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1. MOBILITY MEASURES

Mobility measures are calculated on a daily basis (midnight-to-midnight). We consider the

following mobility measures, some selected from the same measures used by ?, in our analysis:

1.1 Distance travelled

Denoted DistTravelled. The DistTravelled variable for a given day is the sum of the flight

lengths (meters) over all flights that occurred on that day.

1.2 Radius of gyration

Denoted RoG. Let D be the set of all times in the 24-hour period defining a particular day.

Let

L(D) =

n∑
j=1

I{tj∈D}I{ej=flight or ej=pause}(tj+1 − tj)

be the total time in a flight or a pause during day D. Let

C(D) =
1

L(D)

n∑
j=1

I{tj∈D}(tj+1 − tj)
(
I{ej=flight}(G(tj) +G(tj+1))/2 + I{ej=pause}G(tj)

)

be the average (or center) spatial location on day D. The RoG variable (meters) for that day is

√∑n
j=1 I{tj∈D}(tj+1 − tj)

(
I{ej=flight}||(G(tj) +G(tj+1))/2− C(D)||22 + I{ej=pause}||G(tj)− C(D)||22

)
L(D)

1.3 Maximum diameter

Denoted MaxDiam. The MaxDiam variable for a day is the maximum pairwise distance

(meters) between any two pause locations that both occur on that day.
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1.4 Significant locations visited

Denoted SigLocsVisited. This represents the number of significant locations a person vis-

its in a day. In order to determine the set of all significant locations for a person, K-means is

performed on the set of all pause locations with a minimum duration of 10 minutes. Longer

pauses are given additional weight: suppose ej is a pause, then the point G(tj) is represented

by b(tj+1 − tj)/600c replicated points in the analysis. The clusters number, K, is maximized un-

der the condition that no two cluster centers are within 400 meters of one another. We use the

Hartigan-Wong algorithm (?) for K-means which initializes starting locations randomly so that

the results are stochastic. After K-means is completed, any pauses within 200 meters of a cluster

center are assumed to belong to that cluster. The SigLocsVisited variable is the number of signif-

icant locations that a person is within 200 meters of at any point during the day. The choice of

distance parameters, 200 meters and 400 meters, can be adjusted to the specific scientific ques-

tion under investigation.

1.5 Time spent at home

Denoted Hometime. The significant location with the largest total amount of time during

the night hours between 9PM and 6AM over the course of the study period is assumed to be the

location of the person’s home. The Hometime variable is the amount of time (minutes) during

the day spent within a 200 meter radius of home.

1.6 Maximum distance from home

Denoted MaxHomeDist. After determining the location of home, the distance between home

and every other pause location over the course of the day is calculated. The MaxHomeDist

variable (meters) is the maximum of these distances.
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1.7 Average flight length

Denoted AvgFlightLen. The AvgFlightLen variable for a given day is the average length

(meters) of all flights that occur on that day.

1.8 Standard deviation of flight length

Denoted StdFlightLen. The StdFlightLen variable for a given day is the standard deviation

of flight length (meters) over all flights that occur on that day.

1.9 Average flight duration

Denoted AvgFlightDur. The AvgFlightDur variable for a given day is the average duration

(seconds) of all flights that occur on that day.

1.10 Standard deviation of flight duration

Denoted StdFlightDur. The StdFlightDur variable for a given day is the standard deviation

of flight duration (seconds) over all flights that occur on that day.

1.11 Fraction of time stationary

Denoted FracPause. For any given day, D, the FracPause variable is the fraction of time,

or probability of being paused, relative to the amount of time spent moving, or in flight, and

defined by:

∑n
j=1 I{tj∈D}I{ej=pause}(tj+1 − tj)∑n

j=1 I{tj∈D}I{ej=flight or ej=pause}(tj+1 − tj)
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1.12 SigLocEntropy

Denoted SigLocEntropy. Suppose there are K significant locations. Let tsk be the time spent

on a given day within a 200 meter radius of the kth significant location, and let pk = tsk/
∑K
k=1 tsk.

Then the SigLocEntropy variable for that day is given by −
∑K
k=1 pk log pk. Large values indi-

cate a person spreading their time out across many different locations fairly evenly for that day,

whereas small values indicate a concentration at few significant locations.

1.13 MinsMissing

Denoted MinsMissing. The MinsMissing variable for a given day is the number of minutes

of missing data for that day. Note that there are some missing intervals which are inferred to be

pauses if both before and after the missing interval a pause occurs at the same location (within

a 50 meter radius). These inferred pauses are not included in the MinsMissing variable.

1.14 Circadian routine

Denoted CircdnRtn. For two different days Di and Dj , let d(Di, Dj) be the fraction of time

that the person is in the same place (within a 200 meter radius) at the same time of day. This is

approximated by taking the location of a person at 12:30AM on day Di, and seeing if the person

is ever within 200 meters of that location between the hours of 12:00AM and 1:00AM on day Dj .

This is repeated for each of the 24 one-hour periods of the day and d(Di, Dj) is reported as the

fraction of those one-hour periods that the person’s location was synced (up to the 200 meter

buffer). Supposing there are m days of GPS data collected by the person, for a given day, D, the

CircdnRtn variable takes a value of:

1

m− 1

∑
Dj 6=D

d(D,Dj)
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Low values of CircdnRtn indicate a break from routine on day D, whereas high values indicate

that the person followed their daily routine on day D.

1.15 Weekend/Weekday circadian routine

Denoted WkEndDayRtn. This is computed the same way as CircdnRtn, except weekdays

and weekend days are stratified and treated separately. Therefore, to calculate the WkEnd-

DayRtn index on a weekday, all of the weekend days are omitted from the analysis completely.

Similarly, to calculate the WkEndDayRtn index on a weekend day, all of the weekdays are omit-

ted from the analysis completely.

2. EXPECTED GAP BETWEEN A MOBILITY TRACE AND ITS SURROGATES: DERIVATIONS

First, we let (∆̄x, ∆̄y) = 1
n

∑n
i=1(∆x

i ,∆
y
i ) and D̄x = 1

n

∑n
i=1(∆x

i−∆x
(i)) and D̄y = 1

n

∑n
i=1(∆y

i−

∆y
(i)).

2.1 Continuity Assumptions

Because F (f), F (p), and Ψ are unknown, we must rely on empirical estimates of these func-

tions from the observed data. With the goal of resampling from observed events, or hot-deck

imputation, we must make several continuity-like assumptions on F (f), F (p), and Ψ in order

to enable local resampling from observed events to impute missing events. We assume Ψ is

continuous, and that ∀z and for every ε > 0, there exists δ > 0 such that

∥∥∥F (f)(·|Z = z + δ)− F (f)(·|Z = z)
∥∥∥
∞

6 ε (2.1)∥∥∥F (p)(·|Z = z + δ)− F (p)(·|Z = z)
∥∥∥
∞

6 ε (2.2)

for all 0 6 δx < δ, 0 6 δy < δ, and 0 6 δt < δ, where δ = (δx, δy, δt). This condition ensures that

the distribution of flights and pauses are similar locally with respect to location and time.
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LetEf = {i ∈ {1, ..., n} : Bi = 1} be the indices of flights with nf = |Ef |. Suppose we wish to

resample from the observed set of flights to impute a trajectory at some new time and location

znew = (xnew, ynew, tnew). The empirical distribution, giving wk(·) weight to the kth flight,

is

F̂ (f)
{
∆ = (∆(x),∆(y),∆(t))|Z = znew

}
=

∑
k∈EF

wk(znew)I{∆(x)
k <∆(x),∆

(y)
k <∆(y),∆

(t)
k <∆(t)}∑

k∈EF
wk(znew)

.

In addition to the continuity assumption of equation (2.1), ε = ε(δ) where ε(·) is non-decreasing

and ε(0) = 0, we consider the first two moments of the asymptotic distribution of the empirical

distribution function:

∣∣∣E [√nf (F (f)(∆|Z = znew)− F̂ (f)(∆|Z = znew)
)]∣∣∣

=

∣∣∣∣∣√nf
∑
k∈EF

wk(znew)
(
F (f)(∆|Z = znew)− F (f)(∆|Z = zk)

)∑
k∈EF

wk(znew)

∣∣∣∣∣
6
√
nf

∑
k∈EF

wk(znew)ε (‖znew − zk‖∞)∑
k∈EF

wk(znew)
(2.3)

Var
[√

nf

(
F (f)(∆|Z = znew)− F̂ (f)(∆|Z = znew)

)]
= nf

∑
k∈EF

w2
k(znew)F (f)(∆|Z = zk)

(
1− F (f)(∆|Z = zk)

)(∑
k∈EF

wk(znew)
)2 . (2.4)

If the distribution function of flights is independent of time and location, then F (f)(·|Z) =

F (f)(·), and so resampling can be performed as in the case of an independent and identically

distributed sample by letting wi(·) = 1/nf for each event. In this case ε(δ) = 0 ∀ δ > 0, so the

expectation in Equation (2.3) reduces to 0 and the variance in Equation (2.4) simplifies to the

binomial variance, F (f)(∆)(1− F (f)(∆)).

However, it is unlikely that the distribution of flights or pauses is identically distributed

across all times and locations. In this case, the empirical distribution function will be biased,

with a bound for the magnitude of this bias specified in Equation (2.3). The bound for this bias is

minimized by giving higher weight to events that are closer in time and location to the new event
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znew. This can be achieved by specifying wk(znew) so that it is inversely related to ‖znew −

zk‖∞. In this extreme, letting wk(znew) = I{zk=znew} would eliminate the bias completely,

but is impractical is it as it wouild assign a weight of 0 every other observed event. To minimize

the variance in Equation (2.4), the weights are spread out equally across all events wk(znew) =

1/nf , but this will lead to an inflated bias. Instead, a balance must be achieved when selecting

weights so that both the bias and variance of the empirical distribution function are kept low.

This can be done by selecting weights from a unimodal function centered on znew. To this effort,

we choose a t-distribution function with ν degrees of freedom in order to allow for both spread

and kurtosis to be controlled as tuning parameters. The same principles in selecting weights can

be applied to the empirical approximations of F (p)(·) and Ψ(·). The empirical approximation to

Ψ(·) is

Ψ̂(znew) =

∑n
j=2Bj−1Bjwj(znew)∑n
j=2Bj−1wj(znew)

.

In order to improve resampling further, in addition to the continuity assumptions of Equa-

tions (2.1) and (2.2) we also consider several potentially realistic assumptions on human mobil-

ity:

i.Temporally local (TL) weights: Events close in time tend to have similar mobility patterns.

F (f)(·|Z) = F (f)(·|T )
F (p)(·|Z) = F (p)(·|T )

Ψ(Z) = Ψ(x, y, T ) ∀x, y ∈ R.

Resampling weights corresponding to this assumption are:

wj(znew) = ψν (c · (tnew − tj)) ,

where ψν(·) is the t-distribution density function with ν degrees of freedom and c is a scaling

constant.

ii. Geographically local (GL) weights: Events close in space tend to have similar mobility pat-
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terns.

F (f)(·|Z) = F (f)(·|X,Y )
F (p)(·|Z) = F (p)(·|X,Y )

Ψ(Z) = Ψ(X,Y, t) ∀t ∈ R.

Resampling weights corresponding to this assumption are:

wj(znew) = ψν

(
c ·
√

(xnew − xj)2 + (ynew − yj)2

)
.

iii. Geographically local with circadian routine (GLC) weights: Events close in space and close in

the time of day have similar mobility patterns. Considering time to be measured in hours:

F (f)(·|X,Y, T = t) = F (f)(·|X,Y, T = t+ 24k) ∀k ∈ Z,∀t ∈ R
F (p)(·|X,Y, T = t) = F (p)(·|X,Y, T = t+ 24k) ∀k ∈ Z,∀t ∈ R

Ψ(X,Y, T ) = Ψ(X,Y, T + k · 24 hours) ∀k ∈ Z.

Letting s represent 24 hours (in the units of time of t) and letting c1 and c2 be the scaling con-

stants, the resampling weights corresponding to this assumption are:

wj(znew) =ψν

{
c1 ·

√
(xnew − xj)2 + (ynew − yj)2

}
· ψν [c2 ·min {|tnew − tj | (mod s), s− |tnew − tj | (mod s)}] .

There are reasonable arguments for any of the TL, GL, or GLC assumptions. Human mobility

patterns may be a function of location. For example, people may be more stationary when at

home than when outside the home. In this case the GL assumption would be able to ensure low

values of Ψ(zi) when (xi, yi) are the coordinates of home a person’s home. The GLC assumption

adds to this a circadian component which would be better at recovering information about, say, a

regular commute. The TL assumption would do well to model bursty human movement where

flights tend to occur in bunches over time. This assumption captures what is likely the most

general and robust pattern of human behavior.
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2.2 Expected gap between L(t) and L̂(t)

E

[∥∥∥L(t)− L̂(t)
∥∥∥2
]

= E

∥∥∥∥∥
[ ∑t

i=1(∆x
i −∆x

(i) − D̄x)∑t
i=1(∆y

i −∆y
(i) − D̄y)

]∥∥∥∥∥
2


=
∑
l∈{x,y}E

[(∑t
i=1(∆l

i −∆l
(i) − D̄l)

)2
]

=
∑
l∈{x,y}E

[∑t
i=1(∆l

i −∆l
(i) − D̄l)

2 + 2
∑t
i<j(∆

l
i −∆l

(i) − D̄l)(∆
l
j −∆l

(j) − D̄l)
]

=
∑
l∈{x,y}

{∑t
i=1

(
E
[
(∆l

i −∆l
(i))

2
]
− 2E

[
D̄l(∆

l
i −∆l

(i))
]

+ E
[
D̄2
l

])
+2
∑t
i<j E

[
(∆l

i −∆l
(i) − D̄l)(∆

l
j −∆l

(j) − D̄l)
]}

=
∑
l∈{x,y}

{∑t
i=1

(
2σ2

l − 4
nσ

2
l + 2

nσ
2
l

)
+ 2

∑t
i<j E

[
(∆l

i −∆l
(i) − D̄l)(∆

l
j −∆l

(j) − D̄l)
]}

=
∑
l∈{x,y}

{∑t
i=1 2(1− 1

n )σ2
l + 2

∑t
i<j E

[
∆l
i −∆l

(i)

]
E
[
∆l
j −∆l

(j)

]
−E

[
D̄l(∆

l
i −∆l

(i))
]
− E

[
D̄l(∆

l
j −∆l

(j))
]

+ E
[
D̄2
l

]}
=

∑
l∈{x,y}

{∑t
i=1 2(1− 1

n )σ2
l + 2

∑t
i<j −

2
nσ

2
l − 2

nσ
2
l + 2

nσ
2
l

}
=

∑
l∈{x,y}

{
2t(1− 1

n )σ2
l − t(t− 1) 2

nσ
2
l

}
=

∑
l∈{x,y} 2tσ2

l (1− t
n )

= 2t(1− t
n )(σ2

x + σ2
y)



Inferring Mobility Measures from GPS Traces with Missing Data 11

2.3 Continuity assumptions and the expected gap between L(t) and L̃(t)

E

[∥∥∥L(t)− L̃(t)
∥∥∥2
]

= E

[∥∥∥∥[ ∑t
i=1(∆x

i − ∆̄x)∑t
i=1(∆y

i − ∆̄y)

]∥∥∥∥2
]

=
∑
l∈{x,y}E

[(∑t
i=1(∆l

i − ∆̄l)
)2
]

=
∑
l∈{x,y}

{∑t
i=1E

[
(∆l

i − ∆̄l)
2
]

+ 2
∑t
i<j E

[
(∆l

i − ∆̄l)(∆
l
j − ∆̄l)

]}
=

∑
l∈{x,y}

{∑t
i=1

[
E[(∆l

i)
2]− 2E[∆l

i∆̄l] + E[∆̄2
l ]
]

+2
∑t
i<j

[
E[∆l

i]E[∆l
j ]− E[∆l

i∆̄l]− E[∆l
j∆̄l] + E[∆̄2

l ]
]}

=
∑
l∈{x,y}

{∑t
i=1[σ2

l + µl(i)
2 − 2

n

(
σ2
l +

∑n
j=1 µl(i)µl(j)

)
+ 1
n2

(∑n
k=1(σ2

l + µl(k)2) + 2
∑n
k<j µl(k)µl(j)

)
]

+2
∑t
i<j [µl(i)µl(j)−

1
n

(
2σ2

l +
∑n
k=1 µl(k)(µl(i) + µl(j))

)
+ 1
n2

(∑n
k=1(σ2

l + µl(k)2) + 2
∑n
k<s µl(k)µl(s)

)
]

}
=

∑
l∈{x,y}

{
t
(
1− t

n

)
σ2
l +

∑t
i µl(i)

2 + t2

n2

∑n
i=1

∑n
j=1 µl(i)µl(j)

− 2
n

∑t
i=1

∑n
j=1 µl(i)µl(j)

+2
∑t
i<j

[
µl(i)µl(j)− 1

n

∑n
k=1 µl(k)(µl(i) + µl(j))

]}
= t

(
1− t

n

)
(σ2
x + σ2

y) +
∑
l∈{x,y}

[∑t
i µl(i)

2 + t2

n2

∑n
i=1

∑n
j=1 µl(i)µl(j)

− 2
n

∑t
i=1

∑n
j=1 µl(i)µl(j)

+2
∑t
i<j

[
µl(i)µl(j)− 1

n

∑n
k=1 µl(k)(µl(i) + µl(j))

] ]
= t

(
1− t

n

)
(σ2
x + σ2

y) +M(t)

where

M(t) =
∑
l∈{x,y}

{∑t
i µl(i)

2 + t2

T 2

∑n
i=1

∑n
j=1 µl(i)µl(j)−

2
n

∑t
i=1

∑n
j=1 µl(i)µl(j)

+2
∑t
i<j

[
µl(i)µl(j)− 1

n

∑n
k=1 µl(k)(µl(i) + µl(j))

]}
is a function of the µ(i).

3. R PACKAGE: GPSmobility

The GPSmobility R package implements the approaches presented in this paper. After in-

stalling the package, one can follow CodeDemonstration.R by using either the “ExampleFull”
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or the “ExampleMissing” as the filename argument. The ExampleFull.Rdata file contains an exam-

ple week of GPS trace, recorded near-continuously. The ExampleMissing.Rdata file contains the

exact same example week of GPS trace, except recorded over 2 minute intervals with 10 minute

off-periods of missingness in between.
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Table S 1. Mobility measures compared across different missing data imputation approaches for the
trajectories. GPS was collected continuously to establish the ground truth. For the missing data imputa-
tions, a Cauchy kernel was used with scale factor denoted by the number following the period. Larger
scale factors give increased weight on nearby observations during resampling. For the TL, GL, and GLC
approaches, the margin of error represents the standard deviation over 100 repeated simulations.

Measures TL.1 TL.10 TL.20 GL.1 GL.10 GL.20 GLC.1 GLC.10 GLC.20 LI Truth

Hometime 831.5
±2.3

832.3
±2.4

833.4
±2.2

830.3
±2.2

830.5
±2.8

829.8
±1.9

829.1
±2.1

832.1
±2.2

831.3
±2.5 826.7 882.8

DistTravelled 22184
±969.7

22446
±843.5

22569
±811.6

18801
±466.3

18801
±337.5

18779
±369.4

21791
±969.9

22380
±712.1

22444
±645.6 17236 19344

RoG 2787.3
±2.3

2791.3
±2.6

2791.2
±1.9

2783.0
±1.6

2783.0
±1.9

2783.3
±2.5

2785.6
±1.3

2787.0
±1.5

2787.5
±1.8 2779.4 2781.3

MaxDiam 6717
±169

6745
±129

6727
±98

6494
±44

6483
±8

6496
±34

6516
±55

6517
±55

6562
±94 6479 6467

MaxHomeDist 6372
±165

6410
±123

6379
±93

6160
±49

6147
±16

6153
±39

6144
±30

6152
±5

6163
±24 6149 6129

SigLocsVisited 2.96
±0.73

3.20
±0.58

3.20
±0.71

3.16
±0.69

3.00
±0.76

2.96
±0.79

3.28
±0.61

3.12
±0.60

3.20
±0.65 2 3

AvgFlightLen 172.7
±10.7

160.2
±7.6

158.6
±7.4

200.2
±23.2

193.2
±19.2

191.7
±18.1

129.9
±13.6

122.8
±6.1

127.1
±7.6 478.8 251.2

StdFlightLen 152.9
±30.8

125.8
±10.1

123.2
±5.5

213.4
±51.5

205.8
±36.3

202.7
±43.5

151.0
±30.0

134.2
±8.4

137.1
±9.0 639.6 223.3

AvgFlightDur 79.0
±9.3

69.4
±5.8

68.8
±5.6

119.0
±17.9

115.2
±13.4

113.5
±13.7

65.4
±10.5

57.2
±4.1

60.0
±5.1 340.6 77.0

StdFlightDur 131.7
±17.0

115.3
±9.0

113.5
±10.2

170.3
±22.0

168.7
±14.8

166.7
±14.4

103.7
±18.2

85.0
±10.9

91.7
±13.1 289.8 55.2

FracPause 0.88
±0.01

0.89
±0.01

0.89
±0.01

0.87
±0.01

0.87
±0.01

0.87
±0.01

0.87
±0.01

0.88
±0.01

0.88
±0.01 0.86 0.93

SigLocEntropy 0.63
±0.01

0.63
±0.01

0.63
±0.01

0.63
±0.01

0.63
±0.01

0.63
±0.01

0.63
±0.01

0.63
±0.01

0.63
±0.01 0.63 0.63

MinsMissing 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 92

CircdnRtn 0.64
±0.02

0.63
±0.01

0.63
±0.02

0.67
±0.01

0.67
±0.01

0.67
±0.01

0.65
±0.02

0.66
±0.01

0.66
±0.02 0.69 0.66

WkEndDayRtn 0.76
±0.02

0.76
±0.01

0.76
±0.01

0.78
±0.01

0.77
±0.01

0.78
±0.01

0.76
±0.02

0.76
±0.01

0.77
±0.01 0.81 0.79

[Received XXXXX; revised XXXXX; accepted for publication XXXXX]
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(φ MIN, λ MIN) (φ MAX, λ MIN)
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d1d1

Figure S 1. Schematic of longitude-latitude projection to X-Y plane. The isosceles trapezoid contains the
projection of the mobility trace for a particular individual. In the northern hemisphere d2 < d3 while in the
southern hemisphere d2 > d3. The long dashed curve represents a person’s example mobility trace.
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Figure S 2. Bias in the estimation of mobility metrics as the amount of missingness changes. On the left,
three different trajectories are displayed. The right of each panel shows the estimates of distance travelled
for various levels of missingness in the trajectory on the left. Missingness is generated by taking evenly
spaced intervals of different sizes (for different levels of missingness) out of the semicircular trajectories.
For TL, each level of missingness is repeated for 100 simulated trajectories to obtain the 95% confidence
band. This is repeated for three different types of movement: a smooth trajectory (A), small jitters (B),
and larger jitters (C). This demonstrate that both the direction and magnitude of a surrogate’s bias in
approximating the true trajectory can vary significantly depending on the true trajectory.


