠 is the value of concept 𝐶𝑖 in the steady 

state, and 𝑐𝑖
𝑠𝑐 is the value of concept 𝐶𝑖 after converging into a new state while scenario concepts 

are clamped on fixed values.  

Fig. S10 shows the results of 6 scenarios that were used in model evaluations. Since we 
compare the system states to an initial baseline (“steady state”), scenario outcomes represent 
relative changes in concepts’ activation, and therefore the normalized results (i.e., normalized 
patterns of relative changes in system states) are independent from the choice of activation 
function. To statistically test this independency and check the robustness of our findings, we used 
both sigmoid and tangent hyperbolic functions and compared the FCM dynamic outcomes for 6 
scenarios that were used in model evaluations. Fig. S11 shows the correlation between results of 
sigmoid and hyperbolic tangent activation functions. For all four models, Pearson Correlation (𝑟) 
is significant at the 0.01 level (2-tailed), suggesting that the patterns of relative changes in the 
system states are independent from the choice of activation function. 
In addition, there are no scenarios where the crowd model produces outcomes that differ from all 
three groups (i.e., recreational fishers, commercial fishers, and managers). This is shown in Fig. 
S12 using simple correlation matrix of scenario outcomes between the four models. Among 6 
scenarios, outcomes of four models are less correlated for Increase water temperature, Decrease 
water quality, and Increase demand.      
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Text S6. Striped Bass Fishery and Ecosystem-Based Fishery Management Model 

Striped Bass 

Striped bass (Morone saxatilis) are an anadromous fish native to the east coast of the United 
States and can reach sizes well over one meter. Today, most the key spawning grounds are 
located in the mid-Atlantic region of the United States, such as the Chesapeake Bay and 
Delaware River (23). After spawning, a large contingent of striped bass make an annual migration 
north during the spring and summer into New England rivers, estuaries, and coastal waters, 
where they forage for a diversity of fish and invertebrate prey, including the American lobster 
(Homarus americanus), Atlantic menhaden (Brevoortia tyrannus), and American sand lance 
(Ammodytes americanus) (24, 25). Often traveling in large schools, Striped Bass can consume 
sizeable portions of local prey populations and as such, play a critical role in coastal ecosystems 
(26).  

Striped bass are also integrally connected to people throughout the east coast, where they hold 
both historic and present-day importance; striped bass were a valuable food source for the early 
European colonizers of New England and offer opportunities in numerous states for commercial 
fishers and for a diversity of recreational fishers with different motivations for fishing (27). 
However, they have undergone a series of large population fluctuations, including a historic low in 
the late twentieth century, which spurred substantial regulatory changes across their range (28). 
Since then, striped bass populations have enjoyed a full recovery, but more recent decreases 
have again resulted in tighter fishing restrictions from state and regional management agencies. 

Ecosystem-Based Fishery Management  

Ecosystem-Based Fishery Management (EBFM) has been identified as the most efficient and 
effective model for the National Oceanic and Atmospheric Administration (NOAA) Fisheries 
(www.fisheries.noaa.gov). EBFM can help maintain interconnected ecosystems and human 
societies in a healthy, productive, and resilient condition, while considering the full range of trade-
offs and complex social-ecological interactions. Here we used a striped bass EBFM model with 
four critical ecosystem considerations (i.e., sub-models): Habitat suitability, Stock dynamics, 
Food-webs, and Socioeconomics (29). This model is developed by EBFM Striped Bass Species 
Team at Maryland Sea Grant to build a sustainable ecosystem for fisheries within Chesapeake 
Bay. However, the identified critical sub-models are generic, and this EBFM model can be applied 
to Atlantic striped bass fisheries in Massachusetts (MA). Also, Chesapeake Bay is a primary 
spawning grounds for striped bass, and they migrate to MA in later stages of their lifecycle, and 
therefore these ecosystems are interconnected (24, 25).   

We therefore developed a casual model of social-ecological relationships based on what has 
been identified in ref. (29) as the critical ecosystem components and causal interdependences. 
We used Mental Modeler online tool and built a directed graph to represent cause-and-effect 
relationships between components (Fig. S17). This graphical model was then exported to an 
adjacency matrix that was used as a reference point against which the performance (i.e., 
success) of stakeholder-driven models were measured (see the next section).     

Text S7. Monte Carlo Analysis (MCA): The framework 

To conduct the MCA we used the framework shown in Box S2. We made virtual communities of 
agents with randomly generated cognitive maps in two ways:  

First, to mimic our real-world experiment, wherein approximately 10 individuals participated from 
three stakeholder types, we generated virtual communities of size 10 for each stakeholder type. 
In each replicate, and for each stakeholder type (i.e., recreational fishers, commercial fishers, and 
managers), 10 virtual agents with random cognitive maps were generated (in sum, 30 virtual 

http://www.fisheries.noaa.gov/
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agents, which closely approximates our experiment). Aggregated models of homogeneous 
communities were generated by averaging individual maps within each group. Finally, the diverse 
crowd model was generated by aggregating maps across groups. This process was repeated for 
10,000 replicates where the performance of three homogeneous groups and the diverse group 
were compared.  

Second, to further demonstrate the impact of “diversity” on group performance, we generated 
virtual communities with different levels of diversity. To that end, in each replicate, and for each 
stakeholder type (i.e., recreational fishers, commercial fishers, and managers), a random number 
of virtual agents were generated such that the total number of all virtual agents is equal to 30. 
This MCA closely approximates the size of the crowd in our experiment, but explores different 
combinations of three stakeholder types which may lead to different levels of diversity. To 
measure each group’s diversity, we used Shannon’s entropy formula as described in ref. (30). 
This diversity index takes into account both the richness (i.e., how many unique stakeholder types 
exist in a group) and the evenness (i.e., how even are the proportions of stakeholder types) of 
groups: 

𝐻𝑔 = − ∑ 𝑝𝑖 × 𝐿𝑛(𝑝𝑖)

𝑖

    𝑎𝑛𝑑    𝑓𝑜𝑟 ∀ 𝑖 ∈ {𝑈},   𝑝𝑖 =
𝑛𝑖

𝑛𝑔

       (𝑺𝟔) 

Where 𝐻𝑔 is the diversity index for group 𝑔, 𝑈 is the set of unique stakeholder types, 𝑛𝑖 is the 

number of individuals within the group whose type is 𝑖, and 𝑛𝑔 is the total number of individuals in 

the group, and in this case, 𝑛𝑔 = 30 for all virtual groups. This process was repeated for 10,000 

replicates.  

In addition, we used MCA to further demonstrate the supremacy of using median over using 
mean in aggregating models across groups while increasing the group size. To that end, we 
generated virtual crowds of random sizes between 3 and 99 with all three stakeholder types, 
aggregated group models across types using mean and median, and explored the impact of 
crowd size on the crowd performance for both approaches. In each replicate, the number of 
virtual agents from each stakeholder type was the same, but each time, the total crowd size was 
different. Because in each group there are the same number of agents from each stakeholder 

type, the diversity level is maximum (i.e., 𝐻𝑔 = − ∑
1

3
× ln (

1

3
3
𝑖=1  ) ) for all virtual groups, while their 

sizes are different. Our results revealed that, once the median is used, the crowd performance 
may improve as the crowd size increases. However, once the mean is used, the crowd 
performance deteriorates in larger crowds (Fig. S18).  

In all of these MCAs, EBFM was used as a reference point to measure group success (i.e., 
performance). That is,  the distance of each group’s aggregated model to EBFM is measured via 
a bilateral (graph-spectral graph) matrix similarity index that takes into account 1) the overlap of 
their edges and 2) the distance between the eigenvalues of their normalizes Laplacian matrices. 
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Fig. S1. An example of a fuzzy cognitive map (FCM) representing a mental model about the 
striped bass fishery. The FCM was created using the Mental Modeler online platform at 
www.mentalmodeler.org. Boxes demonstrate system concepts defined by the individual modeler 
and arrows indicate causal relationships between concepts.      

 
  

http://www.mentalmodeler.org/
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Fig. S2. All individual fuzzy cognitive maps (FCM) representing the mental models of 32
participants about striped bass fishery in Massachusetts.
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Fig. S3. Multi-level aggregation method. At the first level, individual maps are aggregated by 
stakeholder groups using the arithmetic mean of their fuzzy cognitive maps’ edge weights. In the 
second level, the resulting group means are aggregated using the median of their edge weights 
to produce the crowd model. 
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Fig. S4. Intra-group versus Inter-group distances between pairs of cognitive maps. Y-axis in A 
shows the eigenvalues distance between pairs of matrices (see Box S1), and values closer to 
zero indicate more similar models. For all three groups, individuals within groups (i.e., intra-group) 
have more similar models than individuals across groups (i.e., inter-group).   
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Fig. S5. Aggregated mental model of recreational fishers. Circles demonstrate unique system 
concepts mentioned by the individuals of type recreational fisher. Ecological-dimension concepts 
are green and human-dimension components are purple. Weighted blue/red arrows indicate 
positive/negative causal relationships between concepts. Arrow thickness represents the strength 
of the causal relationships ranged from -1 to +1. The weights of the arrows are computed using 
Eq. S1.    
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Fig. S6. Aggregated mental model of commercial fishers. Circles demonstrate unique system 
concepts mentioned by the individuals of type commercial fisher. Ecological-dimension concepts 
are green and human-dimension components are purple. Weighted blue/red arrows indicate 
positive/negative causal relationships between concepts. Arrows thickness represents the 
strength of the causal relationships ranged from -1 to +1. The weights of the arrows are 
computed using Eq. S1.    
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Fig. S7. Aggregated mental model of fisheries managers. Circles demonstrate unique system 
concepts mentioned by the individuals of type manager. Ecological-dimension concepts are 
green and human-dimension components are purple. Weighted blue/red arrows indicate 
positive/negative causal relationships between concepts. The arrows thickness represents the 
strength of the causal relationships ranged from -1 to +1. The weight of the arrows are computed 
using Eq. S1. 
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Fig. S8. Aggregated mental model of the diverse crowd. Circles demonstrate a parsimonious list 
of system concepts mentioned by all individuals of all stakeholder types. This parsimonious list of 
system concepts is obtained by a multi-level aggregation method. Ecological-dimension concepts 
are green and human-dimension components are purple. Weighted blue/red arrows indicate 
positive/negative causal relationships between concepts. Arrows thickness represents the 
strength of the causal relationships ranged from -1 to +1. The weights of the arrows are 
computed using Eq. S2. 
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Fig. S9. The frequency and the relative percentage of each category of system concepts across 
three stakeholder groups. Concepts used in participants’ mental models are categorized into two 
main categories: Ecological-dimension and Human-dimension. The ecological-dimension is 
divided into two sub-categories of biological concepts and habitat-related concepts. The human-
dimension is divided into two sub-categories of social concepts and management related 
concepts. We measured the frequency and relative percentage of each sub-category across 
stakeholder types to determine stakeholder-specific biases. The numbers on bar-graphs indicate 
the frequency of concepts under each specific category. The x-axis shows the relative 
percentage.    
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Fig. S10. Relative normalized changes in the value of concepts, simulating the striped bass 
fishery response to six different scenarios: (A) increased inclement weather for fishing, (B) 
increased water temperature, (C) decreased water quality, (D) increased price of fish, (E) 
increased demand, and (F) increased poaching and illegal catches. These scenarios simulate the 
impacts of social and environmental stressors and were used in experts’ subjective evaluations to 
judge the models’ performance in terms of dynamic behavior.  
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Fig. S11. Pearson Correlation between scenario outcomes produced by sigmoid (x-axis) and 
hyperbolic tangent (y-axis) as the activation functions. For all four models, outcomes of 6 
scenarios (see Fig. S10) produced by sigmoid and hyperbolic tangent functions are significantly 
correlated at 0.01 level.  
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Fig. S12. Correlation matrices of scenario outcomes between four models for 6 scenarios. Each 

cell represents Pearson correlation coefficient (𝒓) between a pair of stakeholder groups. Scenario 
outcomes for “increase price”, “increase illegal catch”, and “increase inclement weather” are more 
positively correlated across groups while the outcomes of scenarios “increase water 
temperature”, “increase demand”, and “decrease water quality” are less correlated with some 
pairs demonstrating negative correlations. Among 6 scenarios, there are no cases where the 
crowd model strongly contrasts with all three groups.   
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Structure of the Models 
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 Question 1 2 3 4 5 6  7 

1 Relationships between  

Prey-SB Population-Predator 

       

2 Relationships between  

Com Fishing-SB Population-Rec 
Fishing 

       

3 Relationships between  

Prey-SB Population-Predator 

                    & 
Com Fishing-SB Population-Rec 
Fishing  

       

4 Relationships between  

Prey-SB Population-Predator 

                    & 
Com Fishing-SB Population-Rec 
Fishing 

                    & 
Average Size of SB 

       

5 Relationships between  

Spawning and SB Population 

Dynamics 

       

6 Relationships between  

Water Temperature and other 

concepts in the model 

       

7 Relationships between  

Inclement Weather and other concepts 

in the model 

       

8 Relationships between  

Habitat and other concepts in the 

model 

       

9 Relationships between  

Poaching and illegal activity and 

other concepts in the model 

       

10 Relationships between  

Fish Health and other concepts in the 

model 

       

11 Relationships between   

Price, Demand and other concepts 

       

Fig. S13. Evaluation sheet used at interviews with experts to evaluate the structure of the 
models. Each expert had to fill out the sheet for 4 blinded models.  
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Dynamics of the Models 
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 Question 1 2 3 4 5 6 7 

1 Scenario outcome of  

Increasing water temperature 

       

2 Scenario outcome of  

Decreasing water quality 

       

3 Scenario outcome of  

Increasing inclement weather 
for fishing 

       

4 Scenario outcome of  

Increasing Price 

       

5 Scenario outcome of  

Increasing Demand 

       

6 Scenario outcome of  

Increasing poaching and 
illegal activities 

       

7 
Add Your Scenario 

       

8 
Add Your Scenario 

       

9 
Add Your Scenario 

       

Fig. S14. Evaluation sheet used at interviews with experts to evaluate the dynamic behavior of 
the models. Each expert had to fill out the sheet for 4 blinded models. 
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Fig. S15. Expert evaluation of models’ components (i.e. nodes). Evaluation was conducted based 
on experts’ scientific knowledge of the system’s fundamental components versus trivial or 
redundant components which were considered superfluous in modeling the striped bass 
population. One example of an opinion table in (A) shows experts’ majority opinion about whether 
a component is necessary (black), superfluous (white) or there is no consensus among experts 
(half-black, half-white). The percent of false errors according to the experts’ majority opinion is 
shown in (B).  
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List of concepts used in Models 

Concepts 

M
o

d
e
l 
#

1
 

M
o

d
e
l 
#

2
 

M
o

d
e
l 
#

3
 

M
o

d
e
l 
#

4
 Important 

must 
Included 

Not 
Important 

must 
Excluded 

I don’t 
Know 

Climate Change        

Commercial Bycatch        

Economy of the region        

Fishing for prey        

Forage (Available food)        

Recruitment of Striped Bass        

Socioeconomic Status of 

Residents 

       

Regulatory Limits        

Seals Population         

Fig. S16. Evaluation sheet used at interviews with experts to evaluate false errors regarding 
system components that were used by more than one but not all stakeholder groups. Each expert 
had to fill out the sheet for 4 blinded models. 
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Fig. S17. Ecosystem-Based Fishery Management (EBFM) model. This striped bass EBFM model 
has four critical ecosystem considerations (i.e., sub-models): Habitat suitability, Stock dynamics, 
Food-webs, and Socioeconomics, each illustrated by a unique color. This model is developed 
base on a published report by EBFM Striped Bass Species Team at Maryland Sea Grant (see ref. 
(29)) and we graphically re-produced it using Mental Modeler tool (www.mentalmodeler.org).  

 
  

http://www.mentalmodeler.org/
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Fig. S18. Comparison of the performance of virtual crowds generated by median and mean 
mechanisms while the crowd size increases. Results in this figure illustrate 10,000 replicates for 
generating virtual crowds with a random size (i.e., the crowd size in each replicate is a random 
number between 3 and 99 drawn from a uniform distribution), such that the number of agents 
from types recreational fisher (𝑹), commercial fisher (𝑪), and manager (𝑴) are the same. Unlike 
the median mechanism, crowd models generated by a simple-averaging method (i.e. mean) 
disproportionately cumulate any information from diverse types of stakeholders without any 
mechanisms for filtering out information for which no majority agreement (i.e. concurrence) exists. 
In contrast, even though using the median method to aggregate models across diverse groups of 
stakeholders may cause information loss (i.e., filtering out information for which no clear 
agreement exists), it produces a parsimonious model that more accurately represents system 
complexities and interdependences.     
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Table S1. The number of participants from each stakeholder type and the number of nodes and 
connections used in their mental models. The mean and standard deviation of number of 
concepts (i.e. nodes) and connections (i.e. edges) are shown by stakeholder types. 

 

 

Stakeholder group Number of 
Participants 

Number of 
Nodes (N) 
Mean (SD) 

Number of 
Connections (C) 

Mean (SD) 

Recreational fishers 13 11.54 (4.01) 29.85 (20.53) 

Commercial fishers 11 11.45 (2.84) 23.45 (12.41) 

Fisheries managers 8 12.00 (3.21) 27.25 (7.87) 

Total 32 11.63 (3.35) 27.00 (15.32) 
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Table S2. Intra-group versus inter-group variations based on the ratio of disagreement to 

agreement (𝜸) for three stakeholder groups and for the major causal relationships. Commercial 
fishers, recreational fishers, and managers in 67%, 60%, and 53% of reviewed relationships, 
respectively, demonstrate higher agreement within group compared to across groups. In 80% of 
cases, there are at least two groups for which the inter-group 𝜸 (dark gray color bar) is higher 

than intra-group 𝜸 (mustard yellow color bar), suggesting that stakeholders within each group 
constructs more similar maps compared to stakeholders across groups.  
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