

Supplementary Materials Linking labile heme with thrombosis

Marie-Thérèse Hopp ¹ and Diana Imhof ^{1,*}

¹ Pharmaceutical Biochemistry and Bioanalytics, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; mhopp@uni-bonn.de (M.H.); dimhof@uni-bonn.de (D.I.)

* Correspondence: dimhof@uni-bonn.de

Received: date; Accepted: date; Published: date

Supplementary tables

Observed side effect	Organism	Compound	Solvent	Dose	Injection	Effect	Reference
Ecchymosis, hemorrhage	Guinea pig, rabbit	Hematin, hemin	0.85% salt solution	30 - 54 mg/kg	intraperitoneal, subcutaneous,		Brown 1911 [1]
					intravenous		
Hemorrhage	Cat, dog	Hematin	0.85% NaCl + 2%	3.5 - 9 mg/kg	intraperitoneal,		Brown &
			Na ₂ CO ₃ alkaline solution		visceral		Loevenhart 1913 [2]
Hemorrhagic kidney	Rabbit	Hematin	0.85% NaCl + 2%	25 mg/kg	intravenous		Brown 1913
injury, hemorrhage, anemia			Na2CO3 alkaline solution				[3]
Hemorrhage, hyaline	Rabbit	Hematin	0.85% NaCl + 2%	10 - 25 mg/kg	intravenous	\$	Brown 1913
thrombi, emboli, vaso-			Na ₂ CO ₃ alkaline				[4]
infarcts			solution				
Hemorrhages, thromboses,	Dog	Hematin	disodium buffer,	N/A (intravenous), 200	intravenous,	\$	Anderson et
infarctions			pH 7.6	mg (intraperitoneal, 3 x	intraperitoneal,	• •	al. 1942 [5]
				weekly), 20 mg	subcutaneous		

Supplementary table S1. Overview of side effects observed after heme injection.

				(subcutaneous, 5 x in a period of 1-2 weeks)			
Inhibition of clotting mechanism	Dog	Hematin	physiological saline, sodium salt solution	14.5 - 32.6 mg/kg	intravenous	۵	Corcoran & Page 1945 [6]
Massive hemorrhagic bleeding, bleeding out of every body orifice	Rat	Hematin	isotonic Na2CO3 solution	100 - 180 mg/kg	intravenous	۵	Gessler et al. 1966 [7]
Thrombophlebitis	Human (hepatic porphyria patients)	Hematin	0.25% Na2CO3, pH 8.0; diluted in physiologic saline	1.2 - 6 mg/kg (applied as 4.3 - 108 mg/l, daily)	intravenous	۲	Dhar et al. 1975 [8]
Internal bleeding, bleeding into small intestine and petechiae of liver, lungs, adrenals, hemorrhage, subcutaneous hematomas	Rat	Hemin	1% Na2CO3	40 - 60 mg/kg	intravenous	۵	Lips et al. 1978 [9]
Chemical phlebitis	Human (AIP patients)	Hematin	saline solution	1.8 - 3.7 mg/kg (applied as 2 mg/ml, daily)	intravenous	۲	Lamon et al. 1979 [10]
Thrombophlebitis	Human (AIP patient)	Hematin	N/A	196 mg, every 12 hours	intravenous	۲	Morris et al. 1981 [11]
Phlebitis	Human (AIP patients)	Hematin	1% Na ₂ CO ₃	4 mg/kg (every 12 hours or daily)	intravenous	۲	McColl et al. 1981 [12]
Bile thrombi	Human (Protoporphyria patients)	Hematin	0.25% Na2CO3, pH 8.0; diluted in physiologic saline	3 - 4 mg/kg	intravenous	۲	Bloomer & Pierach 1982 [13]
Occasional thrombophlebitis	Human (AIP and variegate porphyria patients)	Heme arginate (Normosang®)	N/A	2 - 3 mg/kg (applied as 25 mg/ml, repetitive)	intravenous	۲	Mustajoki et al. 1986 [14]

Occasional bleedings	Human	Heme arginate	0.9% saline	2 - 3 mg/kg (applied as	intravenous	Ruutu et al.
	(myelodysplastic syndrome patients)	(Normosang®)	solution	25 mg/ml, repetitive)		1987 [15]
Thrombophlebitis	Rabbit	Hematin (Panhematin®)	aqueous solution with 40% 1,2- propanediol and 10% ethanol	5 mg/kg (applied as 25 mg/ml, repetitive)	intravenous 🚳	Tenhunen et al. 1987 [16]
Thrombophlebitis, fibrotic events, vaso-occlusion	Human (healthy)	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous 📀	Simionatto et al. 1988 [17]
Phlebitis	Human (AIP patients)	Heme arginate (Normosang®)	0.9% NaCl	3 mg/kg	intravenous 🛞	Herrick et al. 1989 [18]
Occasional thrombophlebitis	Human (AIP patients)	Heme arginate (Normosang®)	physiological saline	3 mg/kg (Finland), 250 mg (France)	intravenous 🛞	Mustajoki et al. 1993 [19]
Coagulopathy, hematoma	Human (AIP patient)	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	Gajra et al. 2000 [20]
Thrombotic complications	Human (acute porphyria patients)	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	<2->6 mg/kg	intravenous 👰	Anderson & Collins 2006 [21]
Thrombosis	Human (acute porphyria patients)	Heme arginate (Normosang®)	N/A	3 mg/kg (applied as 25 mg/ml, repetitive)	intravenous 🛞	Marsden et al. 2015 [22]

• = Evidence for a tendency to an anticoagulant effect of heme and its formulations. • = Evidence for a tendency to a procoagulant effect of heme and its formulations.

Parameter	Organism	Compound	Solvent	Dose	Injection	Setting	Baseline [s]	Monitored time [s]	Change	Effect	Reference
aPTT	Human (AIP patient)	Hematin	N/A	196 mg, every 12 hours	intravenous	Case report	25-41	> 60ª	> x1.5		Morris et al. 1981 [11]
aPTT	Human (AIP patient)	Hematin	N/A	4 mg/kg, every 12 hours	intravenous	Case report	37.5	>150 ^b	> x4.0	۵	Glueck et al. 1983 [23]
aPTT	Human (AIP patient)	Hematin	N/A	4 mg/kg	intravenous	in vivo	~30	~100 ^c	~ x3.3	۵	Glueck et al. 1983 [23]
(a)PTT	Human	Hematin	0.1 N NaOH, diluted in PBS	3 nmol	- (plasma sample)	in vitro	461	323	~30% ↓	۲	Becker et al. 1985 [24]
aPTT	Human	Hematin	1 N NaOH, diluted in potassium phosphat buffer (pH 7.5)	60 μg/ml	- (plasma sample)	in vitro	37.4 (0 h) - 35.8 (50 d)	40.9 (0 h) - 103.1 (50 d)	≤ x2.9 (aged hematin exclusively)	_/	Jones 1986 [25]
aPTT	Human	Hematin	1 N sodium carbonate (pH 7.5))	60 µg/ml	- (plasma sample)	in vitro	37.4 (0 h) - 35.8 (50 d)	39.8 (0 h) - 183.0 (50 d)	≤ x4.6 (aged hematin exclusively)	_/	Jones 1986 [25]
aPTT	Human	Hematin (Panhematin®)	water	78 µg/ml	- (plasma sample)	in vitro	N/A	N/A	x1.4	٢	Jones 1986 [25]
aPTT	Rat	Hematin	1 N sodium carbonate (pH 7.5))	12 mg/kg	intravenous	in vivo	17.3	N/A	~ x1.8 (3 min after injection)	۵	Jones 1986 [25]

Supplementary table S2. Overview of heme effects on bleeding and clotting times.

aPTT	Human	Heme arginate (Normosang®)	aqueous solution + 40% 1,2- propanediol + 10% ethanol	3 mg/kg	intravenous	in vivo	~34.5	~34.3 ^{d,e}	No significant change	-	Tenhunen et al. 1987 [16]
aPTT	Human	Heme arginate (Normosang®)	physiological saline	3 mg/kg	intravenous	in vivo	~35.0	~33.0 - 36.0 ^f	No significant change	-	Volin et al. 1988 [26]
aPTT	Human	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	in vivo	N/A	N/A	~ x1.2	۵	Simionatto et al. 1988 [17]
aPTT	Human	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	70 μg/ml	- (plasma sample)	in vitro	N/A	N/A	~ x1.3	۵	Simionatto et al. 1988 [17]
aPTT	Human (AIP patients)	Heme arginate (Normosang®)	0.9% NaCl	3 mg/kg	intravenous	in vivo	N/A	N/A	No significant change	-	Herrick et al. 1989 [18]
aPTT	Human (AIP patient)	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	Case report	27	28 (1 hour after 1 st injection), 33 (1 hour after 2 nd injection, day 4)	If, only very slight change after 2 nd injection	-	Green & Ts'ao 1990 [27]
aPTT	Human (AIP patient)	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	Case report	35.6	58.3	~ x1.6	۵	Gajra et al. 2000 [20]
aPTT	Rat	Albumin-heme (50 g/l & 3 mM, respectively)	0.9% NaCl, pH 7.4	10 - 44%	- (whole blood sample)	in vitro	~30.0	~30.0	No significant change	-	Huang et al. 2003 [28]

aPTT	Rat	Hemin	< 0.5% DMSO	50 mg/kg	intraperitoneal	in vivo	~16.9	~17.8	No significant change	-	Desbuards et al. 2007 [29]
aPTT	Mouse (CLP)	Hemin	DMSO, diluted in PBS	50 µmol/kg	intraperitoneal	in vivo	~19.0	~22.0	~ x1.2	۵	Fei et al. 2012 [30]
aPTT	Mouse (CLP)	Hemin	DMSO, diluted in PBS	50 µmol/kg	intraperitoneal	in vivo	~9.2	~15.6	~ x1.7	۵	Hassaan et al. 2015 [31]
aPTT	Human	Hemin	0.03 M NaOH, diluted in DPBS	1 - 100 μΜ	- (plasma sample)	in vitro	~31.3	~36.7 (1 μM) – 41.4 (100 μM)	No significant change	-	Hopp et al. 2020 [32]
aPTT	Human	Hemin + albumin (0.1%)	0.03 M NaOH, diluted in DPBS	1 - 100 μΜ	- (plasma sample)	in vitro	~32.0	~32.9 (1 μM) - 33.7 (100 μM)	No significant change	-	Hopp et al. 2020 [32]
Bleeding time (Duke)	Rabbit	Hematin	0.85% NaCl + 2% Na2CO3 alkaline solution	25 mg/kg	intravenous	in vivo	n.d.	> 7200	n.d.	٢	Brown 1913 [3]
Clotting time	Rat	Hemin	< 0.05% DMSO	50 mg/kg	intraperitoneal	in vivo	~600	~2400	~ x4.0	۵	Rochefort et al. 2007 [33]
Clotting time	Human	Hemin	0.1 M NaOH, adjusted to pH 7.4	30 µM	- (whole blood)	ex vivo	~500	~400	~20%↓	۲	De Souza et al. 2017 [34]
Clot formation time	Human	Hemin	0.1 M NaOH, adjusted to pH 7.4	30 µM	- (whole blood)	ex vivo	~200	~150	~25%↓	۲	De Souza et al. 2017 [34]
Coagulation time	Rabbit	Hematin	0.85% NaCl + 2% Na2CO3	25 mg/kg	intravenous	in vivo	8 - 11	17	~ x1.8	٢	Brown 1913 [3]

6 of 36

			alkaline								
			solution								
ECLT	Human	Hematin	0.1 N NaOH, diluted in PBS	3 nmol	- (plasma sample)	in vitro	≥10800	2400	~78%↓	۵	Becker et al. 1985 [24]
Ethanol gelation	Human	Heme arginate (Normosang®)	aqueous solution + 40% 1,2- propanediol + 10% ethanol	3 mg/kg	intravenous	in vivo	negative	negative ^{d,e}	No significant change	-	Tenhunen et al. 1987 [16]
Ethanol gelation	Human	Heme arginate (Normosang®)	Physiological saline	3 mg/kg	intravenous	in vivo	negative	negative ^f	No significant change	-	Volin et al. 1988 [26]
FT	Human (AIP patient)	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	Case report	15.5	18.9	~ x1.2	۵	Gajra et al. 2000 [20]
РТ	Human (AIP patient)	Hematin	N/A	196 mg, every 12 hours	intravenous	Case report	13.2	20.2ª	~ x1.5	۵	Morris et al. 1981 [11]
PT	Human (AIP patient)	Hematin	N/A	4 mg/kg, every 12 hours	intravenous	Case report	11.7	18.3 ^b	~ x1.6	۵	Glueck et al. 1983 [23]
PT	Human (Acute porphyria patient)	Hematin	N/A	4 mg/kg	intravenous	in vivo	~4	~10 ^c	~ x2.5	۵	Glueck et al. 1983 [23]
PT	Human	Hematin	1 N NaOH, diluted in potassium phosphat	60 µg/ml	- (plasma sample)	in vitro	13.0 (0 h) - 12.0 (50 d)	13.6 (0 h) – 16.4 (50 d)	≤x1.4 (aged hematin exclusively)	_/	Jones 1986 [25]

			buffer (pH 7.5)								
PT	Human	Hematin	1 N sodium carbonate (pH 7.5))	60 μg/ml	- (plasma sample)	in vitro	13.0 (0 h) - 12.0 (50 d)	12.8 (0 h) – 16.1 (50 d)	≤ x1.3 (aged hematin exclusively)	_/	Jones 1986 [25]
PT	Human	Hematin (fresh)	1 M Na2CO3, pH 8.0	40 mg/l	- (plasma sample)	in vitro	~13.7	~13.3	No significant change	-	Goetsch & Bissell 1986 [35]
PT	Human	Hematin (50 h aged, 21°C)	1 M Na2CO3, pH 8.0	40 mg/l	- (plasma sample)	in vitro	~13.7	~16.3	~ x1.2	۵	Goetsch & Bissell 1986 [35]
PT	Human	Heme arginate (Normosang®)	Aqueous solution + 40% 1,2- propanediol + 10% ethanol	3 mg/kg	intravenous	in vivo	~17.0	~17.3 ^d , ~17.2 ^e	No significant change	-	Tenhunen et al. 1987 [16]
PT	Human	Heme arginate (Normosang®)	Physiological saline	3 mg/kg	intravenous	in vivo	~18.0	~18.0 - 19.0 ^f	No significant change	-	Volin et al. 1988 [26]
PT	Human	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	in vivo	N/A	N/A	~ x1.2	۵	Simionatto et al. 1988 [17]
PT	Human (AIP patient)	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	Case report	12	12 (1 hour after 1 st injection), 15 (1 hour after 2 nd injection, day 4)	If, only very slight change after 2 nd injection	-	Green & Ts'ao 1990 [27]

PT	Rat	Albumin-heme (50 g/l & 3 mM,	0.9% NaCl, pH 7.4	10 - 44% (0.28 - 1.2 mM)	- (whole blood)	in vitro	~20.0	~20.0	No significant change	-	Huang et al. 2003 [28]
РТ	Rat	Hemin	< 0.5% DMSO	50 mg/kg	intraperitoneal	in vivo	~19.3	~20.0	No significant change	-	Desbuards et al. 2007 [29]
РТ	Mouse (CLP)	Hemin	DMSO, diluted in PBS	50 µmol/kg	intraperitoneal	in vivo	~9.0	~11.0	~ x1.2	٢	Fei et al. 2012 [30]
РТ	Mouse (CLP)	Hemin	DMSO, diluted in PBS	50 µmol/kg	intraperitoneal	in vivo	~13.6	~18.6	~ x1.4	٢	Hassaan et al. 2015 [31]
RT	Human (Acute porphyria patient)	Hematin	N/A	4 mg/kg	intravenous	in vivo	~20	~30°	~ x1.5	٢	Glueck et al. 1983 [23]
RT	Human (Acute porphyria patient)	Hematin	N/A	0.1 mg/ml	- (plasma sample)	in vitro	25	50	~ x2.0	٢	Glueck et al. 1983 [23]
TT	Human	Lithium ferriheme	N/A	100 mg. %	- (plasma sample)	in vitro	3	N/A	No significant change	-	Barnard 1947 [36]
TT	Human	Lithium ferriheme	N/A	20 mg. %	- (plasma sample)	in vitro	3	10	~x3.3	٢	Barnard 1947 [36]
TT	Human	Lithium ferriheme	N/A	40 mg. %	- (plasma sample)	in vitro	3	35	~x11.7	٢	Barnard 1947 [36]
TT	Human	Lithium ferriheme	N/A	60 mg. %	- (plasma sample)	in vitro	3	-	Complete clotting prevention	٢	Barnard 1947 [36]

TT	Human (Acute porphyria	Hematin	N/A	4 mg/kg, every 12	intravenous	Case report	N/A	N/A	No significant change ^b	-	Glueck et al. 1983 [23]
TT	Human (Acute porphyria	Hematin	N/A	4 mg/kg	intravenous	in vivo	~10	~25°	~ x2.5	٢	Glueck et al. 1983 [23]
TT	patient) Human (Acute porphyria patient)	Hematin	N/A	0.01-0.03 mg/ml	- (plasma sample)	in vitro	~15	~20 - >60	~ x1.3 - >4.0	٢	Glueck et al. 1983 [23]
TT	Human	Hematin	0.25% Na2CO3; diluted in barbital buffer pH 7 4	0.01 mg/ml	- (plasma sample)	in vitro	~13	~46	~ x3.5	٢	Green et al. 1983 [37]
TT	Human	Hematin	1 N NaOH, diluted in potassium phosphat buffer (pH	60 μg/ml	- (plasma sample)	in vitro	13.0 (0 h) - 12.0 (50 d)	13.8 (0 h) – 27.8 (50 d)	≤ x2.3 (aged hematin exclusively)	_/	Jones 1986 [25]
TT	Human	Hematin	1 N sodium carbonate (pH 7.5))	60 μg/ml	- (plasma sample)	in vitro	13.0 (0 h) - 12.0 (50 d)	12.9 (0 h) – 25.9 (50 d)	≤ x2.2 (aged hematin exclusively)	_/	Jones 1986 [25]
TT	Rat	Hematin	1 N sodium carbonate (pH 7.5))	12 mg/kg	intravenous	in vivo	14.0	N/A	~ x1.6 (3 min after injection)	٢	Jones 1986 [25]
TT	Human	Heme arginate (Normosang®)	Aqueous solution + 40% 1,2-	3 mg/kg	intravenous	in vivo	~18.7	~18.9 ^{d,e}	No significant change	-	Tenhunen et al. 1987 [16]

10 of 36

			propanediol + 10% ethanol								
TT	Human	Heme arginate (Normosang®)	Physiological saline	3 mg/kg	intravenous	in vivo	~19.0	19.0 ^f	No significant change	-	Volin et al. 1988 [26]
TT	Human	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	in vivo	N/A	N/A	~ x1.1	۵	Simionatto et al. 1988 [17]
TT	Human (AIP patient)	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	Case report	17	19 (1 hour after 1 st injection), 17 (1 hour after 2 nd injection, day 4)	No change	-	Green & Ts'ao 1990 [27]
TT	Human (AIP patient)	Hematin (Panhematin®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	Case report	18.9	25.6	~ x1.4	٩	Gajra et al. 2000 [20]

¹ 11 h after first injection. ² 7 h after 4th injection. ³ 10 min after injection. ^d 15 min after hematin infusion. ^e 4 h after infusion. ^f = 15 min to 24 h after administration. **♦** = Evidence for a tendency to an anticoagulant effect of heme and its formulations. ECLT = Euglobulin clot lysis time; PTT = partial thromboplastin time.

Supplementary table S3. Overview of the impact of heme intoxication on cells participating in blood coagulation.

Cell type	Organism	Compound	Solvent	Dose	Injection	Setting	Observation	Effect	Reference
Platelet	Rabbit	Hematin	0.85% NaCl+	25 mg/kg	intravenous	in vivo	Platelet count \downarrow (70% \downarrow , 1 hour after		Brown
			2% Na ₂ CO ₃				injection)	•	1913 [3]
			alkaline						
			solution						

Platelet	Human (AIP patient)	Hematin	N/A	196 mg, every 12 hours	intravenous	Case report	Platelet count \downarrow (~57% \downarrow , 12 hours after injection)	١	Morris et al. 1981 [11]
Platelet	-	Heme	25% pyridine (pH 12.6), diluted with 30% pyridine (pH 12.2)	0.15 - 770 mM	-	in vitro	Heme reduction by epinephrine essential for platelet activation	۲	Peterson et al. 1982 [38]
Platelet	-	Hemin	N/A	N/A	-	in vitro	Enhancement of ADP- and epinephrine-dependent platelet aggregation, hemin-binding to platelet membrane and granula membrane of platelets	۲	Malik et al. 1983 [39]
Platelet	Human (AIP patient)	Hematin	N/A	4 mg/kg, every 12 hours	intravenous	Case report	Platelet count \downarrow (~12% \downarrow , 7 hours after 4 th injection), thrombocytopenia	-	Glueck et al. 1983 [23]
Platelet	Human (AIP patient)	Hematin	N/A	4 mg/kg	intravenous	in vivo	Platelet count \downarrow (~41% \downarrow , 10 minutes after injection)	-	Glueck et al. 1983 [23]
Platelet	Human	Hematin	N/A	0.1 mg/ml (≙ 158 μM)	- (platelet- rich plasma sample)	in vitro	Platelet aggregation \uparrow , Serotonin secretion \uparrow , ATP secretion \uparrow	۲	Glueck et al. 1983 [23]
Platelet	Human	Hematin	0.25% Na2CO3 (pH 7.4), diluted with isotonic saline	2 - 5 μg/ml (≙ 3.2 - 7.9 μM)	- (washed platelets)	in vitro	Platelet aggregation ↑	۲	Neely et al. 1984 [40]
Platelet	Human	Hematin	0.25% Na2CO3 (pH 7.4), diluted with isotonic saline	5 - 10 μg/ml (≙ 7.9 - 15.8 μM)	- (washed platelets)	in vitro	Thromboxane A₂ generation ↑ (~ 92.7 - 187.3 ng per billion platelets; dose- dependent)	۲	Neely et al. 1984 [40]

Platelet	Human	Hematin	0.25% Na2CO3 (pH 7.4), diluted with isotonic saline	2 μg/ml (≙ 3.2 μM)	- (washed platelets)	in vitro	ATP release ↓ (slightly)	8	Neely et al. 1984 [40]
Platelet	Human (myelody splastic syndrome patients)	Heme arginate (Normosan g®)	0.9% saline solution	2 - 3 mg/kg (applied as 25 mg/ml, repetitive)	intravenous	Case reports	Platelet count ↑ (~ 2.2 - >8-fold after several weeks)	-	Ruutu et al. 1987 [15], Volin et al. 1988 [41]
Platelet	Human (AIP patients)	Heme arginate (Normosan g®)	0.9% NaCl	3 mg/kg	intravenous	Case reports	Platelet count ↑ (~ 1.2-fold after several weeks)	-	Herrick et al. 1989 [18]
Platelet	Human (AIP patient)	Hematin (Panhemati n®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	Case report	Platelet count ↑ (e.g., ~ 1.2-fold, 24 hours after treatment), platelet aggregation ↓, Platelet ATP content ↓, platelet ADP content ↓	-	Green & Ts'ao 1990 [27]
Platelet	Human (AIP patient)	Hematin (Panhemati n®)	0.05 M Na2CO3, 0.04 M sorbitol	4 mg/kg	intravenous	Case report	Platelet count \downarrow (44% \downarrow)		Gajra et al. 2000 [20]
Platelet	Rat	Albumin- heme (50 g/l & 3 mM, respectivel y)	0.9% NaCl, pH 7.4	10 - 44% (≙ 0.28 - 1.2 mM)	- (whole blood)	in vitro	No change of total number	-	Huang et al. 2003 [28]
Platelet	Mouse (wild- type & HO-1 KO)	Hemin	Phosphate- buffered saline	15 - 40 mg/kg, twice daily	intraperitone al	in vivo	Platelet cGMP level ↑, accelerated platelet-rich thrombi formation in HO-1 knockout mice after induction	@ /-	Peng et al. 2004 [42]

13 of 36

				50 /			by FeCl ₃ , no thrombosis promotion by heme without FeCl ₃ pretreatment	(Š)	
Platelet	Kat	Hemin	< 0.5% DMSO	50 mg/kg	al	<i>in vivo</i>	(~1.4-fold)	1 I I I I I I I I I I I I I I I I I I I	Desbuard s et al. 2007 [29]
Platelet	Human	Albumin- heme (50 g/l & 3 mM, respectivel v)	0.9% NaCl, pH 7.4	10 - 40% (≙ 0.28 - 1.1 mM)	- (whole blood)	in vitro	No change of ADP-stimulated platelet activation	-	Komatsu et al. 2007 [43]
Platelet	Mouse	Hemin	N/A	1 mM	- (mouse aorta)	ex vivo	Platelet aggregation as a consequence of endothelial denudation ↑	۲	Woollard et al. 2009 [44]
Platelet	Human	Hemin	N/A	0 - 25 μM	- (platelets)	in vitro	Ferroptosis \uparrow , platelet activation \uparrow , P- selectin translocation \uparrow , reorganization of actin filaments \uparrow , lipid peroxidation \uparrow , cell viability \uparrow , LDH release \uparrow , HO-1 expression \uparrow , cytosolic iron \uparrow , GSH/GSSG ratio \downarrow , γ - glutamyltransferase level \uparrow	۲	NaveenK umar et al. 2018 [45]
Platelet	Human	Hemin	N/A	0-25 μΜ	- (platelets)	in vitro	Activation of platelets ↑, Cell viability ↓, LDH release ↑, P-selectin level ↑, filopodia-like structure of platelets (10 µM hemin), ROS generation ↑, mitochondrial cardiolipin oxidation ↑, mitochondrial membrane potential ↓, anti-apoptotic Bcl-2 level ↓, apoptotic Bcl-2 level ↑, GSH/GSSG ratio ↓, NLRP-3 activation ↑, prevention by melatonin	۲	NaveenK umar et al. 2019 [46]

Platelet	Mouse	Hemin	N/A	50 µmol/kg	N/A	in vivo	Platelet number ↓, soluble P-selectin level ↑, prevention by melatonin	®	NaveenK umar et al. 2019 [46]
Platelet	Human	Hemin	N/A	0.75 - 50 μM	- (platelets)	in vitro	Rapid platelet aggregation (2 - 12 μ M), slower/reduced platelet aggregation (25 μ M), P-selectin expression \uparrow , GPIIbIIIa activation \uparrow , phosphatidylserine exposure on platelets (\geq 25 μ M), phosphorylation of Syk and PLC γ 2 \uparrow , CLEC2- mediated platelet activation, independent from oxidative stress		Bourne et al. 2020 [47]
Platelet	Mouse	Hemin	N/A	1.56 - 50 μM	- (platelets)	in vitro	Platelet aggregation ↑, CLEC2- mediated platelet activation	۲	Bourne et al. 2020 [47]
Endothelial cell	Bovine	Hematin	0.25% Na ₂ CO ₃ (pH 7.4), diluted with isotonic saline or 50 mM HEPES buffer	2 - 40 µg/ml (≙ 3.2 - 63.1 µM)	- (BAECs)	in vitro	Reversible morphologic changes of BAECs (bulging, exposed areas, surface vesiculation, cell retraction), no significant change in cell detachment	۲	Neely et al. 1984 [48]
Endothelial cell	Bovine	Hematin	0.25% Na ₂ CO ₃ (pH 7.4), diluted with isotonic saline or 50 mM HEPES buffer	100 μg/ml (≙ 158 μM)	- (BAECs)	in vitro	Cell detachment ↑ (from ~7.9 to ~13.0%)	۲	Neely et al. 1984 [48]

Endothelial cell	Bovine	Hematin	0.25% Na ₂ CO ₃ (pH 7.4), diluted with isotonic saline or 50 mM HEPES buffer	40 μg/ml (≙ 63.1 μM)	- (BAECs)	in vitro	Platelet adhesion to BAECs † (2-fold)	٢	Neely et al. 1984 [48]
Endothelial cell	Pig	Hemin	20 mM NaOH, diluted with buffer	N/A	- (PAECs)	in vivo	Rapid uptake of heme, sensitivity towards oxidants ↑	-	Balla et al. 1991 [49]
Endothelial cell	Pig	Hemin	20 mM NaOH, diluted with buffer	1 - 10 μM	- (PAECs)	in vivo	LDL oxidation [†] ; extremely cytotoxic	-	Balla et al. 1991 [50]
Endothelial cell	Mouse	Hemin	N/A	1 mM	- (mouse aorta)	ex vivo	Denudation of endothelium ↑, collagen exposure ↑, platelet aggregation ↑	۲	Woollard et al. 2009 [44]
Endothelial cell	Bovine	Hemin	DMSO	10 - 50 μM	- (BAECs)	in vitro	LDH release \uparrow , apoptosis \uparrow , ATP \downarrow (only when 50 µM hemin was applied), mitochondrial dysfunction \uparrow , lipid peroxidation \uparrow , protein carbonyl formation \uparrow , protein thiol oxidation \uparrow , autophagy activation \uparrow , mitophagy induction \uparrow		Higdon et al. 2012 [51]
Endothelial cell	Mouse (NY1DD)	Hemin (as Panhemati n®)	D-sorbitol, Na2CO3, saline (as Panhematin®)	0.4 - 32 μmol/kg	intravenous	in vivo	Endothelial cell activation through TLR4 signaling \uparrow , vaso-occlusion \uparrow , expression of adhesion molecules \uparrow	٢	Belcher et al. 2014 [52]

F 1 41 11 1			D 1111	20.14		• •,		6 85	D 1 1
Endothelial	Human	Hemin	D-sorbitol,	20 µM	- (HUVECs)	in vitro	TI P4 signaling \uparrow wasa asslusion \uparrow	KON K	Belcher et
Cell		(as Panhomati	Na2CO3,				expression of adhesion molecules \uparrow		al. 2014 [52]
		n®)	Panhematin®				expression of adhesion molecules		[52]
		noj)						
Endothelial	Human	Heme-) N/A	~20 nM (50	- (HUVECs)	in vitro	Transfer of heme to HUVECs by MPs	F êr	Camus et
cell		laden MPs		control	(,		(SCD MPs & synthetic heme-laden		al. 2015
		(SCD)		MPs/µl),			MLVs: transfer \uparrow (~4-fold), Blockage		[53]
				~65 nM (50			of transfer via annexin-a5 (PS-		
				SCD			antagonist, 10 µg/ml) or hemopexin		
				MPs/µl)			(2 μ M), ROS production \uparrow (inhibited		
							by annexin-a5, reduced by		
							hemopexin (50%), prevented by		
							TLR4 neutralization), apoptosis ↑		-
Endothelial	Mouse	Heme-	N/A	300 MPs/µl	intravenous	ex vivo	ACH-dependent vasodilation of	ES C	Camus et
cell	(SAD)	laden MPs					endothelium J, blood flow velocity in		al. 2015
E., J. (h. 1), 1	Marra	(SCD)		100 14			renal arteries \downarrow (30% \downarrow)		[53]
Endothelial	(SAD)	Heme	IN/A	100 nivi	intravenous	ex vivo	and the line	KON I	camus et
cen	(SAD)								al. 2015 [53]
Endothelial	Human	Hemin	0.25 M	5 - 100 uM	_	in vitro	Transendothelial electrical resistance	_	Singla et
cell			NaOH,	p	(HLMVECs)		\downarrow , ermeability of monolayer \uparrow .		al. 2017
			diluted in		(programmed cell death \uparrow , effects		[54]
			PBS (pH 7.4)				abrogable by: TLR4-inhibitor,		
			u /				antioxidant N-acetylcystein, iron		
							chelator deferoxamine), MLKL		
							activation (necroptosis) \uparrow		
Endothelial	Human	Hemin	50 mM	12.5 - 50	- (HUVECs)	in vitro	C3 deposition \uparrow , TM expression \uparrow ,	×B	May et al.
cell			NaOH, 145	μM			HO-1 gene expression ↑, HO-1		2018 [55]
			mM NaCl,				protein expression ↑		
			diluted with						
			medium						

Endothelial cell	Human	Hemin	50 mM NaOH, 145 mM NaCl, diluted with medium	12.5 - 50 μΜ	- (HMECs)	in vitro	C3 deposition ↑, TM expression ↑, HO-1 gene expression ↑, HO-1 protein expression ↑	®	May et al. 2018 [55]
Endothelial cell	Human	Hemin	50 mM NaOH, 145 mM NaCl, diluted with medium	12.5 - 50 μΜ	- (GENCs)	in vitro	C3 deposition ↑, TM expression ↑, HO-1 gene expression ↑, HO-1 protein expression ↑ (slightly)	۲	May et al. 2018 [55]
Endothelial cell	Human	Hemin	50 mM NaOH, 145 mM NaCl, diluted with medium	12.5 - 50 μΜ	- (HRGECs)	in vitro	C3 deposition \uparrow (higher extent than in vascular ECs), TM expression \uparrow , HO-1 gene expression \uparrow , HO-1 protein expression \uparrow (slightly)	۲	May et al. 2018 [55]
Endothelial cell	Mouse (C57B1/6)	Hemin	50 mM NaOH, 145 mM NaCl, diluted with PBS	40 μmol/kg	intraperitone al	in vivo	C3 deposition in kidney glomeruli ↑, skin and large liver vessel TM levels ↑, lung microvasculature TM levels ↓, HO-1 levels in proximal tubules (liver, heart, skin, lungs) ↑, HO-1 colocalization with blood vessels	۲	May et al. 2018 [55]
Endothelial cell	Human	Hemin	50 mM NaOH, 145 mM NaCl, diluted with vehicle	50 µM	- (HUVECs)	in vitro	P-selectin expression ↑, complement activation ↑, protection by hemopexin	۲	Merle et al. 2018 [56]
Endothelial cell	Human	Hemin	0.1 M NaOH, diluted in FBS	20 - 40 µM	- (ECs)	in vitro	P-selectin expression ↑, VCAM-1 expression ↑, HbS RBC adhesion to heme-activated ECs ↑	@	Kucukal et al. 2018 [57]
RBC	Rabbit	Hematin	0.85% NaCl + 2% Na2CO3	< 15 mg/kg	Intravenous	in vivo	Rarely: RBC count ↓ (fast regeneration)	-	Brown 1913 [3]

			alkaline solution						
RBC	Rabbit	Hematin	0.85% NaCl +	20 mg/kg	Intravenous	in vivo	RBC count \downarrow (decrease of \geq 1000000		Brown
			2% Na ₂ CO ₃				cells)		1913 [3]
			alkaline						
RBC	Rabbit	Hematin	0.85% NaCl +	10 mg/kg	intravenous	in รงiรงด	Irregular size, variable color		Brown
100	1000010	11011100111	2% Na ₂ CO ₃	(daily)			presence of immature cells (in	•	1913 [3]
			alkaline				particular basophilic cells), RBC		
			solution				count ↓ (~60%)		
RBC	Human	Hematin	N/A	196 mg,	intravenous	Case	Hematocrit \downarrow (from 32% to 22%, 12		Morris et
	(AIP			every 12		report	hours after injection)		al. 1981
RBC	Mouse	Homo	5 mM NaOH	$0 - 7 \mu M$	-(RBCs)	in nitro	Hemolysis 1 glutathione level	_	[11] Chou et
NDC .	Wiouse	Tienie	diluted with	0-7 μινι	- (RDC3)		ATP level 1, hemoglobin amount 1		al. 1981
			medium				•, • • • • • • • • •		[58]
RBC	Human	Hematin	N/A	4 mg/kg,	intravenous	Case	Hematocrit \downarrow (from 36% to 32%, 7		Glueck et
	(AIP			every 12		report	hours after 4 th injection), no		al. 1983
DDC	patient)		0.01 14	hours		,	morphological changes		[23]
KBC	Human	Hemin	0.01 M NaOH	0 - 500 μM	- (KBCS)	in vitro	Conformational change of spectrin	-	Liu et al.
			diluted with				stability		1965 [59]
			water						
RBC	Human	Hemin	20 mM	0.2 - 40 μM	- (RBCs)	in vitro	Hemolysis ↑, heme accumulation in		Shaklai et
			NaOH,				RBC membrane, heme extractable		al. 1985
			diluted with				from membranes by albumin		[60]
PRC	Pat	Albumin	water	10 44%	(whole	in nitro	No change		Huang at
KDC.	Kat	heme (50	0.9 % NaCl, pH 7 4	(0.28 - 1.2)	- (whole blood)		No change	-	al 2003
		g/1 & 3	r	mM)	21000,				[28]
		mM,		,					

RBC	Rat	respectivel y) Hemin	< 0.5% DMSO	50 mg/kg	intraperitone al	in vivo	No significant change of hematocrit, no change of RBC count	-	Desbuard s et al. 2007 [29]
Leukocyte	Guinea pig	Hematin, hemin	0.85% salt solution	30 - 54 mg/kg	intraperitone al, subcutaneou s, intravenous	in vivo	Polymorphonuclear leucocyte ↑	-	Brown 1911 [1]
Leukocyte	Rabbit	Hematin	0.85% NaCl + 2% Na2CO3 alkaline solution	10 mg/kg	intravenous	in vivo	Leukocytosis; total leukocyte number \uparrow (~1.4-fold), large (~5.6-fold) and small (~1.5-fold) mononuclear cells \uparrow , basophiles \uparrow (~2.7-fold), eosinophils \downarrow (decrease of ~60%)	-	Brown 1913 [3]
Leukocyte	Rabbit	Hematin	0.85% NaCl + 2% Na2CO3 alkaline solution	20 mg/kg (daily)	intravenous	in vivo	marked leukocytosis; total leukocyte number \uparrow (x ~4.6), large mononuclear cells \uparrow (~10-fold), polymorphonuclear cells \uparrow (~7.8-fold)	-	Brown 1913 [3]
Leukocyte	Human (myelody splastic syndrome patients)	Heme arginate (Normosan g®)	0.9% saline solution	2 - 3 mg/kg (applied as 25 mg/ml, repetitive)	intravenous	Case reports	Neutrophil count ↑ (~2.1 - >5-fold)	-	Ruutu et al. 1987 [15], Volin et al. 1988 [41]
Leukocyte	Human	Hematin	N/A	N/A	- (PBMC)	in vitro	Procoagulant activity of PBMCs ↑	®	Smith & Winslow 1992 [61]
Leukocyte	Mouse	Hemin	0.1 N NaOH, 10 mM Tris base (pH 8.6)	750 μM (intravascul ar conc.)	intravenous	in vivo	Leukocyte accumulation ↑ (spleen, liver, kidney, intestines, femur, brain, pancreas)	-	Wagener et al. 2001 [62]

20 of 36

Leukocyte	Human	Hemin	DMSO, diluted with PBS	0.1 - 20 μΜ	- (PMNs)	in vitro	Neutrophil recruitment ↑ (PKC activation required), actin polymerization ↑, oxidative burst in neutrophils ↑, PKC activation ↑, IL-8 expression ↑	-	Graça- Souza et al. 2002 [63]
Leukocyte	Rat	Hemin	DMSO, diluted with PBS	30 – 300 nmol/cavit y	intrathoracic	in vivo	Neutrophil migration ↑, pleural neutrophil population ↑, no changes of mononuclear cells	-	Graça- Souza et al. 2002 [63]
Leukocyte	Rat	Albumin- heme (50 g/l & 3 mM, respectivel y)	0.9% NaCl, pH 7.4	10 - 44% (≙ 0.28 - 1.2 mM)	- (whole blood)	in vitro	No change	-	Huang et al. 2003 [28]
Leukocyte	Rat	Hemin	with Trizma base in 0.1 M NaOH, diluted in saline, pH 8	750 µM	intradermall y	in vivo	Leukocyte recruitment ↑	-	Wagener et al. 2003 [64]
Leukocyte	Human	Hemin	DMSO, diluted with PBS	1 - 50 μM	- (neutrophils)	in vitro	Delay in neutrophil apoptosis, de novo synthesis of antiapoptotic proteins (e.g., Bcl-xL), ERK-2 translocation ↑, Akt phosphorylation ↑, degradation of proapoptotic proteins (e.g. Bad), NF-κB activation ↑	-	Arruda et al. 2004 [65]
Leukocyte	Rat	Hemin	<0.5% DMSO	50 mg/kg	intraperitone al	in vivo	Higher total leucocyte count (x ~1.9), no changes of lymphocyte cell number	-	Desbuard s et al. 2007 [29]

Leukocyte	Mouse (NY1DD)	Hemin (as Panhemati n®)	D-sorbitol, Na2CO3, saline (as Panhematin®)	3.2 µmol/kg	intravenous	in vivo	Leukocyte rolling ↑, leukocyte adhesion ↑ (TLR4-dependent)	-	Belcher et al. 2014 [52]
Leukocyte	Mouse (SA)	Hemin	DMSO, diluted in Hanks balanced salt solution	50 μmol/kg	intraperitone al	in vivo	NET formation ↑	۲	Chen et al. 2014 [66]
Leukocyte	Human	Hemin	DMSO, diluted in Hank's balanced salt solution	10 - 20 μM	- (BM neutrophils)	in vitro	NET formation ↑	۲	Chen et al. 2014 [66]
Leukocyte	Human	Hemin	N/A	1.5 - 38.3 μM	- (neutrophils)	in vitro	NET formation ↑	۲	Ohbuchi et al. 2017 [67]

• = Evidence for a tendency to an anticoagulant effect of heme and its formulations. • = Evidence for a tendency to a procoagulant effect of heme and its formulations. ACH = acetylcholine; BAECs = Bovine aortic endothelial cells; BM = Bone marrow; FBS = fetal bovine serum; GENCs = Glomerular endothelial cells; HLMVECs = human lung microvascular endothelial cells; HMECs = Human Mammary Epithelial Cells; HO-1 = heme oxygenase 1; HRGECs = Human renal glomerular endothelial cells; HUVECs = human umbilical vein endothelial cells; MLKL = mixed lineage kinase domain-like; MLVs = synthetic multilayer vesicles; MPs = erythrocyte membrane microparticles; N/A = not applicable; n.d. = not determined; PMNs = Polymorphonuclear neutrophils, SA = hemizygous mice: Tg[Hu-miniLCR α 1G γ A γ δ β S] Hba-/-Hbb+/-; SAD = transgenic S-Antilles-D Punjab Hb-expressing mouse model of SCD; TM = thrombomodulin.

Supplementary table S4. Overview of the impact of heme and its formulations on proteins acting in blood coagulation.

Protein	Organism	Compound	Solvent	Dose	Injection	Setting	Observation	Effect	Reference
Activated	Mouse	Hemin	DMSO, diluted	50	intraperitone	in vivo	APC plasma level \uparrow (4 - 24 h		Fei et al. 2012
protein C	(CLP)		in PBS	µmol/kg	al		after treatment)	•	[30]
Activated	Human	Hemin	30 mM NaOH,	187.5 -	-	in vitro	K _D of 400 ± 47 nM,	-	Hopp et al.
protein C			diluted in Tris-	3000 nM			stoichiometry: 1:1.3		2020 [32]

Activated	Human	Homin	HCl buffer (pH 7.4)	0.50.01		in vitro	(APC:heme), two binding sites identified		Hopp of al
protein C	Tunnan	THEILIIT	diluted in HEPES buffer	0 - 30 μινι	-	in ouro	(50 nM) and pdAPC (100 nM)	-	2020 [32]
			(pH 7.0)				$K_i \text{ (pdAPC)} = 12.56 \pm 2.31 \ \mu\text{M}$		
Activated protein C	Human	Hemin	30 mM NaOH, diluted in DPBS buffer (pH 7.4)	0 - 100 μM	-	in vitro	Anticoagulant activity of APC (5 nM)↓	۲	Hopp et al. 2020 [32]
Activated protein C	Human	Hemin	30 mM NaOH, diluted in medium	120 µM	- (HUVECs)	in vitro	APC (20 nM) protects from heme's cytotoxicity	۲	Hopp et al. 2020 [32]
α2-antiplasmin	Human	Heme	-	-	-	-	Suggestion of a permanently bound heme	-	Arkebauer et al. 2011 [68]
Antithrombin- III	Human (AIP patient)	Hematin	N/A	4 mg/kg	intravenous	in vivo	No change of plasma level	-	Glueck et al. 1983 [23]
Antithrombin- III	Human	Heme arginate (Normosan g ®)	physiological saline	3 mg/kg	intravenous	in vivo	Plasma levels not altered	-	Volin et al. 1988 [26]
Collagen	Mouse	Hemin	N/A	1 mM	- (mouse aorta)	ex vivo	Endothelial collagen expression ↑	Ô	Woollard et al. 2009 [44]
E-selectin	Human	Hemin	N/A	100 µM	- (HUVECs)	in vitro	Surface expression of E- selectin (4-fold) ↑		Wagener et al. 1997 [69]
Factor V	Human (AIP patient)	Hematin	N/A	4 mg/kg	intravenous	in vivo	Plasma level \downarrow /FV activity \downarrow (~80%) ^a	۵	Glueck et al. 1983 [23]
Factor VIII	Human (AIP patient)	Hematin	N/A	4 mg/kg	intravenous	in vivo	Plasma level \downarrow (~36.8%) ^a	٢	Glueck et al. 1983 [23]

23 of 36

Factor VIII	Human (AIP patient)	Hematin	N/A	4 mg/kg	intravenous	in vivo	Plasma level ↓ (~36.8%) ^a	•	Glueck et al. 1983 [23]
Factor VIII	Human	Hematin	0.25% Na2CO3 (24h), diluted with barbital buffer (pH 7.4)	18 - 70 μg/ml	- (plasma)	in vitro	FVIII procoagulant activity ↓ (72% in pooled plasma, 88% in FVIII concentrate)	۵	Green et al. 1983 [37]
Factor VIII	Human	⁵⁹ Fe- and ³ H-labeled Hematin	0.25% Na2CO3	e.g. 0.17 mg/ml	-	in vitro	Formation of FVIII/VWF complex, inhibition of FVIII-VWF dissociation, binding of FVIII/VWF- hematin complex to platelets	۲	Green et al. 1986 [70]
Factor VIII	Human	Hemin	DMSO, diluted in buffer	0.01 - 6.4 μM	-	in vitro	Specific heme binding to rFVIII (Soret band shift to ~412 nm), ~10 binding sites, KD(full-length rFVIII) = 12.7 ± 6.1 nM, KD(B-domain- deleted rFVIII) = 1.9 ± 0.5 nM	-	Repessé et al. 2012 [71]
Factor VIII	Human	Hemin	DMSO, diluted in buffer	Molar excess	-	in vitro	FVIII procoagulant activity ↓ (full-length rFVIII: by up to ~50%; B-domain-deleted rFVIII: by up to ~51%), prevention by VWF	٢	Repessé et al. 2012 [71]
Factor VIII	Human	Hemin	DMSO, diluted in buffer	Molar excess	-	in vitro	FVIII-VWF interaction not altered, FVIII-phosphatidyl serine interaction not altered, FVIII-activated platelet interaction not altered, thrombin can cleave heme-bound FVIII	-	Repessé et al. 2012 [71]

Factor VIII	Human	Hemin	DMSO, diluted	Molar	-	in vitro	Impaired FVIII-FIX		Repessé et al.
			in buffer	excess			interaction (by ~52%)		2012 [71]
Factor XII	Human	Hematin	0.1 N NaOH,	3 - 24	- (plasma)	in vitro	Increased activation	ES.	Becker et al.
			diluted in PBS	nmol			(amidolytic and		1985 [24]
							autoactivation) suggested		
Factor XII	Mouse	Hemin	0.1 M NaOH	0 - 35	Retro-orbital	in vivo	Blocking of intrinsic	-	Sparkenbaug
			and 0.1 M Tris-	µmol/kg			pathway via FXII did not		h et al. 2015
			HCI (pH 8.0)				influence heme-driven		[72]
				0 50 14		· ·,	coagulation activation		TT (1
Factor XIIIa	Human	Hemin	30 mM NaOH,	0 - 50 μΜ	-	in vitro	No impact on the	-	Hopp et al.
			alluted in Tris				amidolytic activity of		2020 [32]
EDD	Uuman	Usmatin	builer (pH 7.5)	1 mallea	intravonaua	in nino	$\frac{1}{2} \frac{1}{2} \frac{1}$		Chuock at al
rDr		пешаш	IN/A	4 mg/kg	intravenous	<i>in 0100</i>	r lasina level (~ x2) ²	•	1983 [23]
	(All nationt)								1905 [25]
FDP	Human	Heme	physiological	3 mg/kg	intravenous	in รงรรด	Plasma levels not altered	_	Volin et al
	Tuman	arginate	saline	5 mg/ kg	intravenous	<i>in 0100</i>			1988 [26]
		(Normosan	Sume						1900 [20]
		(- · · · · · · · · · · · · · · · · · · ·							
Fibrinogen	Human	Hematin	N/A	4 mg/kg	intravenous	in vivo	Plasma level ↓ (~32.1 %) ª		Glueck et al.
U	(AIP			0 0				•	1983 [23]
	patient)								
Fibrinogen	Bovine	Hematin	0.25% Na2CO3	50 µg/ml	-	in vitro	Hematin binding to		Green et al.
			(24h), diluted				fibrinogen (2 mg/ml),	•	1983 [37]
			with barbital				thrombin clottablity of		
			buffer (pH 7.4)				fibrinogen ↓		
Fibrinogen	Human	Hematin	0.25% Na2CO3	7 µg/ml	- (gel-filtered	in vitro	Hematin-induced	E.	Neely et al.
			(pH 7.4), diluted		platelets)		fibrinogen binding to		1984 [40]
			with isotonic				platelets ↑ (~13.8%; 30 min		
			saline				preincubation)		
Fibrinogen	Human	Heme	physiological	3 mg/kg	intravenous	in vivo	Plasma levels not altered	-	Volin et al.
		arginate	saline						1988 [26]

		(Normosan							
		g®)							
Fibrinogen	Human	Heme	-	-	-	in vitro	Suggestion of at least one	-	Nielsen et al.
							permanently bound heme		2011 [73]
Fibrinogen	Human	Hemin	0.1 M NaOH,	10 µM	-	in vitro	Binding of hemin to	-	Orino 2013
			diluted with T buffer				immobilized fibrinogen	-	[74]
Fibrinogen	Pig	Hematin	0.05 M NaOH	0 - 500	- (blood,	in vitro	Cross-linking (≥ 1 min	÷.	Ke & Huang
				μM	plasma)		exposure) \uparrow , formation of	-	2016 [75]
							high molecular weight		
							polymers (> 245 kDa) ↑,		
							H2O2-dependent		
Fibrinogen	Human	Hematin	0.05 M NaOH	30 µM	-	ın vitro	Cross-linking of fibrinogen	ES C	Ke & Huang
							(10 mg/ml; 2 min exposure)		2016 [75]
							, membrane-like layer		
							high molecular weight		
							nolymers (> 245 kDa) \uparrow		
							dityrosine formation \uparrow		
Fibrinogen	Human	Hematin	0.05 M NaOH	20 µM	-	in vitro	Binding to fibringen (Soret	_	Ke & Huang
							band shift to 410 nm;		2016 [75]
							hexacoordination)		
Fibrinogen	Human	Hemin	DMSO	25 - 50	-	in vitro	Binding to fibrinogen (Soret	B	Hou et al.
C				μM			band red-shift, change of		2018 [76]
							conformation), cross-		
							linking of fibrinogen, one		
							binding site predicted, K _b =		
							$3.0 \pm 0.4 \text{ x} 10^5 \text{ M}^{-1}$, increased		
							peroxidase-like activity of		
				/ .			hemin		
Fibrin	Human	Hematopor	N/A	N/A	-	in vitro	No binding to fibrin	-	Musser et al.
		phyrin							1980 [77]

ICAM-1	Human	Hemin	N/A	50 - 100	- (HUVECs)	in vitro	Surface expression of	FÖR	Wagener et
				μM	(ICAM-1 (2 to 4.4-fold) ↑		al. 1997 [69]
ICAM-1	Mouse	Hemin	0.1 N NaOH, 10	750 μM	intravenous	in vivo	Endothelial surface	K ÊR	Wagener et
			mM Tris base (pH 8.6)				expression of ICAM-1 ↑ (1 - 24 hours after administration)		al. 2001 [62]
Kallikrein	Human	Hematin	0.1 N NaOH, diluted in PBS	3 - 24 nmol	- (plasma)	in vitro	Amidolytic activity ↑ (e.g., ~10-fold faster conversion of substrate in presence of 12 nmol hematin)	®	Becker et al. 1985 [24]
Plasmin	Pig	Hematin	0.25% Na2CO3	0.006 -	-	in vitro	Amidolytic activity \downarrow (6 -	Ś	Green et al.
			(24h), diluted with barbital buffer (pH 7.4)	0.09 µg/ml			50%; 1 min preincubation)		1983 [37]
Plasmin	Pig	Hematin	0.25% Na ₂ CO ₃ (24h), diluted with barbital buffer (pH 7.4)	15 μg/ml	- (whole blood clot)	in vitro	Inhibition of clot lysis	۲	Green et al. 1983 [37]
Plasmin	Human	Heme	-	-	-	in vitro	Suggestion of a permanently bound heme		Arkebauer et al. 2011 [68]
Plasminogen	Human (AIP patient)	Hematin	N/A	4 mg/kg	intravenous	in vivo	No change of plasma level	-	Glueck et al. 1983 [23]
Protein C	Mouse (CLP)	Hemin	DMSO, diluted in PBS	50 µmol/kg	intraperitone al	in vivo	Protein C plasma level ↑ (4 - 24 h after treatment)	٢	Fei et al. 2012 [30]
P-selectin	Human	Hemin	N/A	10 µM	- (HUVECs)	in vitro	TLR-4-dependent surface P- selectin expression ↑	Ô	Belcher et al. 2011 [78]
P-selectin	Human	Hemin	50 mM NaOH / 145 mM NaCl, diluted in medium	100 μM	- (HUVECs)	in vitro	Membrane P-selectin expression ↑	8	Frimat et al. 2013 [79]
P-selectin	Human	Hemin	D-sorbitol, Na2CO3, saline	20 μΜ	- (HUVECs)	in vitro	P-selectin expression \uparrow	Ô	Belcher et al. 2014 [52]

		(as Panhematin ®)	(as Panhematin®)						
P-selectin	Mouse (C57BL/6, NY1DD)	Hemin (as Panhematin ®)	D-sorbitol, Na2CO3, saline (as Panhematin®)	3.2 µmol/kg	intravenous	in vivo	P-selectin expression on vessel walls ↑, dependent on NOX, PKC and oxidants, TLR-4-mediated	®	Belcher et al. 2014 [52]
P-selectin	Mouse	Hemin	0.1 N NaOH, 10 mM Tris base (pH 8.6)	750 μM	intravenous	in vivo	Endothelial surface expression of P-selectin ↑ (one hour after administration)	@	Wagener et al. 2001 [62]
Thrombin	Human	Hematin	N/A	70 µg/ml	- (plasma)	in vitro	Time- and temperature- dependent prolongation of TT	۵	Glueck et al. 1983 [23]
Thrombin	Human	Hematin (4 weeks aged)	carbonate buffer (pH 7.4)	6 μg/ml	-	in vitro	Inhibition of thrombin (0.25 U/ml)-mediated fibrinopeptide A generation	۵	Jones et al. 1986 [80]
Thrombin	Bovine	Hematin	0.25% Na2CO3 (24h), diluted with barbital buffer (pH 7.4)	50 µg/ml	-	in vitro	Hematin binding to thrombin (2 mg/ml),	-	Green et al. 1983 [37]
Thrombin	Human	Hematin	0.25% Na ₂ CO ₃ (24h), diluted with barbital buffer (pH 7.4)	0 - 0.238 μg/ml	-	in vitro	amidolytic activity of α- thrombin (17.4 - 69.6 μU/ml) ↓ (by 13 – 86.3%)	۵	Green et al. 1983 [37]
Thrombin	Mouse	Hemin	0.1 M NaOH and 0.1 M Tris- HCl (pH 8.0)	0 - 35 μmol/kg	Retro-orbital	in vivo	Thrombin-antithrombin complex plasma levels ↑ (up to 2.7-fold)	۲	Sparkenbaug h et al. 2015 [72]
Thrombin	Human	Hemin	30 mM NaOH, diluted in HEPES buffer (pH 7.0)	0 - 50 μM	-	in vitro	No impact on the amidolytic activity of α -thrombin (25 nM)	-	Hopp et al. 2020 [32]

Thrombomodul	Mouse	Hemin	DMSO, diluted	50 umol/kg	intraperitone	in vivo	Thrombodulin plasma level $(4 - 24 h after treatment)$		Fei et al. 2012
Tissue factor	(CLI) Human	Hemin	0.05 M NaOH, diluted in medium	μποι/κg 1 - 100 μΜ	- (ECs)	in vitro	to the product of t	۲	[30] Setty et al. 2008 [81]
Tissue factor	Human	Hemin	0.05 M NaOH, diluted in medium	100 μM	- (ECs)	in vitro	Time-dependent upregulation of TF mRNA expression ↑ (17-fold), time- dependent upregulation of total endothelial TF protein level (after 4 hours; functionally active TF) ↑	۲	Setty et al. 2008 [81]
Tissue factor	Human	Hemin	N/A	10 μΜ	- (plasma)	in vitro	TF level in PBMCs and monocytes ↑, prevention by hemopexin (15 µM), TF mRNA expression in monocytes ↑	۲	Rehani et al. 2013 [82]
Tissue factor	Human	Hemin	N/A	30 µM	- (plasma)	in vitro	TF expression in PBMCs ↑	۲	Souza et al. 2014[83]
Tissue factor	Human/ Mouse	Hemin	0.1 M NaOH and 0.1 M Tris- HCl (pH 8.0)	5- 50 µM	-	in vitro	TF expression in PBMCs and RAW 264.7 macrophages↑	۲	Sparkenbaug h et al. 2015 [72]
Tissue factor	Mouse	Hemin	0.1 M NaOH and 0.1 M Tris- HCl (pH 8.0)	35 µmol/kg	Retro-orbital	in vivo	Blocking of intrinsic pathway did not influence heme-driven procoagulant activity \rightarrow important role for extrinsic, TF-mediated pathway	٩	Sparkenbaug h et al. 2015 [72]
Tissue factor	Human	Hemin	0.1 M NaOH, adjusted to pH 7.4	30 µM	- (whole blood)	ex vivo	TF antibody inhibited heme-induced coagulation	۲	De Souza et al. 2017 [34]

							\rightarrow TF-dependency of		
							heme's procoagulant effects		
Tissue factor	Human	Hemin	0.1 M NaOH,	5 - 30 µM	- (PBMCs)	in vitro	TF expression (\geq 10 μ M	E.	Hounkpe et
			diluted with				hemin) ↑		al. 2020 [84]
			water					-	
Tissue factor	Mice	Hemin	50 mM NaOH,	100	intraperitone	in vivo	TF expression \uparrow	ES:	May et al.
			145 mM NaCl	µmol/kg	al			-	2020 [85]
VCAM-1	Human	Hemin	N/A	100 µM	- (HUVECs)	in vitro	Surface expression of	ES:	Wagener et
							VCAM-1 (3-fold) ↑		al. 1997 [69]
VCAM-1	Mouse	Hemin	0.1 N NaOH, 10	750 μM	intravenous	in vivo	Endothelial surface	ES .	Wagener et
			mM Tris base				expression of VCAM-1 \uparrow (1		al. 2001 [62]
			(pH 8.6)				- 24 hours after		
							administration)		
Von Willebrand	Human	⁵⁹ Fe- and	0.25% Na2CO3	e.g. 0.17	-	in vitro	Formation of FVIII/VWF	ES .	Green et al.
factor		³ H-labeled		mg/ml			complex, inhibition of		1986 [70]
		Hematin					FVIII-VWF dissociation,		
							binding of FVIII/VWF-		
							hematin complex to		
							platelets		
Von Willebrand	Human	Hemin	N/A	10 µM	- (HUVECs)	in vitro	Fast Weibel Palade body	ES .	Belcher et al.
factor							exocytosis ↑		2011 [78]
Von Willebrand	Human	Hemin	DMSO, diluted	Molar	-	in vitro	Protection of FVIII from	-	Repessé et al.
factor			in buffer	excess			heme-mediated		2012 [71]
							inactivation		
Von Willebrand	Human	Hemin	50 mM NaOH /	100 µM	- (HUVECs)	in vitro	Weibel Palade body	ES .	Frimat et al.
factor			145 mM NaCl,				exocytosis ↑, time-dependent		2013 [79]
			diluted in				VWF secretion \uparrow (up to ~65		
			medium				ng/ml)		
Von Willebrand	Human	Hemin	D-sorbitol,	20 μΜ	- (HUVECs)	in vitro	Superficial VWF string	KQX	Belcher et al.
tactor		(as	Na ₂ CO ₃ , saline				tormation \uparrow , prevented by		2014 [52]
		Panhematin	(as				hemopexin		
		®)	Panhematin®)						

Von Willebrand	Mouse	Hemin	D-sorbitol,	3.2	intravenous	in vivo	VWF expression on vessel	÷	Belcher et al.
factor	(C57BL/6,	(as	Na ₂ CO ₃ , saline	µmol/kg			walls ↑, dependent on NOX,	-	2014 [52]
	NY1DD)	Panhematin	(as				PKC and oxidants, TLR-4-		
		®)	Panhematin®)				mediated		

Evidence for a tendency to an anticoagulant effect of heme and its formulations.
 Evidence for a tendency to a procoagulant effect of heme and its formulations.
 Evidence for a tendency to a procoagulant effect of heme and its formulations.
 a = 10 min after hematin infusion. ECs = endothelial cells; HUVECs = human umbilical vein endothelial cells; ICAM-1 = intercellular adhesion molecule 1; N/A = not applicable; NOX = NADPH oxidase; pdAPC = plasma-derived activated protein C; PKC = protein kinase C; rAPC = recombinant activated protein C (Drotrecogin alpha, Xigris ®) rFVIII = recombinant factor VIII; rFXIIIa = recombinant active factor XIII; TT = thrombin time; VCAM-1 = Vascular cell adhesion molecule 1.

References

- 1. Brown, W.H. The relation of hematin to pathological pigment formation. J. Exp. Med. 1911, 14, 612–622.
- 2. Brown, W.H.; Loevenhart, A.S. The effect of hematin on the circulation and respiration. J. Exp. Med. 1913, 18, 107–112.
- 3. Brown, W.H. Malarial pigment (hematin) as an active factor in the production of the blood picture of malaria. J. Exp. Med. 1913, 18, 96–106.
- 4. Brown, W.H. The renal complications of hematin intoxification and their relation to Malaria. Arch. Intern. Med. 1913, XII, 315–321.
- 5. Anderson, W.A.D.; Morrison, D.B.; Williams, E.F. Pathologic changes following injections of ferrihemate (hematin) in dogs. Arch. Pathol. 1942, 33, 589–602.
- 6. Corcoran, A.C.; Page, I.H. Renal damage from ferroheme pigments myoglobin, hemoglobin, hematin. Tex. Rep. Biol. Med. 1945, 3, 528–544.
- 7. Gessler, U.; Loreth, A.; Schröder, K.; Steinhausen, M. Experimentelle Untersuchungen über die glomeruläre Filtration anurischer Ratten nach Hämatinvergiftung. *Klin. Wochenschr.* **1966**, 44, 628–633.
- 8. Dhar, G.J.; Bossenmaier, I.; Petryka, Z.J.; Cardinal, R.; Watson, C.J. Effect of hematin in hepatic porphyria: Further studies. Ann. Intern. Med. 1975, 83, 20–30.
- 9. Lips, D.L.; Pierach, C.A.; Edwards, P.S. Hematin toxicity in rats. Toxicol. Lett. 1978, 2, 329–332.
- 10. Lamon, J.M.; Frykholm, B.C.; Hess, R.A.; Tschudy, D.P. Hematin therapy for acute porphyria. *Medicine (Baltimore)*. 1979, 58, 252–269.
- 11. Morris, D.L.; Dudley, M.D.; Pearson, R.D. Coagulopathy associated with hematin treatment for acute intermittent porphyria. Ann. Intern. Med. 1981, 95, 700–701.
- 12. McColl, K.E.; Moore, M.R.; Thompson, G.G.; Goldberg, A. Treatment with haematin in acute hepatic porphyria. Q. J. Med. 1981, 50, 161–174.
- 13. Bloomer, J.R.; Pierach, C.A. Effect of hematin administration to patients with protoporphyria and liver disease. *Hepatology* **1982**, *2*, 817–821.
- 14. Mustajoki, P.; Tenhunen, R.; Tokola, O.; Gothoni, G. Haem arginate in the treatment of acute hepatic porphyrias. Br. Med. J. (Clin. Res. Ed.) 1986, 293, 538–539.

- 15. Ruutu, T.; Volin, L.; Tenhunen, R. Haem arginate as a treatment for myelodysplastic syndromes. Br. J. Haematol. 1987, 65, 425–428.
- 16. Tenhunen, R.; Tokola, O.; Lindén, I.-B. Haem arginate: A new stable haem compound. J. Pharm. Pharmacol. 1987, 39, 780–786.
- 17. Simionatto, C.S.; Cabal, R.; Jones, R.L.; Galbraith, R.A. Thrombophlebitis and disturbed hemostasis following administration of intravenous hematin in normal volunteers. *Am. J. Med.* **1988**, *85*, 538–540.
- 18. Herrick, A.L.; Moore, M.R.; Mccoll, K.E.L.; Cook, A.; Goldberg, A. Controlled trial of haem arginate in acute hepatic porphyria. *Lancet* 1989, 333, 1295–1297.
- 19. Mustajoki, P.; Nordmann, Y. Early administration of heme arginate for acute porphyric attacks. Arch. Intern Med. 1993, 153, 2004–2008.
- 20. Gajra, A.; Vajpayee, N.; Singh, M.; Coyle, T.E.; Wright, J. Hematin induced coagulopathy in acute intermittent porphyria: A case report. Blood 2000, 96, 82b.
- 21. Anderson, K.E.; Collins, S. Open-label study of hemin for acute porphyria: Clinical practice implications. Am. J. Med. 2006, 119, 801.e1-801.e6.
- 22. Marsden, J.T.; Guppy, S.; Stein, P.; Cox, T.M.; Badminton, M.; Gardiner, T.; Barth, J.H.; Stewart, M.F.; Rees, D.C. Audit of the use of regular haem arginate infusions in patients with acute porphyria to prevent recurrent symptoms. *JIMD Rep.* 2015, *22*, 57–65.
- 23. Glueck, R.; Green, D.; Cohen, I.; Ts'ao, C. Hematin: Unique effects on hemostasis. Blood 1983, 61, 243–249.
- 24. Becker, C.G.; Wagner, M.; Kaplan, A.P.; Silverberg, M.; Grady, R.W.; Liem, H.; Muller-Eberhard, U. Activation of factor XII-dependent pathways in human plasma by hematin and protoporphyrin. J. Clin. Invest. **1985**, *76*, 413–419.
- 25. Jones, R.L. Hematin-derived anticoagulant. Generation in vitro and in vivo. J. Exp. Med. 1986, 163, 724–739.
- 26. Volin, L.; Rasi, V.; Vahtera, E.; Tenhunen, R. Heme arginate: effects on hemostasis. Blood 1988, 71, 625–628.
- 27. Green, D.; Ts'ao, C. Hematin: Effects on hemostasis. J. Lab. Clin. Med. 1990, 115, 144–147.
- Huang, Y.; Komatsu, T.; Nakagawa, A.; Tsuchida, E.; Kobayashi, S. Compatibility in vitro of albumin-heme (O2 carrier) with blood cell components. J. Biomed. Mater. Res. 2003, 66A, 292–297.
- 29. Desbuards, N.; Rochefort, G.Y.; Schlecht, D.; Machet, M.-C.; Halimi, J.-M.; Eder, V.; Hyvelin, J.-M.; Antier, D. Heme oxygenase-1 inducer hemin prevents vascular thrombosis. *Thromb. Haemost.* 2007, 98, 614–620.
- 30. Fei, D.; Meng, X.; Zhao, M.M.; Kang, K.A.I.; Tan, G.; Pan, S.; Luo, Y.; Liu, W.E.N.; Nan, C.; Jiang, H.; et al. Enhanced induction of heme oxygenase-1 suppresses thrombus formation and affects the protein C system in sepsis. *Transl. Res.* **2012**, *159*, 99–109.
- 31. Hassaan, P.S.; Mehanna, R.A.; Dief, A.E. The potential role of hemopexin and heme oxygenase-1 inducer in a model of sepsis. *Physiol. J.* 2015, 2015, 1–10.
- 32. Hopp, M.-T.; Alhanafi, N.; Paul George, A.A.; Hamedani, N.S.; Biswas, A.; Oldenburg, J.; Pötzsch, B.; Imhof, D. Molecular insights and functional consequences of the interaction of heme with activated protein C. *Antioxid. Redox Signal.* **2021**, *34*, 32–48.
- 33. Rochefort, G.Y.; Libgot, R.; Desbuards, N.; Schlecht, D.; Halimi, J.M.; Ossant, F.; Eder, V.; Antier, D. Effect of the heme oxygenase inducer hemin on blood haemostasis measured by high-frequency ultrasound. *Clin. Exp. Pharmacol. Physiol.* **2007**, *34*, 1272–1275.

- 34. De Souza, G.R.; Hounkpe, B.W.; Fiusa, M.M.L.; Colella, M.P.; Annichino-Bizzacchi, J.M.; Traina, F.; Costa, F.F.; De Paula, E.V. Tissue factor-dependent coagulation activation by heme: A thromboelastometry study. *PLoS One* **2017**, *12*, 1–10.
- 35. Goetsch, C.A.; Bissell, D.M. Instability of hematin used in the treatment of acute hepatic porphyria. N. Engl. J. Med. 1986, 315, 235–238.
- 36. Barnard, R.D. The effect of saccharin ingestion on blood coagulation and the in vitro anticoagulant effect of saccharin and of ferriheme. *J. Am. Pharm. Assoc. (Scientific ed.)* **1947**, *36*, 225–228.
- 37. Green, D.; Reynolds, N.; Klein, J.; Kohl, H.; Ts'ao, C.H. The inactivation of hemostatic factors by hematin. J. Lab. Clin. Med. 1983, 102, 361–9.
- Peterson, D.; Gerrard, J.; Glover, S.; Rao, G.; White, J. Epinephrine reduction of heme: Implication for understanding the transmission of an agonist stimulus. *Science* (80-.).
 1982, 215, 71–73.
- 39. Malik, Z.; Creter, D.; Cohen, A.; Djaldetti, M. Haemin affects platelet aggregation and lymphocyte mitogenicity in whole blood incubations. *Cytobios* **1983**, *38*, 33–38.
- 40. Neely, S.M.; Gardner, D..; Reynolds, N.; Green, D.; Ts'ao, C. Mechanism and characteristics of platelet activation by haematin. Br. J. Haematol. 1984, 58, 305–316.
- 41. Volin, L.; Ruutu, T.; Knuutila, S.; Tenhunen, R. Heme arginate treatment for myelodysplastic syndromes. Leuk. Res. 1988, 12, 423–431.
- 42. Peng, L.; Mundada, L.; Stomel, J.M.; Liu, J.J.; Sun, J.; Yet, S.-F.; Fay, W.P. Induction of heme oxygenase-1 expression inhibits platelet-dependent thrombosis. *Antioxid. Redox* Signal. 2004, 6, 729–735.
- 43. Komatsu, T.; Huang, Y.; Wakamoto, S.; Abe, H.; Fujihara, M.; Azuma, H.; Ikeda, H.; Yamamoto, H.; Horinouchi, H.; Kobayashi, K.; et al. Influence of O2-carrying plasma hemoprotein "albumin-heme" on complement system and platelet activationin vitro and physiological responses to exchange transfusion. *J. Biomed. Mater. Res. Part A* 2007, *81A*, 821–826.
- 44. Woollard, K.J.; Sturgeon, S.; Chin-Dusting, J.P.F.; Salem, H.H.; Jackson, S.P. Erythrocyte hemolysis and hemoglobin oxidation promote ferric chloride-induced vascular injury. J. Biol. Chem. 2009, 284, 13110–13118.
- 45. NaveenKumar, S.K.; SharathBabu, B.N.; Hemshekhar, M.; Kemparaju, K.; Girish, K.S.; Mugesh, G. The role of reactive oxygen species and ferroptosis in heme-mediated activation of human platelets. *ACS Chem. Biol.* 2018, *13*, 1996–2002.
- 46. NaveenKumar, S.K.; Hemshekhar, M.; Kemparaju, K.; Girish, K.S. Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: Protection by melatonin. *Biochim. Biophys. Acta Mol. Basis Dis.* **2019**, *1865*, 2303–2316.
- 47. Bourne, J.H.; Colicchia, M.; Di, Y.; Martin, E.; Slater, A.; Roumenina, L.T.; Dimitrov, J.D.; Watson, S.P.; Rayes, J. Heme induces human and mouse platelet activation through C-type-lectin-like receptor-2. *Haematologica* 2020.
- 48. Neely, S.M.; Gardner, D. V; Green, D.; Ts'ao, C.H. Effect of hematin on endothelial cells and endothelial cell-platelet interactions. Am. J. Pathol. 1984, 115, 390–396.
- 49. Balla, G.; Vercollotti, G.; Muller-Eberhard, U.; Eaton, J.; Jacob, H.S.; Vercellotti, G.M.; Muller-Eberhard, U.; Eaton, J.; Jacob, H.S. Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. *Lab. Investig.* **1991**, *64*, 648–655.

- 50. Balla, G.; Jacob, H.S.; Eaton, J.W.; Belcher, J.D.; Vercellotti, G.M. Hemin: A possible physiological mediator of low density lipoprotein oxidation and endothelial injury. *Arterioscler. Thromb. A J. Vasc. Biol.* **1991**, *11*, 1700–1711.
- 51. Higdon, A.N.; Benavides, G.A.; Chacko, B.K.; Ouyang, X.; Johnson, M.S.; Landar, A.; Zhang, J.; Darley-Usmar, V.M. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: The protective role of autophagy. *Am. J. Physiol. Circ. Physiol.* **2012**, *302*, H1394–H1409.
- 52. Belcher, J.D.; Chen, C.; Nguyen, J.; Milbauer, L.; Abdulla, F.; Alayash, A.I.; Smith, A.; Nath, K.A.; Hebbel, R.P.; Vercellotti, G.M.; et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. *Blood* **2014**, *123*, 377–390.
- 53. Camus, S.M.; De Moraes, J.A.; Bonnin, P.; Abbyad, P.; Le Jeune, S.; Lionnet, F.; Loufrani, L.; Grimaud, L.; Lambry, J.-C.; Charue, D.; et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. *Blood* **2015**, *125*, 3805–3814.
- 54. Singla, S.; Sysol, J.R.; Dille, B.; Jones, N.; Chen, J.; Machado, R.F. Hemin causes lung microvascular endothelial barrier dysfunction by necroptotic cell death. *Am. J. Respir. Cell Mol. Biol.* 2017, *57*, 307–314.
- 55. May, O.; Merle, N.S.; Grunenwald, A.; Gnemmi, V.; Leon, J.; Payet, C.; Robe-Rybkine, T.; Paule, R.; Delguste, F.; Satchell, S.C.; et al. Heme drives susceptibility of glomerular endothelium to complement overactivation due to inefficient upregulation of heme oxygenase-1. *Front. Immunol.* **2018**, *9*, 3008.
- 56. Merle, N.S.; Grunenwald, A.; Rajaratnam, H.; Gnemmi, V.; Frimat, M.; Figueres, M.L.; Knockaert, S.; Bouzekri, S.; Charue, D.; Noe, R.; et al. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. *JCl insight* **2018**.
- 57. Kucukal, E.; Ilich, A.; Key, N.S.; Little, J.A.; Gurkan, U.A. Red blood cell adhesion to heme-activated endothelial cells reflects clinical phenotype in sickle cell disease. *Am. J. Hematol.* **2018**, *93*, 1050–1060.
- 58. Chou, A.C.; Fitch, C.D. Mechanism of hemolysis induced by ferriprotoporphyrin IX. J. Clin. Invest. 1981, 68, 672–677.
- 59. Liu, S.C.; Zhai, S.; Lawler, J.; Palek, J. Hemin-mediated dissociation of erythrocyte membrane skeletal proteins. J. Biol. Chem. 1985, 260, 12234–9.
- 60. Shaklai, N.; Shviro, Y.; Rabizadeh, E.; Kirschner-Zilber, I. Accumulation and drainage of hemin in the red cell membrane. *Biochim. Biophys. Acta Biomembr.* **1985**, *821*, 355–366.
- 61. Smith, D.J.; Winslow, R.M. Effects of extraerythrocytic hemoglobin and its components on mononuclear cell procoagulant activity. J. Lab. Clin. Med. 1992, 119, 176–182.
- 62. Wagener, F.A.D.T.G.; Eggert, A.; Boerman, O.C.; Oyen, W.J.G.; Verhofstad, A.; Abraham, N.G.; Adema, G.; Van Kooyk, Y.; De Witte, T.; Figdor, C.G. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. *Blood* **2001**, *98*, 1802–1811.
- 63. Graça-Souza, A. V.; Arruda, M.A.B.; De Freitas, M.S.; Barja-Fidalgo, C.; Oliveira, P.L. Neutrophil activation by heme: Implications for inflammatory processes. *Blood* 2002, 99, 4160–4165.
- 64. Wagener, F.A.D.T.G.; van Beurden, H.E.; von den Hoff, J.W.; Adema, G.J.; Figdor, C.G. The heme-heme oxygenase system: A molecular switch in wound healing. *Blood* 2003, 102, 521–528.

- 65. Arruda, M.A.; Rossi, A.G.; de Freitas, M.S.; Barja-Fidalgo, C.; Graça-Souza, A. V. Heme inhibits human neutrophil apoptosis: Involvement of phosphoinositide 3-kinase, MAPK, and NF-κB. J. Immunol. 2004, 173, 2023–2030.
- 66. Chen, G.; Zhang, D.; Fuchs, T.A.; Manwani, D.; Wagner, D.D.; Frenette, P.S. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. *Blood* 2014, *123*, 3818–3827.
- 67. Ohbuchi, A.; Kono, M.; Kitagawa, K.; Takenokuchi, M.; Imoto, S.; Saigo, K. Quantitative analysis of hemin-induced neutrophil extracellular trap formation and effects of hydrogen peroxide on this phenomenon. *Biochem. Biophys. Reports* **2017**, *11*, 147–153.
- 68. Arkebauer, M.R.; Kanaparthy, S.S.; Malayaman, S.N.; Vosseller, K.; Nielsen, V.G. Carbon monoxide and nitric oxide modulate α2-antiplasmin and plasmin activity. *Blood Coagul. Fibrinolysis* 2011, 22, 712–719.
- 69. Vijayan, V.; Wagener, F.A.D.T.G.; Immenschuh, S. The macrophage heme-heme oxygenase-1 system and its role in inflammation. *Biochem. Pharmacol.* 2018, 153, 159–167.
- 70. Green, D.; Furby, F.H.; Berndt, M.C. The interaction of the VIII/von Willebrand factor complex with hematin. *Thromb. Haemost.* 1986, 56, 277–282.
- 71. Repessé, Y.; Dimitrov, J.D.; Peyron, I.; Moshai, E.F.; Kiger, L.; Dasgupta, S.; Delignat, S.; Marden, M.C.; Kaveri, S. V.; Lacroix-Desmazes, S. Heme binds to factor VIII and inhibits its interaction with activated factor IX. *J. Thromb. Haemost.* **2012**, *10*, 1062–1071.
- 72. Sparkenbaugh, E.M.; Chantrathammachart, P.; Wang, S.; Jonas, W.; Kirchhofer, D.; Gailani, D.; Gruber, A.; Kasthuri, R.; Key, N.S.; Mackman, N.; et al. Excess of heme induces tissue factor-dependent activation of coagulation in mice. *Haematologica* 2015, *100*, 308–313.
- 73. Nielsen, V.G.; Cohen, J.B.; Malayaman, S.N.; Nowak, M.; Vosseller, K. Fibrinogen is a heme-associated, carbon monoxide sensing molecule: A preliminary report. *Blood Coagul. Fibrinolysis* **2011**, 22, 443–447.
- 74. Orino, K. Functional binding analysis of human fibrinogen as an iron- and heme-binding protein. *BioMetals* 2013, 26, 789–794.
- 75. Ke, Z.; Huang, Q. Haem-assisted dityrosine-cross-linking of fibrinogen under non-thermal plasma exposure: One important mechanism of facilitated blood coagulation. *Sci. Rep.* **2016**, *6*, 1–8.
- 76. Hou, T.; Zhang, Y.; Wu, T.; Wang, M.; Zhang, Y.; Li, R.; Wang, L.; Xue, Q.; Wang, S. Label-free detection of fibrinogen based on fibrinogen-enhanced peroxidase activity of fibrinogen-hemin composite. *Analyst* **2018**, *143*, 725–730.
- 77. Musser, D.A.; Wagner, J.M.; Weber, F.J.; Datta-Gupta, N. The binding of tumor localizing porphyrins to a fibrin matrix and their effects following photoirradiation. *Res. Commun. Chem. Pathol. Pharmacol.* **1980**, *28*, 505–25.
- 78. Belcher, J.D.; Nguyen, J.; Chen, C.; Smith, A.; Alayash, A.I.; Nair, S.L.; Somani, A.; Hebbel, R.P.; Vercellotti, G.M. Plasma hemoglobin and heme trigger Weibel Palade body exocytosis and vaso-occlusion in transgenic sickle mice. *Blood* **2011**, *118*, 896–896.
- 79. Frimat, M.; Tabarin, F.; Dimitrov, J.D.; Poitou, C.; Halbwachs-Mecarelli, L.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. *Blood* **2013**, *122*, 282–292.

- 80. Jones, R.L. Hematin-derived anticoagulant retards fibrin formation and is inhibited by iron chelators. Ann. New York Acad. Sci. 1986, 485, 418–420.
- 81. Setty, B.N.Y.; Betal, S.G.; Zhang, J.; Stuart, M.J. Heme induces endothelial tissue factor expression: Potential role in hemostatic activation in patients with hemolytic anemia. *J. Thromb. Haemost.* **2008**, *6*, 2202–2209.
- 82. Rehani, T.; Mathson, K.; Belcher, J.D.; Vercellotti, G.M.; Slungaard, A. Heme potently stimulates tissue factor expression by peripheral blood monocytes: A novel mechanism for thrombosis in intravascular hemolytic diseases. *Blood* **2013**, *122*, 2215.
- 83. Souza, G.R.; Fiusa, M.M.L.; Lanaro, C.; Colella, M.P.; Montalvao, S.A.L.; Saad, S.T.O.; Costa, F.F.; Traina, F.; Annichino-Bizzacchi, J.M.; De Paula, E.V. Coagulation activation by heme: Evidence from global hemostasis assays. *Blood* **2014**, *124*, 455–455.
- 84. Hounkpe, B.W.; Moraes, C.R.P.; do Santos, M.N.N.; Costas, F.F.; De Paula, E. V. Heme induces mRNA expression and activation of tissue factor by TLR4 dependent mechanisms. *medRxiv* 2020.
- 85. May, O.; Yatime, L.; Merle, N.S.; Delguste, F.; Howsam, M.; Daugan, M. V.; Paul-Constant, C.; Billamboz, M.; Ghinet, A.; Lancel, S.; et al. The receptor for advanced glycation end products is a sensor for cell-free heme. *FEBS J.* 2020.