## Supplementary Material

## 1. Tables

Supplementary table | Mouse primers used for Real Time PCR

|             | tuble   1/10ube primers used for Real Time 1 SR |
|-------------|-------------------------------------------------|
| Gene symbol | Primers sequence                                |
| CTGF        | For: 5'- CCTGCCCTAGCTGCCTAC -3'                 |
|             | Rev: 5'- GCACTTTTTGCCCTTCTTAA -3'               |
| IGF1        | For: 5'- GCTGCTGAAGCCATTCATTTAG -3'             |
|             | Rev: 5'- CGTGGGAAGAGGTGAAGATAAG -3'             |
| IGFBP2      | For: 5'- GGTGCCAAACACCTCAGTCT -3'               |
|             | Rev: 5'- GGAGATCCGCTCCAGGAC -3'                 |
| IGFBP3      | For: 5'- GCAGCCTAAGCACCTACC -3'                 |
|             | Rev: 5'- GCTTAGACTGCCAGGAGAAGTTC -3'            |
| MMP2        | For: 5'- GTTCAACGGTCGGGAATACA -3'               |
|             | Rev: 5'- GCCATACTTGCCATCCTTCT -3'               |
| MMP9        | For: 5'- CTGGAACTCACACGACATCTT -3'              |
|             | Rev: 5'- TCCACCTTGTTCACCTCATTT -3'              |
| 18S         | For: 5'- GTAACCCGTTGAACCCCATT -3'               |
|             | Rev: 5'- CCATCCAATCGGTAGTAGCG -3'               |

## 2. Figures



## Supplementary Figure 1. Lack of RGC-32 attenuates the clinical course of EAE

WT and RGC-32 KO mice were immunized with MOG<sub>35-55</sub> and then clinical scores were determined during EAE as described in Materials and Methods. Data are expressed as mean  $\pm$  SEM of clinical EAE scores and are representative of three independent experiments (6 mice for each group/ experiment). \* = p<0.05.



Supplementary Figure 2. RGC-32 silencing affects the expression of IGFBP2 and IGFBP3 proteins in rat astrocytes

Cultured rat astrocytes were transfected with siRGC-32 or siCTR using Lipofectamine 3000, then stimulated with TGF- $\beta$  (10 ng/ml) for 24 h. RGC-32 silencing significantly reduced the protein expression of IGFBP2 (**A**) and IGFBP3 (**B**) when compared with that of siCTR. The protein expression was normalized to  $\beta$ -tubulin. A representative blot for each protein is shown in **C**. Results are expressed as mean  $\pm$  SEM (n=3). \* = p<0.05.



Supplementary Figure 3. STAT3 nuclear translocation depends on RGC-32

Primary rat astrocytes were transfected with siRGC-32 or siCTR using Lipofectamine 3000, then stimulated with TGF- $\beta$  (10 ng/ml) for 4 h. Cell lysates were separated into cytoplasmic and nuclear fractions and then analyzed by Western blotting. TGF- $\beta$  treatment resulted in a significant increase in STAT3 nuclear translocation, and this process was greatly reduced when RGC-32 was silenced. The results are expressed as ratios to  $\beta$ -actin for the cytoplasmic fraction and to histone H3 for the nuclear fraction. Representative blots are shown in **B**. Data in **A** are shown as mean  $\pm$  SEM (n=3). \* = p<0.05; \*\*= p<0.01.