

Supplementary materials

Molecular structure, *in vitro* anticancer study and molecular docking of new phosphate derivatives of betulin

Elwira Chrobak^{*1}, Maria Jastrzębska², Ewa Bębenek¹, Monika Kadela-Tomanek¹, Krzysztof Marciniec¹, Małgorzata Latocha³, Roman Wrzalik², Joachim Kusz⁴, Stanisław Boryczka¹

⁴ University of Silesia, Institute of Physics, 75 Pułku Piechoty Str., 41 500 Chorzów, Poland

*Corresponding author. E-mail address: echrobak@sum.edu.pl

Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland

² Silesian Center for Education and Interdisciplinary Research, University of Silesia, Institute of Physics, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland

³ Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 8 Jedności Str., 41-200 Sosnowiec, Poland

LIST OF CONTENTS

Synthesis - Materials and methods	
Nuclear Magnetic Resonance spectra for selected compounds	
Fig. S1a . ¹ H NMR, 3,28-diacetoxy-30-diethoxyphosphoryloxybetulin 4	
Fig. S1b. ¹³ C NMR, 3,28-diacetoxy-30-diethoxyphosphoryloxybetulin 4	
Fig. S1c. ³¹ P NMR, 3,28-diacetoxy-30-diethoxyphosphoryloxybetulin 4	
Fig. S1d. HR-MS, 3,28-diacetoxy-30-diethoxyphosphoryloxybetulin 4	
Fig. S2a . ¹ H NMR, 30-diethoxyphosphoryloxybetulin 5	
Fig. S2b . ¹³ C NMR, 30-diethoxyphosphoryloxybetulin 5	
Fig. S2c . ³¹ P NMR, 30-diethoxyphosphoryloxybetulin 5	
Fig. S2d. HR-MS, 30-diethoxyphosphoryloxybetulin 5	
Fig. S3a . ¹ H NMR, 30-diethoxyphosphoryloxy-28-propynoylbetulin 7a	
Fig. S3b . ¹³ C NMR, 30-diethoxyphosphoryloxy-28-propynoylbetulin 7a	
Fig. S3c . ³¹ P NMR, 30-diethoxyphosphoryloxy-28-propynoylbetulin 7a	
Fig. S3d. HR-MS, 30-diethoxyphosphoryloxy-28-propynoylbetulin 7a	
Fig. S4a . ¹ H NMR, 28-(2-butynoyl)-30-diethoxyphosphoryloxybetulin 7b	1
Fig. S4b . ¹³ C NMR, 28-(2-butynoyl)-30-diethoxyphosphoryloxybetulin 7b	1
Fig. S4c . ³¹ P NMR, 28-(2-butynoyl)-30-diethoxyphosphoryloxybetulin 7b	1
Fig. S4d. HR-MS, 28-(2-butynoyl)-30-diethoxyphosphoryloxybetulin 7b	1
Fig. S5a . ¹ H NMR, 28-(2-cyclopropylpropynoyl)-30-diethoxyphosphoryloxybetulin 7c	1
Fig. S5b. ¹³ C NMR, 28-(2-cyclopropylpropynoyl)-30-diethoxyphosphoryloxybetulin 7c.	1
Fig. S5c. ³¹ P NMR, 28-(2-cyclopropylpropynoyl)-30-diethoxyphosphoryloxybetulin 7c.	1
Fig. S5d. HR-MS, 28-(2-cyclopropylpropynoyl)-30-diethoxyphosphoryloxybetulin 7c	1
Table S1. Calculated Raman band frequencies and assignments for compounds 10 and 5.	. 1
X-ray diffraction experiment	1
Table S2 Crystal parameters, data collection and refinement details for compound 5	1
Table S3 Monocrystal characteristic	1
Table S4 Selected hydrogen bonds in the crystal structure of compound 5	1
Chromatographic procedure by RP-TLC	1
Table S5. The theoretical values of lipophilicity for tested compounds 3-5, 6a-6e and 7a-7e	1
Table S6. The correlation matrix for theoretically obtained lipophilicity parameters of compounds 3-5, 6a-6e and 7a-7e.]

Synthesis - *Materials and methods*

In the synthesis, commercially available reagents were used (Sigma-Aldrich, Saint Louis, MO, USA). The solvents were purified according to the standard methods. The NMR spectra (¹H, 600 MHz; ¹³C, 150 MHz; ³¹P, 243 MHz) were recorded on a Bruker AVANCE III HD 600 spectrometer in deuterated chloroform (CDCl₃). Chemical shifts (δ) values were reported in parts per million (ppm) relative to the solvent signal as internal standard. The coupling constants (J) are expressed in Hertz (Hz). Calculation of the exact molecular mass for new compounds performed using "The Exact Mass Calculator, Single Isotope Version" was (http://www.sisweb.com/referenc/tools/exactmass.htm). High-resolution mass (HR-MS) spectra were recorded with Bruker Impact II. Melting points were uncorrected and measured by Electrothermal IA 9300 melting point apparatus. The progress of reaction was monitored by TLC (silica gel 60 254F plates, Merck). A mixture of dichloromethane/ethanol (40:1 or 15:1, v/v) or hexane/ethyl acetate (3:2, v/v) was used as a developing system. The spots were visualized by spraying with a solution of 5% sulfuric acid and heating to 100°C. The compounds were purified by column chromatography (silica gel 60, <63 µm, Merck) in the appropriate solvent system.

Fig. S1a. ¹H NMR, 3,28-diacetoxy-30-diethoxyphosphoryloxybetulin 4

Fig. S1b. ¹³C NMR, 3,28-diacetoxy-30-diethoxyphosphoryloxybetulin 4

Fig. S1d. HR-MS, 3,28-diacetoxy-30-diethoxyphosphoryloxybetulin 4

Fig. S2a. ¹H NMR, 30-diethoxyphosphoryloxybetulin 5

Fig. S2b. ¹³C NMR, 30-diethoxyphosphoryloxybetulin 5

Fig. S2c. ³¹P NMR, 30-diethoxyphosphoryloxybetulin 5

Fig. S2d. HR-MS, 30-diethoxyphosphoryloxybetulin 5

Fig. S3a. ¹H NMR, 30-diethoxyphosphoryloxy-28-propynoylbetulin 7a

Fig. S3c. ³¹P NMR, 30-diethoxyphosphoryloxy-28-propynoylbetulin 7a

Fig. S3b. ¹³C NMR, 30-diethoxyphosphoryloxy-28-propynoylbetulin 7a

Fig. S3d. HR-MS, 30-diethoxyphosphoryloxy-28-propynoylbetulin 7a

Fig. S4a. ¹H NMR, 28-(2-butynoyl)-30-diethoxyphosphoryloxybetulin 7b

Fig. S4b. ¹³C NMR, 28-(2-butynoyl)-30-diethoxyphosphoryloxybetulin 7b

Fig. S4d. HR-MS, 28-(2-butynoyl)-30-diethoxyphosphoryloxybetulin 7b

Fig. S5a. ¹H NMR, 28-(2-cyclopropylpropynoyl)-30-diethoxyphosphoryloxybetulin 7c

Fig. S5b. ¹³C NMR, 28-(2-cyclopropylpropynoyl)-30-diethoxyphosphoryloxybetulin 7c

Fig. S5d. HR-MS, 28-(2-cyclopropylpropynoyl)-30-diethoxyphosphoryloxybetulin 7c

ppm

Table S1. Calculated Raman band frequencies and assignments for compounds 10 and 5.

Calculate	d spectra				
5	10				
3621, 3611	3640, 3625	OH stretching			
3152, 3075	3077	=C-H stretching in side chain			
3053-3042	3065	-C-H stretching in cycloalkane ring			
3041-2834	3048-2844	CH ₃ , CH ₂ , CH stretching in side chain and cycloalkane ring			
1677	1609	C=C stretching in allyl/vinyl chains			
1470-	1405	CH ₃ , CH ₂ , CH bending in side chain and cycloalkane ring			
1386-	1353	CH ₃ , CH ₂ , CH, OH bending in side chain, P=O bending in side chain			
1248	-	P-O stretching in O=P-O-C moiety			
-	1208	P-C stretching in O=P-C=C moiety			
-	1180	P=O bending in O=P-C=C moiety			
1153	-	P=O bending in O=P-O-C moiety			
1100-	1050	CH ₃ , CH ₂ , CH, OH bending in cycloalkane ring and side chain			
1026	-	P-O bending, C-C stretching in side chain and in cycloalkane ring			

-	809	P-C, CH ₃ , CH ₂ bending, C-C stretching
776, 702	750, 765, 688	CH ₃ , CH ₂ , CH bending in side chain and cycloalkane ring, C-C stretching
660-540	660-560	C-C in cycloalkane ring
527, 470, 447, 360	567, 509	C-C stretching, CH ₃ , CH ₂ in side chain
401	-	P-O bending in O=P-O-C
277	234	O-H bending

X-ray diffraction experiment

Colorless single crystals of good quality were preselected under a polarized light microscope. X-ray experiment was performed at 100K. The data for compound **5** were collected using an SuperNova diffractometer (Agilent Technologies) with Atlas detector. Accurate cell parameters were determined and refined using CrysAlis CCD program [57]. For the integration of the collected data, the CrysAlis RED program [58] was used.

Refinement

The crystal structure was determined using the using direct method with SHELXS-2014 [59] program and then the solutions were refined using SHELXL-2014 [59] program. H atoms were treated as riding atoms in geometrically idealized positions, fixing the C-H bond lengths at 0.95, 1.00, 0.99, 0.95 and 0.98 Å for aldehyde CH, methine CH, methylene CH₂, terminal methylene CH₂ and methyl CH₃ atoms respectively, and with Uiso(H) ¹/₄ 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. Hydrogen atoms involved in H-bonding (acetylenic and hydroxyl H atoms) were introduced into the calculated positions and then refined freely with isotropic atomic displacement parameters.

Crystal structure was deposited at the Cambridge Crystallographic Data Center, with deposit number CCDC 2039827 and is available free of charge via www.ccdc.cam.ac.uk/data_request/cif. *References*

- 59. Sheldrick, G. A short history of SHELX, *Acta Cryst.* A 64, **2008**,112–122, https://doi.org/10.1107/S0108767307043930.
- 60. CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. 2014.
- Sheldrick, G.M. Crystal structure refinement with SHELXL, *Acta Cryst* C71 2015, 3e8.

Table S2 Crystal parameters, data collection and refinement details for compound5

Data collection	
Diffractometer	SuperNova diffractometer (Agilent Technologies) with Atlas detector
Absorption	Multi-scan
correction	CrysAlis PRO 1.171.38.41q (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm
T_{\min}, T_{\max}	0.592, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	573037, 23993, 7243
R _{int}	0.0462
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.711
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.0496, 0.1260, 1.019
No. of reflections	6602
No. of parameters	379
H-atom treatment	H-atom parameters constrained
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.66, -0.29

Absolute structure	Flack x determined using 4515 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons,
	Flack and Wagner, Acta Cryst. B69 (2013) 249-259).

Compound	5
Chemical formula	C ₃₄ H ₅₉ O ₆ P
M _r	594.78
Solvent	CH ₃ CN
Crystal system, space group	Monoclinic, P 21
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.3147(3); 11.8986(5); 18.6947(8)
α, β, γ [°]	90; 97.977(4); 90
$V(Å^3)$	1611.34(12)
Ζ	2
Radiation type	Cu Ka
μ (mm ⁻¹)	0.128

 Table S3 Monocrystal characteristic for compound 5.

Table S4. Selected hydrogen bonds in the crystal structure of compound 5

Nr	D- HА	D-H [Å]	HA [Å]	DA [Å]	<(DHA)	Symmetry codes
1	O1-H1O2	0.84(5)	1.95(5)	2.786(4)	170(5)	- <i>x</i> +1, <i>y</i> -1/2,- <i>z</i>
2	O2-H2O4	0.90(5)	1.86(5)	2.754(4)	170(5)	- <i>x</i> +2, <i>y</i> +1/2,- <i>z</i> +1
3	С30-Н30ВО4	1.00(4)	2.44(5)	2.948(5)	111(3)	
4	C31-H31BO1	1.01(5)	2.48(5)	3.008(5)	112(3)	-x+2,y-1/2,-z
5	С32-Н32АО4	1.01(6)	2.62(6)	3.486(6)	144(4)	- <i>x</i> +2, <i>y</i> -1/2,- <i>z</i> +1

D: donor, A: acceptor. Distances DH, HA, DA are in Å and DHA angles are in degrees.

Chromatographic procedure by RP-TLC

The experimental lipophilicity parameters was determined using reversed-phase thin-layer chromatography (RP-TLC). The stationary phase was an aluminium backed silica gel RP-18 F₂₅₄ S plates (Merck, Darmstadt, Germany). Chloroform solutions of reference compounds

(acetanilide, 4-bromoacetophenone, benzophenone, anthracene, DDT) and triterpenes **3-5**, **6a**-**6e** and **7a-7e** were spotted on to the plates in the amount of 2 μ L. The chromatograms were performed in triplicate for each compound. The chromatographic chambers were filled of mobile phases consisting of a mixture of acetone (POCh, Gliwice, Poland) and aqueous solution of buffer Tris [(tris-hydroxymethyl)aminomethane] (Fluka, Loughborough, 0.2 M, pH 7.4). The percent acetone volume was varied within the range of 90-60%, in 5% increments. The spots of compounds were visualized by spraying the plates with 10% ethanolic solution of sulphuric acid (VI) and heating for 3 min at 110 °C [60]]. The R_M values were calculated by the equation R_M = log (1/R_f-1) on the basis of average R_f values. The R_{M0} parameters were obtained by extrapolating on the acetone content to zero, according to the equation R_M = R_{M0} + bC (C – the percentage concentration of acetone in the mobile phase, b – the slope of the regression plot). The experimental lipophilicity as log P_{TLC} for triterpenes **3-5**, **6a-6e** and **7a-7e** was calculated by calibration equation

 $\log P_{TLC} = 1,2649R_{M0} + 0,2094 (r = 0.996; SD = 0.445)$

obtained on the correlation between the literature $\log P_{lit}$ values and the experimental R_{M0} values for standard compounds.

Compound	ALOGPs	AC logP	miLogP	ALOGP	MLOGP	XLOGP2	XLOGP3
3	5.50	5.86	7.33	5.98	5.83	7.84	8.18
4	7.00	6.24	7.97	6.68	6.61	8.49	8.89
5	5.33	5.26	5.56	5.93	5.97	7.01	7.74
6a	6.23	5.15	7.87	9.23	6.79	9.04	9.85
7a	5.78	5.21	7.21	7.58	6.37	8.03	8.8
6b	7.32	7.19	8.91	9.13	7.13	10.03	10.87
7b	6.47	6.23	8.03	7.53	6.55	8.41	9.31
6c	6.89	7.73	9.25	9.8	7.78	10.86	11.97
7c	6.23	6.49	8.42	7.86	6.89	8.83	9.85
6d	7.80	10.10	9.44	11.19	8.28	13.24	13.40
7d	6.95	7.68	8.63	8.56	7.15	10.13	10.57
6e	6.64	6.54	7.81	10.35	6.47	9.37	9.93
7e	6.17	5.90	7.19	8.14	6.21	8.19	8.84

Table S5. The theoretical values of lipophilicity for tested compounds **3-5**, **6a-6e** and **7a-7e**.

Table S6. The correlation matrix for theoretically obtained lipophilicity parameters of
compounds 3-5, 6a-6e and 7a-7e.

	ALOGPs	AC logP	miLogP	ALOGP	MLOGP	XLOGP2	XLOGP3
ALOGPs	1.000	0.825	0.889	0.814	0.889	0.888	0.884
AC logP		1.000	0.812	0.725	0.877	0.939	0.907

miLogP	1.000	0.784	0.904	0.889	0.909
ALOGP		1.000	0.840	0.884	0.903
MLOGP			1.000	0.959	0.925
XLOGP2				1.000	0.987
XLOGP3					1.000

 Bębenek, E.; Bober-Majnusz, K.; Siudak, S.; Chrobak, E.; Kadela-Tomanek, M.; Wietrzyk, J.; Boryczka, S. Application of TLC to evaluate the lipophilicity of newly synthesized betulin derivatives. *J Chromatogr Sci* 2020, 58, 323-333. https://doi.org/10.1093/chromsci/bmz117.