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1. Supplementary Materials

1.1 PS loss is a weighted average of a full and reduced model

For a linear model the squared prediction error is a common and relevant loss function. To

examine the bias-variance tradeoff in PS, it is helpful to revisit a simple example given by Shmueli

(2010) in which the Expected Prediction Error (EPE) is evaluated for a “fully specified model

(large) versus an “underspecified model” (small). Suppose data come from the model f(x) =

β0 +β1x1 +β2x2 + ε with ε ∼ N(0, 1). When no predictors are missing we estimate the full model

as f̂(x) = β̂0 + β̂1x1 + β̂2x2. Here the expected prediction error (EPE) is the sum of the bias,

variance, and irreducible error of the predictions or fitted values (Hastie and others, 2009):

EPEL = E

[(
Y − f̂(x1, x2)

)2]
= σ2

(
1 + [1 x1 x2](X ′LXL)[1 x1 x2]′

)
where EPEL denotes the EPE of the full model. In contrast the EPE of the underspecified or

submodel is given by:

EPES = E

[(
Y − f̂∗(x1)

)2]
= ((γ0 + x1γ1)− (β0 + β1x1 + β2x2))

2
+ σ2[1 x1](X ′SXS)[1 x1]′

where f̂∗(x) = β̂∗0,1 + β̂∗1,1x1. Note that in this case f̂∗(x) = ĝ2 . The EPE of the PS model
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is just a weighted average of the large and small prediction models.

EPEPS =
∑
m

P (M = m)EPEm = EPEL(1− P (M)) + EPESP (M)

1.1.1 Bias/Variance Tradeoff We simulated the EPE in figure 1. The simulation fixes X1 = x1,

and draws from the conditional distribution X2|X1 = x1 ∼ N(µ2 + σ2

σ1
ρ1,2(x1 = µ1), (1−ρ21,2)σ2

2).

The EPE for the correctly specified full model is just the irreducible error, whereas the EPE for the

underspecified model increases as the out-of-sample predictor moves away from its population

mean. There is bias-variance trade-off between the former approach (data are pooled across

patterns but the implied prediction model is less good), and the latter (a better pattern-specific

model that is estimated less precisely).

The out-of-sample prediction error from the large model is given by the green line in figure

1, and is equal to the model variance. If the data were generated from the large model and

predictions were given from the small model that includes only X2, then the expected prediction

error is approximated by the purple points in figure 1.

The yellow points in figure 1 denote the prediction error that arised from the PS in this

setting; f̂1 makes predictions when all data are available and f̂2 makes predictions when only X2

is available. Clearly, PS has smaller EPE for every out-of-sample X1. In this case the probability

of missingness was 50%, P (M1 = 1) = 0.5.
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Fig. 1. Comparison of Expected Prediction Error for the Large fully specified model: E[Y |X1, X2] =
β0 + β1X1 + β2X2, and Small underspecified model: E[Y |X1] = β0,3 + β∗

1,3X1. Pattern Submodel (PS)
predictions are a weighted average of the Large and Small models, weighted by P(M=1)
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1.2 Missing Data Mechanisms

Table 1. Missing data mechanisms used for simulation. ν0 is empirically calculated to allow the probability

of missingness to maintain the desired level. expit = ex

1+ex
.

Missing Data Mechanism for X1

MCAR P (M) = expit(ν0)
MAR P (M) = expit(ν0 + ν2X2)

MARY P (M) = expit

(
ν0 + ν2,Y

(
Y/σy+X2√

2(1+cor(Y,X2))

))
MNAR P (M) = expit(ν0 + ν1X1)

MNARY P (M) = expit

(
ν0 + ν1,Y

(
Y/σy+X1√

2(1+cor(Y,X1))

))

1.3 Imputation Error of X1

Table 2. Squared Imputation Error of the true out-of-sample X1 compared to the imputed X1 under

different imputation methods and missing data mechanisms: Imputation Error of X1 =
∑

i(X1i− X̂1i)
2.

Multiple Impuatation was done the usual way using predictive mean matching and chained equations,
where the variable with the least amount of missing data is the first variable imputed (Y ), and the
variable with the next least amount of missing data is imputed second (in this case X1).

MAR MNAR MAR PMY MNAR PMY
Unconditional Mean 0.56 0.56 0.76 0.76
Cond. Mean 0.38 0.38 0.53 0.53
Cond. Mean (Bayes) 0.49 0.49 0.69 0.69
MI (no y) 0.47 0.47 0.61 0.61
MI (incude y) 0.76 0.74 0.75 0.71
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1.4 SUPPORT Example: Logistic Models

Support Example   
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Fig. 2. The continuous SPS measurement was dichotomized at the median, and then used as a binary
outcome. The covariates included in the SPS prediction model include Partial pressure of oxygen in
the arterial blood (pafi), Mean blood pressure (meanbp), White blood count (wblc), Albumin (alb),
APACHE III respiration score (resp), temperature (temp), Heart rate per minute (hrt), Bilirubin (bili),
Creatinine (crea), and Sodium (sod). There are 23 patterns present in the SUPPORT data, and missing
covariates are denoted with ’X’. N is the total number of subjects in each missing data pattern. Pattern
Submodels (PS), Relaxed Lasso PS, Multiple Imputation with Missingness Indicators (MIMI), Complete
Case Submodels (CCS), Relaxed Lasso CCS, and traditional Multiple Imputation (MI) methods are all
compared. The top two figures are the Brier Score (BS; unweighted pattern specific BS and weighted
pattern specific BS), and the bottom two figures are the Log Score (LS;,unweighted pattern specific LS
and weighted pattern specific LS). The prediction measures are cross-validated (10-fold), with nested
cross-validation of the submodels.

1.5 Remarks

1.5.1 Remark A: Prediction vs. Estimation and Computational Efficiency It is important to

separate goals of prediction and estimation. If prediction is the only goal, PS will always give the

minimum EPE. However, if estimation is the goal, and prediction is a secondary aim, the MIMI
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model can provide unbiased parameter estimates.

1.5.2 Remark B: Conditioning Y on X and M One might ask whether we are interested in the

model marginalized over M , E[Y |X] = Xβ, or the conditional model, E[Y |X,M ] = Xβ+Mδ.

This is a philosophical question with differing viewpoints. For inferential purposes it has been

argued that the marginal model is the model of interest. However in many situations the mixture

of conditional models is the simpler way to express a complicated marginal model. Note that by

first assuming the marginal model is true, one must make the assumption that data are MAR

and the δ parameters are zero. A way to assess this is to evaluate whether the degree to which

the MI model and PS model give similar predictions, as we did in the SUPPORT example.

1.5.3 Remark C: The Relationship between Y and M The relationship between Y and M

plays an important role in our modeling assumptions. An outcome generated from a selection

model formulation is assumed to be independent of the missing data mechanism, such that the

outcome would be the same regardless of whether covariate information is missing or observed.

The pattern mixture model formulation assumes that the missing data mechanism is part of the

response model, such that the outcome can be depend on the missing data pattern. The two

approaches represent fundamentally different descriptions of the underlying process. And they

only coincide when δ1 = ... = δp = 0, which is the MAR assumption.

1.5.4 Remark D: Extending to Generalized Linear Models and Other Prediction Approaches We

performed the same set of simulations assuming a true logistic regression model, where we used

a logarithmic scoring rule to compare methods. The general ordering of results holds and will be

explored in future papers. These results extend to random forests as well.
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