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Supplementary Note 

Population structure analysis 
Our definitions of the initial population assignment to self-identified White British, self-identified 
non-British White, African, East Asian, and South Asian groups are as follows (Supplementary 
Figure 1A): 

● Self-identified White British: -20 <= PC1 <= 40 and -25 <= PC2 <= 10 and 
in_white_British_ancestry_subset == 1 (in sample QC file); 
● Self-identified non-British White: -20 <= PC1 <= 40, -25 <= PC2 <= 10, has a 
self-reported ancestry of White, and does not identify themselves as White British; 
● African: 260 <= PC1, 50 <= PC2, and does not identify themselves as any of the 
following: Asian, White, Mixed, or Other ethnic groups; 
● South Asian: 40 <= PC1 <= 120, -170 <= PC2 <= -80, and does not identify 
themselves as any of the following: Black, White, Mixed, or Other ethnic groups; 
● East Asian: 130 <= PC1 <= 170, PC2 <= -230, and does not identify themselves 
as any of the following: Black, White, Mixed, or Other ethnic groups. 

 
To further refine the population definition, we computed population-specific genotype PCs for 
non-British white, African, South Asian, and East Asian initial population assignments. 
Specifically, we used autosomal common (population-specific MAF > 5%) biallelic variants 
outside of the outside of major histocompatibility complex (MHC) region 
(chr6:25477797-36448354) that has Hardy-Weinberg p-value greater than 1x10-10, performed 
LD pruning on those variants with plink 2.0 (--indep-pairwise 50 5 .5 option), and characterized 
the genotype PCs with plink 2.0 (--pca 10 var-wts approx vzs option). We used PLINK 
v2.00a2LM AVX2 Intel (31 Jul 2019) for those analyses. After the manual inspection of those 
population-specific PCs (Supplementary Figures 1B-E), we applied the following additional 
refinement filters: 

● South Asian: -0.02 <= population-specific PC1 <= 0.03, -0.05 <= 
population-specific PC2 <= 0.02; 
● East Asian: -0.01 <= population-specific PC1 <= 0.02, -0.02 <= 
population-specific PC2 <= 0. 

This reduced the number of individuals in South Asian and East Asian populations from 7,962 
and 1,772 to 7,885 and 1,154 individuals, respectively. 
  
For the refined populations, we recomputed the population-specific PCs using the same 
procedure described above (Supplementary Figures 1F-G). We used those population-specific 
PCs for the association analysis of non-British white, African, South Asian, and East Asian 
populations. 

Variant annotation and quality control 
We annotated the directly-genotyped variants using the VEP (April 2017 version) 
with LOFTEE plugin (https://github.com/konradjk/loftee, version v0.3-beta) and variant quality 
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control by comparing allele frequencies in the UK Biobank and gnomAD 
(gnomad.exomes.r2.0.1.sites.vcf.gz) as previously described76,96. For directly-genotyped 
variants, we focused on variants outside of the major histocompatibility complex (MHC) region 
(hg19 chr6:25477797-36448354) and applied the following filtering criteria27: 
     1. The missingness of the variant is less than 1%, considering that two genotyping arrays 
(the UK BiLEVE array and the UK Biobank array) cover a slightly different set of variants10. 

2. Minor-allele frequency is greater than 0.01%, given the recent reports casting questions 
on the reliability of ultra low-frequency variants97,98. 

3. Hardy-Weinberg disequilibrium test p-value is less than 1.0x10-7 
4. Manual cluster plot inspection. We investigated the cluster plots for a subset of variants 

and removed 11 variants that have unreliable genotype calls76. 
5. Passed the comparison of minor allele frequency with the gnomAD dataset as described 

before76. 
  
For the imputed variants, we focused on the HRC-imputed SNPs in version 3 of the UK Biobank 
imputed genotype data release (~97 million) and subsequently applied a filter on minor allele 
frequency and on the INFO score. Within each population, SNPs with an assigned variant ID 
from UK Biobank (~81 million) were filtered to only those with an INFO score greater than 0.3 
and MAF greater than 0.1% before meta-analysis (~16 million to ~29 million variants, varying by 
trait and by population). After meta-analysis, variants with a MAF greater than 1% in the White 
British (~9 million) were kept for downstream analysis. 
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Supplementary Figure 1. Population structure analysis for UK Biobank with a combination of principal 
component analysis and self-reported ethnicities. (A) The 487,409 subjects in the UK Biobank with the genotype 
data are projected to the genotype-based principal components and shown on the global PC1 vs. PC2. Color 
represents the self-reported ethnicity. The thresholds used in the population definitions are shown as black vertical or 
horizontal lines (Methods). (B-E) Population refinement based on population-specific PCs (Methods) for (B) 
non-British white, (C) African, (D) South Asian, and (E) East Asian individuals. The color represents the self-reported 
ethnicity. The threshold used to refine the population definitions are shown as black vertical or horizontal lines. (F, G) 
The population-specific PCs were recomputed for the refined definitions of (F) non-British white, African, and South 
Asian, and (G) East Asian individuals (Methods). The first two population-specific PCs are shown in the plot. The 
color represents the self-reported ethnicity. 
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Phenotype distributions  
Within the UK Biobank, we empirically estimated the adjustments for statin treatment effect on 
the biomarkers. In UK Biobank, about 20,000 individuals returned for a repeated assessment 
(imaging assessments did not include biomarker level measurement). Of those, 1,705 either 
started or stopped a statin between enrollment and that second visit. We utilized the N=1,427 
people who were on statins at the second visit but had not been on them at enrollment. Our 
empirical estimates of the effect size (in log relative scale) and their corresponding p-values are 
summarized in Supplementary Tables 1B-1C. Given the significance of the associations, we 
applied the statin adjustment only for  LDL cholesterol, total cholesterol, and apolipoprotein B. 
The statin adjustment factors were listed in Supplementary Table 1A. 
 
We note that there are pre-existing estimates in the literature for LDL 3 and that LDL is typically 
adjusted by 0.7 and total cholesterol by 0.8, similar to our empirical estimates. 
 
 
Supplementary Table 1A. Estimated adjustment factor based on statin usage. 
 
Supplementary Table 1B. Estimated adjustment based on statin usage (BMI adjusted). 
 
Supplementary Table 1C. Estimated adjustment based on statin usage (not BMI adjusted). 
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Supplementary Figure 2A. Proportion of variance explained by all covariates across the 37 raw laboratory 
phenotypes. (x-axis) Regression estimate of the proportion of variance explained by all covariates in a linear model 
for 37 raw laboratory phenotypes including Fasting glucose defined if fasting time between 8 and 24 hours according 
to Data Field 74 in UK Biobank Data Showcase (y-axis). Blue bar plots indicate estimate before medication 
adjustment and red bar plots indicate estimate after medication adjustment 
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Supplementary Figure 2B. Breakdown of variance explained per covariate in the log-transformed 
phenotypes. (x-axis) Fraction of explained variance (y-axis) Biomarker being evaluated. Interaction terms were split 
equally among constituent terms.  
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Supplementary Figure 2C. Phenotype distributions of all raw laboratory tests by age and sex. (x-axis) Age of 
individuals within a pentacontile were averaged. (y-axis) The corresponding average value +/- 1 SD of each 
laboratory test measurement for all individuals with available data in the study. Color indicates the reported sex of the 
individuals (orange = male, turquoise = female). 
 
Supplementary Table 2. Phenotype distributions for each of the raw and log-transformed phenotypes. 
 
Supplementary Table 3. Genetic correlations between BMI-adjusted and BMI-unadjusted measurements. 
 
Supplementary Table 4A. Description of 35 measured and derived lab phenotypes used in the genetic analysis. 
 
Supplementary Table 4B. Effects of different sets of covariates in covariate adjustment with residualized models. 
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Statin identification and LDL adjustment 
 
We reviewed the medications taken by one or more participants in the UK Biobank (UK Biobank 
Field ID: 20003) and identified 13 medication codes corresponding to statins (UK Biobank 
Data-coding ID 4: 1141146234, atorvastatin; 1141192414, crestor 10mg tablet; 1140910632, 
eptastatin; 1140888594, fluvastatin; 1140864592, lescol 20mg capsule; 1141146138, lipitor 
10mg tablet; 1140861970, lipostat 10mg tablet; 1140888648, pravastatin; 1141192410, 
rosuvastatin; 1141188146, simvador 10mg tablet; 1140861958, simvastatin; 1140881748, zocor 
10mg tablet; 1141200040, zocor heart-pro 10mg tablet). We then identified participants (n = 
1,427) with biomarker measurements who were not taking a statin upon enrollment (years 
2006-2010), but who were taking a statin at the time of the first repeat assessment visit (years 
2012-2013). For each participant, we divided their on-statin biomarker measurement by their 
pre-statin biomarker measurement. The mean of this value was considered to be the statin 
correction factor within the UK Biobank. For all individuals who were taking statins upon 
enrollment, we divided their on-statin measurement by the correction factor to yield an adjusted 
biomarker measurement value. For all traits, we calculated a p-value from a regression testing 
whether the log ratio of pre- and on-statin values were significantly different from 0 after 
adjusting for sex, Townsend Deprivation Index at baseline, the top 20 global PCs of the 
genotype matrix, age at baseline, BMI at baseline, age difference between baseline and 
followup, BMI difference between baseline and followup, and baseline age, age difference, and 
BMI difference by sex interactions. For the model excluding BMI, all BMI terms were excluded. 
  
Only traits with a significant non-zero effect were evaluated with adjustment for statins. The 
following list of 7 statins were identified in the UK Biobank for the purposes of adjusting by the 
estimated factor: simvastatin, fluvastatin, pravastatin, atorvastatin, rosuvastatin, lipid-lowering 
drug, lipitor 10mg tablet. 

Covariate correction  
Log-transformed UK Biobank measurements for all reported individuals (excluding out of range 
and QC failed measurements) were fit with linear regression against covariates. Trait 
measurements are first log-transformed, then adjusted for genotype principal components (the 
top 40 principal components of the UK Biobank-provided genotype-based global PCs), age 
indicator variables (one for each integer age), sex, 5-year age indicators by sex interactions, 
self-identified ethnicity, self-identified ethnicity by sex interactions, fasting time (one indicator per 
fasting time, except a single indicator for >18h and for 0 or 1 hours), estimated sample dilution 
factor (icosatiles), assessment center indicators, genotyping batch indicators, icosatiles of time 
of sampling during the day, month of assessment (indicators for each month of participation, 
with the exception that all of 2006 and August through October of 2010 were assigned a single 
indicator), and day of assay (one indicator per day assay was performed). The residuals were 
used for downstream analysis unless specified otherwise. 
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Genetics of biomarkers 

Heritability estimates 

LD Score regression 
We used LD score regression version 1.0.1 for the analysis. We used the default LD Scores 
from the 489 unrelated European individuals in 1000 Genomes as our reference24,99. We 
converted our White British summary statistics to LDSC format using munge_sumstats, 
munging against the set of 1000 Genomes Phase 1 variants with calls of an ancestral allele in 
1000 Genomes Phase 3. We ran ldsc.py with the following parameters: 
  

ldsc.py --h2 <trait summary statistics> --ref-ld-chr 
<ldsc/1000G.EUR.QC/> --w-ld-chr 
<ldsc/weights_hm3_no_hla/weights.> 

HESS 
We performed standard stage 1 fitting25, then removed all regions which contained no SNPs 
with MAF > 5% (5/~1700 bins genome-wide) and generated stage 2 estimates from the 
resulting matrices. We used the same munged White British summary statistics described 
above, which were generated using a modified version of the munge_sumstats.py which also 
outputs chromosome and position. We confirmed heritability estimates of select associations 
using GCTA-GREML100 and genotyped array variants on a subset of individuals (data not 
shown) to ensure estimates were comparable to this model. 

GWAS of coding variants in genotyping array 
Univariate association analyses for single variants were applied to the 35 phenotypes 
independently using PLINK v2.00aLM (2 April 2019). Specifically, we applied generalized linear 
model association analysis for each of the quantitative phenotypes after adjusting the 
covariates. 

GWAS of imputed variants 
We employed a GWAS with covariates of the population-specific PCs and the genotyping array 
on the residuals computed above. Variants were the full set of HRC-imputed SNPs in the 
version 3 UK Biobank data release. This was run using plink v2.00aLM with the following 
parameters: 
  

--glm 
cols=chrom,pos,ref,alt,altfreq,firth,test,nobs,orbeta,se,ci,t,p 
hide-covar --pgen <UKBB imputed PGEN> --remove <out of population 
or related individuals> --geno 0.1 --hwe 1e-50 midp; 
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Association and Bayesian model averaging analyses for HLA alleles 
The HLA data from the UK Biobank contains all HLA loci (one line per person) in a specific 
order (A, B, C, DRB5, DRB4, DRB3, DRB1, DQB1, DQA1, DPB1, DPA1). We downloaded 
these values, which were imputed via the HLA:IMP*2 program (Resource 182); the UK Biobank 
reports one value per imputed allele, and only the best-guess alleles are reported. Out of the 
362 alleles reported in UKB, we used 175 alleles that were present in >0.1% of the population 
surveyed. 
  
We performed association analysis for our 35 phenotypes and 175 HLA alleles using PLINK 
v2.00aLM (2 April 2019). We included only self-identified White British individuals (n = 337,151) 
and used generalized linear models with BY corrected p-value threshold of 0.0587. 
  
To further eliminate potentially spurious associations due to the pervasive LD in the HLA alleles 
and identify causal alleles for each phenotype, we applied Bayesian Model Averaging (BMA) for 
the phenotypes with at least two significant (BY-corrected p-value < 0.05) allelotype 
associations. BMA is a model selection procedure to identify the causal configuration of 
allelotypes based on Bayesian information criterion (BIC) of each model given a set of 
associated alleles, the allele dosage information, and the covariate-adjusted phenotypes. To 
make the computation tractable, we selected at most 10 significant allelotype associations for 
each phenotype, given that the search space of causal configuration is exponential to the 
number of associated alleles, and focused on models whose posterior model probability was 
within a factor of 1/5 of that of the best model. With those filters, we applied the BMA procedure 
implemented in the ‘bma’ R package 101 version 3.18.12 across 33 phenotypes, with 56 alleles 
included in at least one analysis, where we used Gaussian link function and a uniform prior of 
0.5 as the prior weight for each allelotype. As a measure of confidence in the association 
between allelotype and phenotype, we computed the allelotype inclusion probability across 
models as the posterior probabilities and reported the associations with posterior inclusion 
probabilities > 0.8. 
  
We reported allele, phenotype, posterior mean effect size, the standard deviation of said effect 
size, and the posterior probability that the effect is not equal to 0. 

GWAS of copy number variants 
CNVs were called by applying PennCNV v1.0.4 on raw signal intensity data from each array 
within each genotyping batch as previously described34. In total, we conduct association tests 
for 8,274 non-rare (MAF > 0.01%) CNVs and 23,598 genes. Genotypes for gene-level burden 
tests were treated as an indicator variable for the presence of any CNV which overlaps within 
10kb of the gene region. 
  
We computed generalized linear models using PLINK v2.00aLM (31 Mar 2018) --glm with age 
and sex as covariates, and with phenotype quantile normalization (--pheno-quantile-normalize 
option). For burden tests, we added the number and the total length of CNV as covariates. See 
the “GWAS on genetic variants on genotyping array” section for further description of PLINK’s 
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implementation of these model specifications. 
  
These summary statistics were additionally meta-analyzed with METAL. After the meta-analysis 
was performed (see “Meta-analysis” subsection below), the association statistics were clumped 
and filtered using the following arguments to PLINK 1.90b690: 
  

  --clump <CNV summary statistics> --clump-r2 0.01 
  --clump-field P-value  --clump-snp-field MarkerName 
  --clump-kb 10000 --clump-p1 1e-6 --clump-p2 1e-6 
  --keep <unrelated white british> 
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Meta-analysis across 4 ancestry groups in UK Biobank 
 

 
Supplementary Figure 3. Effect of meta-analysis of White British individuals with other UK Biobank 
participants on the discovery of genetic associations. (x-axis) Number of lead variants (before 1cM clumping) in 
White British (y-axis) Number of lead variants (before 1cM clumping) in meta-analysis. Each point represents one 
biomarker trait. Meta-analysis substantially increases power for variant discovery.  

19 



 
 

Comparison of effect sizes with published studies 
Supplementary Table 5. Comparison of estimated effect sizes between UK Biobank and other studies.  
 
 
(a) (b) 

 
Supplementary Figure 4. Correlation of effect sizes between UK Biobank and previous GWAS is predicted 
primarily by sample size. (x-axis) Sample size in thousands of comparative studies. (y-axis) Observed Spearman’s 
correlation coefficient. All variants associated p < 1 x 10-6 (subthreshold; two-sided t-test) in either study are included. 
(a) Comparisons from the Biobank Japan study 17 (b) Comparisons from other studies of mostly European ancestry 
(see Supplementary Table 5 for full list). Grey bands represent 95% confidence intervals on the regression fit, and 
lines represent the estimated mean regression fit on the basis of the observed data. 

Biomarker associated variants prioritize therapeutic targets 
Supplementary Table 6. Association results for protein-truncating variants across the 35 lab phenotypes (within UK 
Biobank meta-analysis p < 5x10-9).  
 
Supplementary Table 7. Association results for protein-altering variants across the 35 lab phenotypes (within UK 
Biobank meta-analysis p < 5x10-9). 
 
Supplementary Table 8. Association results for non-coding variants across the 35 lab phenotypes (within UK 
Biobank meta-analysis p < 5x10-9). 
 
Supplementary Table 9. HLA alleles found to be associated with the 35 lab phenotypes via both PLINK association 
tests and Bayesian Model Averaging (BMA). 
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Supplementary Figure 5. Posterior effect sizes, probabilities of Bayesian Model Averaging model inclusion, 
and linkage disequilibrium for HLA alleles on 35 different laboratory test phenotypes. y-axis indicates 
phenotype and x-axis indicates allele. Phenotypes along the y-axis are hierarchically clustered with respect to effect 
size estimates of adjacent alleles. Above - the size of each dot corresponds to the posterior probability that the HLA 
allele is included as a variable across all plausible models as deemed by BIC measures from BMA, and the color of 
each dot corresponds to the size and direction of the effect of the allele on the phenotype as found by PLINK. Only 
the top 10 significant PLINK hits per phenotype were considered for the analysis, and the figure only enumerates 
those associations that were found to have both a PLINK association p-value <= 0.05/10000 (two-sided linear 
regression) and a BMA posterior probability >= 0.8. Below - LD measures (R2 values, as determined and visualized 
by the gaston package) across HLA alleles. The HLA association summary statistics is available in Supplementary 
Table 9.  
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CNVs influencing lab phenotypes 

 
Supplementary Table 10A. Single and burden copy number variation associated with the 35 lab phenotypes.  
 
Supplementary Table 10B. HNF1B CNV associations with kidney failure, conditional on diabetes status.  
 
 
 

 
Supplementary Figure 6A. PheWAS of rare CNVs affecting HNF1B. X-axis log-odds ratio (LOR, for disease 
outcomes) or BETA (for biomarkers) and standard errors and -log10(P) for each trait having association with HNF1B 
CNVs at p < 1x10-4 (linear regression for continuous traits and logistic/Firth regression for dichotomous traits, 
two-sided in all cases). Associations for all traits run as in previous analysis 102, except for biomarker traits described 
here. 
 
 

 
Supplementary Figure 6B. Comparison of PTV and duplication at the CST3 locus on Cystatin C levels. Violin 
plots across carrier individuals (red) are compared with other participants (gray), for both a rare PTV at CST3 (left, 
Affx.92045743, n=105) and a burden of duplication of the CST3 gene (right, CST3, n=9, points are individuals). As 

22 

https://paperpile.com/c/BvONq3/Ux7eu


 
 

expected, the PTV results in approximately halved mean Cystatin 3 levels, while individuals with a duplication have 
approximately 50% higher mean Cystatin 3 levels. 
 

Global and local heritability of biomarkers 
Supplementary Table 11A. LD Score regression-based estimated SNP heritability and intercept. 
 
Supplementary Table 11B. HESS estimated SNP heritability and cumulative fraction of heritability. 

Targeted phenome-wide association study  
Supplementary Table 12. List of phenotypes used in the PheWAS analysis. 
  
Supplementary Table 13. Phenome-wide association for the targeted variants (p < 1x10-7). 

Fine-mapping of common associated variants 
 
Supplementary Table 14A. List of fine-mapped variants with >99% posterior inclusion probability. 
 
Supplementary Table 14B. Residual phenotypic variance explained by fine-mapped variants with >99% posterior 
inclusion probability. 

Causal inference between  biomarkers, diseases, and medically relevant 
phenotypes 

 
Supplementary Table 15. Disease and medically relevant phenotypes used for Mendelian randomization analysis.  
 
Supplementary Table 16. Causal inference results using MR.  

Polygenic prediction of biomarkers within and across populations  

Evaluation of snpnet PRS models with MESA cohort 
MESA SHARE genotypes from all populations were imputed using the Haplotype Reference 
Consortium reference panel using the Sanger Imputation Server with EAGLE pre-phasing73,103. 
HRC filtering and pre-checking SNPs was applied before imputation104. Following imputation, 
the PRSs were scored using PLINK separately for each chromosome using the allele sum 
option and scores were then summed across chromosomes before being used for prediction. In 
evaluation, individual biomarkers from exam 1 or exam 2 were matched to the corresponding 
measurements in UK Biobank, including biomarkers part of ancillary studies. The evaluation 
was run within the individuals identified as white in MESA Exam 1. Cholesterol measurements 
were divided by 0.8 for individuals reporting statin use at exam 1 (as reported in the sttn1c 
variable) and LDL measurements were divided by 0.7 for individuals reporting statin use at 
exam 1 similarly. Then, biomarker measurements were log-transformed and adjusted for the 
exam 1 variables gender1 and age1c. 
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Supplementary Table 17A. Predictive performance of polygenic risk scores for 35 lab phenotypes from genetic data 
and covariates within and across populations. 
 
Supplementary Table 17B. Effect of adjustment for covariates on population-specific polygenic risk score predictive 
performance.  
 

 
Supplementary Figure 7. Variance explained for polygenic scores of individual biomarkers across 
populations. The variance explained in a held-out subset of White British was used to normalize each biomarker and 
prediction was applied in non-British White, South Asian, East Asian, and African ancestry individuals (Methods). For 
each population, outlier points are labeled. Full list of all results available in Supplementary Table 17A. 
 
Supplementary Table 18. Validation of polygenic risk scores in the Multi-Ethnic Study of Atherosclerosis (MESA).  
 
Supplementary Table 19. Enrichment in tails of PRS for multiple related traits.  

Multiple regression with PRSs for biomarkers improves prediction of traits 
and diseases  
We also considered a model of myocardial infarction adjusted for self-reported family history of 
heart disease (referred to as “Heart Disease”). For the family history model, individuals were 
adjusted by a binary indicator of whether they reported their mother or father as having heart 
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disease, and ambiguous individuals (for which data from at least one parent was missing, and 
no parents were reported as having a history of heart disease) were excluded. 
  
For Figure 5A, we generated the corresponding polygenic scores of the multi-PRS in the test set 
and calculated the prevalence of chronic kidney disease in each non-overlapping quantile of the 
corresponding multi-polygenic scores. 
 
Supplementary Table 20. Prediction accuracy and odds ratios for multi-PRS models including those with 
pre-existing PRSs added.  
 
Supplementary Table 21. Cross-population prediction of complex traits with multi-PRS models. 
 
Supplementary Table 22. Weights on standardized PRSs for generating the baseline models only including trait 
polygenic scores and not biomarkers. 
 
Supplementary Table 23. Weights on standardized PRSs for generating the multi-PRS models. 
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(A) CKD (B) Alcoholic cirrhosis 

 
 

(C) Gallstones (D) Hypertension 

 
(E) Cholecystitis (F) Myocardial infarction 
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(G) Heart failure (H) Gout 

 
(I) Hypertension (J) Angina 

 

 
 
Supplementary Figure 8. The breakdown of the data sources used for the definition of evaluated diseases in 
UK Biobank. Chronic kidney disease (CKD, panel A) endpoints was defined based on the combination of 
self-reported renal failure (coded as "1192" in UKB Data coding ID 6) and ICD-10 code (N17 [“Acute kidney failure”], 
N18 [“Chronic kidney disease (CKD)”], N19 [“Unspecified kidney failure”], and its sub-concepts) from hospital 
inpatient data are used for the chronic kidney disease definition in UK Biobank. For each other disease, the most 
common 40 combinations of phenotyping sources are shown in the plot: (b) alcoholic cirrhosis, (c) gallstones, (d) 
hypertension, (e) cholecystitis, (f) myocardial infarction, (g) heart failure, (h) gout, (i) hypertension, and (j) angina.  
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Supplementary Figure 9. Traits enriched in multiple polygenic scores. Plot of observed enrichment in PRS tails 
across the nine traits enriched in at least three distinct traits. Only FDR adjusted significant associations are shown. 
 
(A) Myocardial infarction 

 

(B) Chronic kidney disease and diabetes 

 
Supplementary Figure 10. Extending multi-PRS with additional trait polygenic scores. (A) Myocardial 
infarction. Odds ratios for angina and myocardial infarction using the multi-PRS including biomarkers (red) or 
multi-PRS of just the trait polygenic score and existing scores (GRS49K [PMID 27655226] and Khera et al. [PMID 
30104762] SNPs; grey). Error bars represent 95% confidence intervals and bar endpoints represent the mean odds 
ratio estimate from the logistic regression in the test set. Angina n = 4983 cases and n = 89409 total; myocardial 
infarction n = 3495 cases and n = 89409 total. (B) Chronic kidney disease and diabetes. Odds ratios for diabetes 
and chronic kidney disease using the multi-PRS including biomarkers (red) or multi-PRS of just the trait polygenic 
score and existing scores (DIAMANTE [PMID 30297969] and Läll et al. 2016 [PMID 27513194]; grey). Error bars 
represent 95% confidence intervals and bar endpoints represent the mean odds ratio estimate from the logistic 
regression in the test set. Type 2 diabetes (strict) refers to training a polygenic score with type 2 diabetes controls 
with HbA1c > 39 mmol/mol excluded. Type 2 diabetes n = 3612 cases and n = 76257 total; CKD n = 2780 cases and 
n = 89409 total.  
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Supplementary Figure 11. Visualization of multi-PRS weights. Betas per standard deviation fit for each of the 
multi-PRSs which show, for each biomarker and the trait baseline score, the beta (log odds) of the given outcome for 
each standard deviation change in that score. Type 2 diabetes (strict) refers to training a polygenic score with type 2 
diabetes controls with HbA1c > 39 mmol/mol excluded.  
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Supplementary Table 24. Description of case definition in FinnGen derived from ICD codes and registry data.  
 
Supplementary Table 25. Hazard ratios of multi-PRS models evaluated in the FinnGen cohort. 
 
Supplementary Table 26. Hazard ratios of incident cases for models including pre-existing polygenic scores for both 
type 2 diabetes and myocardial infarction in FinnGen. 
 
 
 
 

 
 
Supplementary Figure 12. Extended diabetes status predictions of kidney failure multi-PRS. Hazard ratios 
(HR) for incidence of various outcomes using the kidney failure multi-PRS (green) or snpnet PRS for kidney failure 
(orange). Error bars represent 95% confidence intervals and points represent the mean hazard ratio estimate from 
the regression fit. Number of individuals with each diagnosis, statistical significance, and covariates described in 
Supplementary Table 23 and Methods.  
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(A) Myocardial infarction 

(B) Type 2 diabetes 

 
Supplementary Figure 13. Extending multi-PRS with additional trait polygenic scores in FinnGen. (A) 
Myocardial infarction. Hazard ratios for myocardial infarction using the multi-PRS including biomarkers (red) or 
multi-PRS of just the trait polygenic score and existing scores (grey; including just GRS49K and Khera et al. SNPs; 
purple). Error bars represent 95% confidence intervals and bar endpoints represent the mean odds ratio estimate 
from the regression fit. Myocardial infarction (7612 cases and 122161 controls) is the outcome evaluated.  (B) Type 2 
diabetes. Hazard ratios for type 2 diabetes using the multi-PRS including biomarkers (red) or multi-PRS of just the 
trait polygenic score and existing scores (grey; including just DIAMANTE and Lall et al. 2016 SNPs, purple). Error 
bars represent 95% confidence intervals and bar endpoints represent the mean odds ratio estimate from the 
regression fit. Type 2 diabetes (strict; 16877 cases and 129800 controls) is the outcome evaluated. . 
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Conditional effects at rs8177505 and the LPA locus 

 
Supplementary Figure 14. Extended comparison of conditional effects at rs8177505 and the LPA locus. The 
putative LpA-associated variant rs8177505 is shown in red, including the marginal effect “unconditional” (rs8177505 
beta = 1.44208, two-sided linear regression p = 9.46191 x 10-233); the effect sizes conditioned on the genotype at 
rs8177505 (“rs8177505”); the effect sizes conditioned on all the >99% posterior probability fine-mapped SNPs from 
the study (“Finemapped” -- rs8177505 beta = 0.213102, two-sided linear regression p = 1.1 x 10-8); for the list of all 
variants and stepwise independent variants from a previous study (“NEJMAll” and “NEJMStepwise” 105 -- rs8177505 
beta = 0.157889 and 0.175442, two-sided linear regression p = 1.3 x 10-5 and 1.3 x 10-6); and for the list of 
independent and Kringle IV repeat associated variants from another study (“TOPMed” and “TOPMedKIV” 106 -- 
rs8177505 beta = 0.27945 and 0.19539, two-sided linear regression p = 3.3 x 10-16 and 1.1 x 10-6). 
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Additional datasets generated in this work 
Summary-level data generated in this work is available at NIH’s instance of figshare78. 
 
The meta-analyzed GWAS summary statistics for 35 lab biomarkers. For each biomarker trait, we provide two 
table files for meta-analyzed GWAS summary statistics, corresponding to the one from the directly genotyped dataset 
and the imputed dataset. The columns are: the position of the genetic variant (CHROM and POS), the variant 
identifier (MarkerName), the reference and the alternate allele (REF and ALT), the effect size estimates and its 
standard error (Effect and StdErr) reported with respect to the alternate allele as the risk allele, the meta-analyzed 
p-value of the association (P-value), the direction of the association (Direction) in the four populations (white British, 
non-British white, African, and South Asian), and the METAL heterogeneity test statistics (HetISq, HetChiSq, HetDf, 
and HetPVal). This dataset is available at NIH’s instance of figshare: https://doi.org/10.35092/yhjc.12355382. 
 
The output from the FINEMAP analysis for 35 lab biomarkers. For each trait, we provide a tar archive file which 
contains the full output from FINEMAP for the regions with at least one genome-wide significant associations (p < 5 x 
10-9) from the multi-ethnic GWAS meta-analysis within UK Biobank. Specifically, we provide bdose, config, cred, ld, 
master, snp, and z files used in FINEMAP software, whose file formats are described in its documentation 
(http://christianbenner.com/). This dataset is available at NIH’s instance of figshare: 
https://doi.org/10.35092/yhjc.12344351. 
 
The snpnet polygenic risk score coefficients for 35 lab biomarkers. The coefficients (weights) of the polygenic 
risk score are provided in a table file with the following set of columns: the position of the genetic variant (CHROM 
and POS), the variant identifier (ID), the reference and the alternate allele (REF and ALT), the coefficients (weights) 
of the PRS (BETA). The BETA is always reported for the alternate allele. This dataset is available at NIH’s instance of 
figshare: https://doi.org/10.35092/yhjc.12298838. 
 
The multi-PRS risk score coefficients for 10 disease outcomes. The multi-PRS risk score coefficients for the 
following 10 disease endpoints are included in this dataset: angina, alcoholic cirrhosis, gallstones, hypertension, 
cholecystitis, kidney failure, heart failure, myocardial infarction, gout, and type 2 diabetes (T2D). The coefficients 
(weights) of the polygenic risk score are provided in a table file with the following set of columns: the position of the 
genetic variant (CHROM and POS), the variant identifier (ID), the reference, the alternate allele, and the risk alleles 
(REF, ALT, and A1), the coefficients (weights) of the PRS weights (weights_<trait>). This dataset is available at NIH’s 
instance of figshare: https://doi.org/10.35092/yhjc.12355424. 
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