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1 Dataset Description

The R programming language was used to generate all the results included in the proposed manuscript. We download
the raw probe level datasets from Gene Expression Omnibus. All the datasets used in this manuscript are described
in Table S1.

Datasets from Affymetrix platform are normalized using RMA background adjustment, quantile normalization
and median polish summarization. We use the threestep function from affyPLM package to achieve this goal [1]. For
probe to gene mapping, standard genome wide annotation packages are used from bioconductor. Median values are
taken whenever multiple probes mapped to the same gene. Datasets from Illumina platform are normalized using
the neqc function from limma package [2]. Finally dataset from Agilent platform is normalized using limma package
as well.

Table S1: Description of the 21 gene expression datasets used in the manuscript.
AD: Alzheimer’s disease, Inf: Influenza, FC: Frontal cortex, TC: Temporal cortex, EC: Entorhinal cortex, HIP: Hippocampus,
MTG: Medial Temporal Gyrus, PC: Posterior Cingulate, SFG: Superior Frontal Gyrus and VCX: Primary Visual Cortex

Datasets Disease Discovery/
validation

Number of
samples

Contrast Tissue Platform

1 GSE48350 AD Discovery 253 173 Norm. vs 80 AD EC, PCG Affymetrix HG U133 Plus 2.0
2 GSE63061 AD Discovery 273 134 Norm. vs 139 AD Blood Illumina HumanHT-12 4.0
3 GSE63060 AD Discovery 249 104 Norm. vs 145 AD Blood Illumina HumanHT-12 3.0
4 GSE26927 AD Discovery 118 18 Norm. vs 100 AD EC Illumina HumanRef-8 2.0
5 GSE1297 AD Discovery 31 9 Norm. vs 22 AD HIP Affymetrix HG U133A

6 GSE15222 AD Validation 363 187 Norm. vs 176 AD TC Illumina Sentrix HumanRef-8
7 GSE5281 AD Validation 161 74 Norm. vs 87 AD EC, MTG, PC,

SFG, HIP, PVC
Affymetrix HG U133 Plus 2.0

8 GSE36980 AD Validation 79 47 Norm. vs 32 AD FC, TC, HIP Affymetrix Human Gene 1.0 ST
9 GSE28146 AD Validation 30 8 Norm. vs 22 AD HIP Affymetrix HG U133 Plus 2.0
10 GSE39420 AD Validation 21 7 Norm. vs 14 AD PC Affymetrix Human Gene 1.1 ST
11 GSE12685 AD Validation 14 8 Norm. vs 6 AD FC Affymetrix HG U133A

12 GSE17156 Inf Discovery 34 17 Norm. vs 17 Inf Peripheral blood Affymetrix HG U133A 2.0
13 GSE42026 Inf Discovery 52 33 Norm. vs 19 Inf Whole blood Illumina HumanHT-12 3.0
14 GSE21802 Inf Discovery 23 4 Norm. vs 19 Inf Whole blood Illumina HumanWG-6 2.0
15 GSE40012 Inf Discovery 75 36 Norm. vs 39 Inf Whole blood Illumina HumanHT-12 3.0

16 GSE29366 Inf Validation 31 12 Norm. vs 19 Inf Whole blood Illumina HumanWG-6 3.0
17 GSE30550 Inf Validation 33 16 Norm. vs 17 Inf Peripheral blood Affymetrix HG U133A 2.0
18 GSE20346 Inf Validation 45 26 Bac. pneu. vs 19 Inf Whole blood Illumina HumanHT-12 3.0
19 GSE34205 Inf Validation 50 22 Norm. vs 28 Inf PBMC Affymetrix HG U133 Plus 2.0
20 GSE82050 Inf Validation 39 15 Norm. vs 24 Inf Blood Agilent SP G3 Human GE 3.0
21 GSE38900 Inf Validation 46 30 Rhinovirus vs 16 Inf Whole blood Illumina HumanWG-6 3.0

Materials and Methods

The overall pipeline of the proposed framework is described in the main text. The algorithm used to perform intra-
and inter -level analysis is described in the Figure S1. We utilize the BLMA package [3] from bioconductor to achieve
this task.
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Figure S1: The gene level meta-analysis pipeline is performed in two stages: intra-level analysis and inter-level analysis. In
the intra-level analysis, each dataset is divided into smaller datasets such that each smaller dataset consists of all the control
samples and a subset of the disease samples. For each gene, p-values are calculated using moderated t-test and later combined
using addCLT. In the inter-level analysis, intra-level p-values coming from individual datasets are combined using the same
technique in order to compute meta p-value for each gene. Final output of the framework is a list of genes that are differentially
expressed across the phenotypes of a given disease.
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To compare with the p-value based approaches, we create four frameworks – each framework takes normalized
gene expression datasets of a given disease as input, computes gene level p-values using moderated t-test for each
dataset, and combines the individual studies for each gene using the chosen meta-analysis approach. Meta p-values
are corrected using the FDR approach. Leave-one-out (LOO) analysis is performed for each of these four frameworks
to select the genes that are not influenced by one single study. To select the significant genes, we use the same
threshold that was used in the proposed framework. To compare with INMEX, we provide the gene level expression
matrices as input in the web interface [4] and performed meta-analysis using both fixed effect model and random
effect model, using the default settings. We rank the output genes with their absolute effect sizes (decreasing order).
To compare with MetaIntegrator, we utilize the MetaIntegrator package from Bioconductor [5]. Similar to the above
frameworks, we provide the gene level expression matrices and perform the LOO in the similar way as we did for
the proposed framework. For the rank aggregation based method, we use the RankAggreg package from CRAN. This
package requires the rank of the genes from multiple datasets as input and provides the combined ranks of the genes
as output. At first, we compute gene level p-values for each dataset using moderated t-test and rank them based on
their FDR corrected p-values. We choose the top significant genes from each dataset, using the same threshold used
in the proposed framework. We use the default settings of the function provided in the package.

2 Results

We apply the proposed approach on 1108 samples from 9 independent training datasets related to two conditions:
Alzheimer’s disease (AD) and influenza. We evaluate the global signature using the target pathway enrichment
approach and the test signature using an additional 912 samples from 12 independent validation datasets. Description
of the findings are explained in the main text. The pathway enrichment results are computed using KEGG database [6]
(version 84.0) that includes 204 signaling pathways. For both diseases, we compare the results of the proposed meta-
analysis framework (GSMA) with the results of the eight other existing meta-analysis approaches. Among them,
four approaches are p-value based (i.e., Fisher’s method, Stouffer’s method, minP, and maxP), three approaches are
effect-size based (i.e., inmex fixed-effect model (inmex FEM) [7], inmex random-effect model (inmex REM) [7], and
MetaIntergrator [8]), and one approach is rank aggregation based (i.e., RankAggreg [9]).

2.1 Alzheimer’s Disease

We apply GSMA on 924 samples from 5 individual studies and identify 89 genes as the global signature and 7 genes
as the test signature. We validate the test signature using an additional 668 samples from 6 individual validation
studies. The two phenotypes for all the datasets are AD patients from different stages and healthy individuals.

Enriched pathways associated with the global signature identified by GSMA and the global signature identified
by one given discovery dataset at a time are shown in the Table S2. The results show that GSMA is able to identify
the target pathway at the very top. In contrast, the signatures obtained from any single analysis is not reproducible.
In addition, they fail to identify the target pathway as significant in most of the cases. AUC plots of the 6 validation
datasets based on the identified test signatures are illustrated in the Figure S2. The results indicate that the proposed
approach outperforms any single analysis in 5 out of 6 cases by achieving higher AUC-ROC score.

The pathway enrichment results of the proposed framework and the existing approaches are shown in the Table S3.
AUC scores of all 6 independent datasets are presented in the Table S4, whereas the AUC plots are presented in the
Figure S3. Figure 3 in the main text explains the overall comparison between GSMA and the existing approaches.

2.2 Influenza

We apply the proposed framework on 184 samples from 4 individual studies and identify 153 genes as the global
signature and 11 genes as the test signature. We validate the test signature using an additional 224 samples from 6
individual validation studies. In 8 out of 10 datasets, the two given phentypes are influenza patients of different stages
and healthy patients. Among the remaining 2 datasets, GSE20346 compares 19 influenza patients and 26 bacterial
pneumonia patients whereas GSE38900 compares 16 influenza patients and 30 Rhinovirus patients.

The pathway enrichment results of the proposed framework and the existing approaches are shown in the Table
S5. AUC scores of all 6 independent datasets are presented in the Table S6, whereas the AUC plots are presented in
the Figure S5. Figure 4 in the main text explains the overall comparison between GSMA and the existing approaches.
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Table S2: The results of the enrichment analysis performed on the genes in the global signatures for Alzheimer’s disease
identified by the proposed meta-analysis framework (GSMA) and using one given discovery dataset at a time. The red line
represents 0.5% threshold and the green highlighted cell represents the target pathway. GSMA is able to identify the target
pathway - Alzheimer’s disease, at the very top. On the other hand, using one single dataset at a time, the results are not
reproducible and significantly influenced by the given individual dataset. In 3 out of 5 discovery datasets, the identified global
signatures fail to identify the target pathway as significant.

GSMA Discovery ds 1 Discovery ds 2

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Alzheimer’s disease 2.24E-07 Phagosome 0.0123 Pathogenic Escherichia coli infec-
tion

0.7973

2 Parkinson’s disease 2.24E-07 Pathogenic Escherichia coli infec-
tion

0.0123 Cardiac muscle contraction 1

3 Non-alcoholic fatty liver disease
(NAFLD)

3.63E-06 Gap junction 0.5592 Vasopressin-regulated water re-
absorption

1

4 Huntington’s disease 3.12E-05 Ferroptosis 0.7871 Cell cycle 1
5 Retrograde endocannabinoid sig-

naling
0.0028 Platelet activation 0.8279 FoxO signaling pathway 1

6 Epithelial cell signaling in Heli-
cobacter pylori infection

0.0435 Apelin signaling pathway 0.9143 Oxytocin signaling pathway 1

7 Cardiac muscle contraction 0.0621 cGMP-PKG signaling pathway 1 Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

1

8 Chagas disease (American try-
panosomiasis)

0.1430 Alcoholism 1 Protein processing in endoplas-
mic reticulum

1

9 Adipocytokine signaling pathway 0.2790 Focal adhesion 1 RNA degradation 1
10 Epstein-Barr virus infection 0.2790 mRNA surveillance pathway 1 Hypertrophic cardiomyopathy

(HCM)
1

Discovery ds 3 Discovery ds 4 Discovery ds 5

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Adherens junction 0.0934 Parkinson’s disease 8.41E-06 Parkinson’s disease 4.35E-07
2 Proteoglycans in cancer 0.3461 Huntington’s disease 8.41E-06 Alzheimer’s disease 1.33E-06
3 Prolactin signaling pathway 0.3625 Alzheimer’s disease 2.49E-05 Huntington’s disease 2.85E-06
4 ErbB signaling pathway 0.4029 Non-alcoholic fatty liver disease

(NAFLD)
9.63E-04 Non-alcoholic fatty liver disease

(NAFLD)
6.20E-04

5 Th1 and Th2 cell differentiation 0.4029 Homologous recombination 0.0685 Retrograde endocannabinoid sig-
naling

0.3385

6 Circadian entrainment 0.4029 Cardiac muscle contraction 0.3019 Homologous recombination 0.7155
7 AGE-RAGE signaling pathway in

diabetic complications
0.4029 Retrograde endocannabinoid sig-

naling
0.3019 Hedgehog signaling pathway 0.7775

8 Focal adhesion 0.4583 Epstein-Barr virus infection 0.7548 Vibrio cholerae infection 0.7775
9 Type II diabetes mellitus 0.4653 Vibrio cholerae infection 0.7760 Synaptic vesicle cycle 0.9895
10 Platelet activation 0.4653 Synaptic vesicle cycle 1 Phagosome 0.9895
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Figure S2: AUC plots across the 6 independent validation datasets related to Alzheimer’s disease, based on the test signature
identified by the proposed meta analysis framework - GSMA vs using one given discovery dataset at a time. The signature
proposed by GSMA achieved higher AUC-ROC scores in 5 out of 6 independent datasets,
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Figure S3: AUC plots across the 6 independent validation datasets related to Alzheimer’s disease based on the test signature,
identified by the proposed meta analysis framework - GSMA and the eight other existing meta-analysis approaches - Stouffer’s
method, Fisher’s method, minP, maxP, inmex FEM, inmex REM, MetaIntegrator, and RankAggreg. The signature proposed
by GSMA achieved highest AUC-ROC scores in 4 out of 6 independent datasets.
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Table S3: The results of the enrichment analysis performed on the genes in the global signatures for Alzheimer’s disease
identified by the proposed meta-analysis framework (GSMA) and the eight other existing meta-analysis approaches (Stouffer’s
method, Fisher’s method, minP, maxP, inmex FEM, inmex REM, MetaIntegrator, and RankAggreg). The red line represents
0.5% threshold and the green highlighted cell represents the target pathway. sing the global signatures identified by the
GSMA, Stouffer’s method, Fisher’s method, and RankAggreg, the enrichment analysis finds all three neurological disorder
pathways (Alzheimer’s disease, Parkinson’s disease and Huntington’s disease) as significant. In contrast, the enrichment
analysis performed with the global signatures identified by minP and maxP do not report any pathway as significant. The
enrichment analysis performed on the signatures identified by MetaIntegrator reports two of the neurological disorder pathways
as significant and rank them on top. The same analysis performed on the inmex FEM and inmex REM report some pathways
as significantly enriched but none of them are the neurological disorder pathways. Interestingly, the other significant pathways
reported by the enrichment analysis performed on the signatures identified by GSMA, Non-alcoholic fatty liver disease (NAFLD)
and Retrograde endocannabinoid signaling, are also known to be involved in Alzheimer’s disease [10, 11, 12, 13].

GSMA Stouffer Fisher

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Alzheimer’s disease 2.24E-07 Alzheimer’s disease 3.78E-06 Alzheimer’s disease 1.59E-04
2 Parkinson’s disease 2.24E-07 Parkinson’s disease 8.62E-05 Parkinson’s disease 4.88E-04
3 Non-alcoholic fatty liver disease

(NAFLD)
3.63E-06 Huntington’s disease 5.80E-04 Huntington’s disease 0.0019

4 Huntington’s disease 3.12E-05 Non-alcoholic fatty liver disease
(NAFLD)

0.0081 Non-alcoholic fatty liver disease
(NAFLD)

0.0682

5 Retrograde endocannabinoid sig-
naling

0.0028 Cardiac muscle contraction 0.0372 Homologous recombination 0.3336

6 Epithelial cell signaling in Heli-
cobacter pylori infection

0.0435 Epithelial cell signaling in Heli-
cobacter pylori infection

0.221 Vibrio cholerae infection 0.3687

7 Cardiac muscle contraction 0.0621 Retrograde endocannabinoid sig-
naling

0.2708 Retrograde endocannabinoid sig-
naling

0.3687

8 Chagas disease (American try-
panosomiasis)

0.1430 Homologous recombination 0.5698 Synaptic vesicle cycle 0.4752

9 Adipocytokine signaling pathway 0.2790 Thyroid hormone signaling path-
way

0.6203 Epithelial cell signaling in Heli-
cobacter pylori infection

0.4877

10 Epstein-Barr virus infection 0.2790 Vibrio cholerae infection 0.655 Cardiac muscle contraction 0.5672

minP maxP inmex FEM

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Parkinson’s disease 0.0147 Synaptic vesicle cycle 1
Epstein-Barr virus
infection

5.76E-06

2 Alzheimer’s disease 0.0152 Fluid shear stress & atherosclerosis 1 Pancreatic cancer 0.0014
3 Huntington’s disease 0.0162 Herpes simplex infection 1 MAPK signaling pathway 0.0014
4 Vibrio cholerae infection 0.1690 Endocrine and other factor-

regulated calcium reabsorption
1 Apoptosis 0.0021

5 Synaptic vesicle cycle 0.2060 Vibrio cholerae infection 1 Non-small cell lung cancer 0.0021
6 Epithelial cell signaling in Heli-

cobacter pylori infection
0.2060 Epithelial cell signaling in Heli-

cobacter pylori infection
1 Pathways in cancer 0.0024

7 Rheumatoid arthritis 0.3050 Adherens junction 1 Viral carcinogenesis 0.0024
8 Retrograde endocannabinoid sig-

naling
0.5240 Bacterial invasion of epithelial cells 1 FoxO signaling pathway 0.0024

9 Non-alcoholic fatty liver disease
(NAFLD)

0.5240 Gap junction 1 Osteoclast differentiation 0.0026

10 mTOR signaling pathway 0.5240 Rheumatoid arthritis 1 Bacterial invasion of epithelial cells 0.0037

inmex REM MetaIntegrator RankAgg

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Epstein-Barr virus infection 7.37E-06 Parkinson’s disease 0.0024 Huntington’s disease 1.03E-08

2 Leukocyte transendothelial migra-
tion

0.0055 Huntington’s disease 0.0024 Parkinson’s disease 4.79E-07

3 TNF signaling pathway 0.0082 Non-alcoholic fatty liver disease
(NAFLD)

0.0139 Alzheimer’s disease 5.38E-06

4 Kaposi’s sarcoma-associated her-
pesvirus infection

0.0107 Alzheimer’s disease 0.0242 Non-alcoholic fatty liver disease
(NAFLD)

0.0032

5 HTLV-I infection 0.0112 Epithelial cell signaling in Heli-
cobacter pylori infection

0.0853 Cardiac muscle contraction 0.0087

6 Hepatitis C 0.0128 NOD-like receptor signaling path-
way

0.0853 NOD-like receptor signaling path-
way

0.8569

7 Shigellosis 0.0128 Cardiac muscle contraction 0.1127 Prion diseases 1
8 Non-small cell lung cancer 0.0128 Rheumatoid arthritis 0.1642 Cell cycle 1
9 Fc gamma R-mediated phagocyto-

sis
0.0169 Vibrio cholerae infection 0.1839 Central carbon metabolism in can-

cer
1

10 Pathways in cancer 0.0208 Necroptosis 0.2296 HIF-1 signaling pathway 1
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Table S4: AUC-ROC scores on the 6 independent validation datasets related to Alzheimer’s disease, based on the test
signatures identified by different approaches. The results indicate that GSMA achieves the highest median AUC score among
all other competitor approaches.

Datasets GSMA Stouffer Fisher minP maxP inmex FEM inmex REM MetaIntgr RankAgg

1 GSE5281 82.0596 80.0559 81.4228 80.2578 75.6757 80.6772 80.3044 55.7005 81.0500
2 GSE36980 84.5745 70.9441 75.2660 81.2500 64.4947 60.9043 79.7872 59.3085 70.1463
3 GSE28146 84.0909 76.7045 80.1136 72.7273 59.6591 78.4091 75.0000 57.9545 72.1591
4 GSE12685 85.4167 77.0833 79.1667 77.0833 72.9167 75.0000 83.3333 45.8333 70.8333
5 GSE15222 74.1249 75.3737 74.7387 74.2799 68.5586 74.3285 76.5800 72.1712 61.8711
6 GSE39420 85.7143 86.7347 82.6531 84.6939 52.0408 89.7959 87.7551 89.7959 90.8163

Median 84.3327 76.8939 79.64015 78.67055 66.52665 76.70455 80.0458 58.6315 71.4962

Table S5: The results of the enrichment analysis performed on the genes in the global signatures for influenza identified by the
proposed meta-analysis framework (GSMA) and the eight other existing meta-analysis approaches (Stouffer’s method, Fisher’s
method, minP, maxP, inmex FEM, inmex REM, MetaIntegrator, and RankAggreg). The red line represents 0.5% threshold
and the green highlighted cell represents the target pathway. The global signatures identified by the GSMA, Stouffer’s method,
inmex FEM, and inmex REM are significantly enriched in genes associated with the target pathway. The signatures produced
by the other five existing methods are not enriched in genes associated with the target pathway to a significant level Interestingly,
the other significant pathways reported by the enrichment analysis performed on the signatures identified by GSMA, such as
Herpes simplex infection, Staphylococcus aureus infection and Leishmaniasis, are also known to have mechanisms similar to
that of influenza[14, 15, 16, 17, 18].

GSMA Stouffer Fisher

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Herpes simplex infection 5.01E-07 Staphylococcus aureus infection 5.92E-06 Staphylococcus aureus infection 4.28E-05
2 Influenza A 8.42E-06 Herpes simplex infection 7.19E-06 Herpes simplex infection 1.18E-04
3 Staphylococcus aureus infection 1.61E-05 Th1 and Th2 cell differentiation 1.56E-04 Leishmaniasis 0.0014

4 Leishmaniasis 0.0012 Leishmaniasis 2.09E-04 Systemic lupus erythematosus 0.0066

5 Systemic lupus erythematosus 0.0057 Th17 cell differentiation 3.31E-04 Influenza A 0.0066
6 Measles 0.0057 Asthma 0.0014 Tuberculosis 0.0071
7 Tuberculosis 0.0069 Systemic lupus erythematosus 0.0014 Toxoplasmosis 0.0091
8 Asthma 0.0115 Influenza A 0.0017 Phagosome 0.0091
9 Viral myocarditis 0.0142 Tuberculosis 0.0019 Asthma 0.0097
10 HTLV-I infection 0.0157 Toxoplasmosis 0.0019 Rheumatoid arthritis 0.0121

minP maxP inmex FEM

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Herpes simplex infection 0.0412 Cellular senescence 0.0901
Herpes simplex
infection

2.85E-06

2 Systemic lupus erythematosus 0.0412 Complement and coagulation cas-
cades

0.0901 Cell cycle 2.89E-06

3 Staphylococcus aureus infection 0.0437 Transcriptional misreg. in cancer 0.0978 Influenza A 1.02E-05
4 Viral myocarditis 0.0437 Staphylococcus aureus infection 0.0978 Measles 2.01E-05
5 Inflammatory bowel disease (IBD) 0.0437 Pertussis 0.1992 Viral carcinogenesis 5.09E-05
6 Antifolate resistance 0.0437 Influenza A 0.1992 Epstein-Barr virus infection 6.93E-05
7 Asthma 0.0437 Bladder cancer 0.1993 Cellular senescence 0.0002
8 Leishmaniasis 0.0537 Herpes simplex infection 0.1993 Th1 and Th2 cell differentiation 0.0008
9 Allograft rejection 0.0615 Measles 0.1993 Hepatitis B 0.0008
10 Graft-versus-host disease 0.0689 Estrogen signaling pathway 0.2862 p53 signaling pathway 0.0008

inmex REM MetaIntegrator RankAgg

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Herpes simplex infection 0.0001 Central carbon metabolism in can-
cer

0.5332 Systemic lupus erythematosus 0.0281

2 Influenza A 0.0028 Pertussis 0.5332 Asthma 0.0867
3 Viral carcinogenesis 0.0043 NOD-like receptor signaling path-

way
0.5332 Non-alcoholic fatty liver disease

(NAFLD)
0.0867

4 Measles 0.0043 Autophagy - animal 0.7784 Alzheimer’s disease 0.0867
5 NOD-like receptor signaling path-

way
0.0043 Apoptosis 0.7784 Influenza A 0.0867

6 Non-small cell lung cancer 0.0173 Legionellosis 0.7784 Parkinson’s disease 0.0867
7 TNF signaling pathway 0.0200 Cytosolic DNA-sensing pathway 0.7784 Inflammatory bowel disease (IBD) 0.0867
8 Hepatitis B 0.0207 Renal cell carcinoma 0.7784 Graft-versus-host disease 0.1006
9 Kaposi’s sarcoma-associated her-

pesvirus infection
0.0221 Prolactin signaling pathway 0.7784 Phagosome 0.1006

10 Epstein-Barr virus infection 0.0237 B cell receptor signaling pathway 0.7784 Staphylococcus aureus infection 0.1006
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Table S6: AUC-ROC scores on the 6 independent validation datasets related to influenza, based on the test signatures identified
by different approaches. The results indicate that GSMA achieves the highest median AUC score among all other competitor
approaches.

Datasets GSMA Stouffer Fisher minP maxP inmex FEM inmex REM MetaIntgr RankAgg

1 GSE29366 97.3684 93.4211 89.0351 90.7895 93.4211 93.4211 93.4211 89.9123 92.9825
2 GSE34205 91.8831 81.1688 79.3831 86.0390 90.5844 86.8506 86.2013 81.1688 92.6948
3 GSE30550 91.1765 84.9265 80.1471 79.7794 77.2059 87.8676 88.6029 87.8676 71.6912
4 GSE38900 72.0833 54.7917 42.9167 55.2083 62.7083 57.7083 55.8333 72.5000 64.1667
5 GSE20346 83.8057 55.2632 57.8947 58.7045 56.2753 59.9190 60.1215 68.2186 96.9636
6 GSE82050 84.7222 81.9444 73.0556 85.5556 82.5000 95.5556 72.7778 88.8889 65.5556

Median 87.9493 81.5566 76.2193 82.6675 79.8529 87.3591 79.4895 84.5182 82.1930
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Perturbation -0.44 0.0

(c) Advaita Corporation 2018

Figure S4: Alzheimer’s disease pathway generated with iPathwayGuide [19, 20] using the global signature identified by the
proposed framework - GSMA. Here the blue colors represent the negatively perturbed genes. The majority of the global
signature genes present in the Alzheimer’s disease pathway are part of the mitochondrial dysfunction process, which is one of
the key factors for Alzheimer’s disease progression [21, 22].
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Figure S5: AUC plots across the 6 independent validation datasets related to influenza based on the test signature, identified
by the proposed meta analysis framework - GSMA and eight other existing meta-analysis approaches - Stouffer’s method,
Fisher’s method, minP, maxP, inmex FEM, inmex REM, MetaIntegrator, and RankAggreg. The signature proposed by GSMA
and RankAggreg achieved highest AUC-ROC scores in 2 out of 6 independent datasets. In addition, Table S6 indicates that
GSMA achieves the highest median AUC score among all other competitor approaches.
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Perturbation -2.7 4.3

(c) Advaita Corporation 2018

Figure S6: Influenza A pathway generated with iPathwayGuide [19, 20] using the global signature identified by the proposed
framework - GSMA. Here the red colors represent the positively perturbed genes whereas the blue colors represent the negatively
perturbed genes. The majority of the positively perturbed genes are part coherent chains of perturbation propagation which
can be thought of as putative mechanisms.
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Table S7: The top 20 pathways that are enriched with the global signature identified by GSMA, and the top 20 pathways
that are identified by BLMA, using Alzheimer’s disease datasets. The red line represents 0.5% threshold and the green
highlighted cell represents the target pathway. The target pathway is significantly enriched and ranked at the top using the
global signature identified by GSMA. On the other hand, BLMA is not able to identify the target pathway within the top 20
pathways. This shows that the global signature identified by GSMA is more powerful than BLMA, in terms of identifying the
putative mechanism of a disease.

GSMA BLMA

Pathway p.fdr Pathway p.fdr

1 Alzheimer’s disease 2.24E-07
Retrograde
endocannabinoid signaling

1.41E-06

2 Parkinson’s disease 2.24E-07 Phagosome 9.18E-06
3 Non-alcoholic fatty liver disease

(NAFLD)
3.63E-06 Synaptic vesicle cycle 0.0007

4 Huntington’s disease 3.12E-05 Fc gamma R-mediated phagocy-
tosis

0.0010

5 Retrograde endocannabinoid sig-
naling

0.0028 HIF-1 signaling pathway 0.0010

6 Epithelial cell signaling in Heli-
cobacter pylori infection

0.0435 Th1 and Th2 cell differentiation 0.0050

7 Cardiac muscle contraction 0.0621 Tuberculosis 0.1508
8 Chagas disease (American try-

panosomiasis)
0.1433 Estrogen signaling pathway 0.1508

9 Adipocytokine signaling pathway 0.2786 Leukocyte transendothelial mi-
gration

0.1508

10 Epstein-Barr virus infection 0.2786 Leishmaniasis 0.1508
11 Rheumatoid arthritis 0.4724 Osteoclast differentiation 0.1508

12 Necroptosis 0.4744
Kaposi’s sarcoma-associated herpesvirus
infection

0.1508

13 NOD-like receptor signaling
pathway

0.4744 Rheumatoid arthritis 0.1508

14 HIF-1 signaling pathway 0.4744 B cell receptor signaling pathway 0.1618
15 Th17 cell differentiation 0.4905 Vibrio cholerae infection 0.1855
16 TNF signaling pathway 0.4905 Amyotrophic lateral sclerosis

(ALS)
0.1855

17 Herpes simplex infection 0.4905 Th17 cell differentiation 0.1910
18 Toxoplasmosis 0.4905 Cardiac muscle contraction 0.1930
19 Vibrio cholerae infection 0.4905 Salmonella infection 0.1930

20 cAMP signaling pathway 0.4905
Epithelial cell signaling in Helicobacter
pylori infection

0.1989

Table S8: The top 20 pathways that are enriched with the global signature identified by GSMA, and the top 20 pathways
that are identified by BLMA, using influenza datasets. The red line represents 0.5% threshold and the green highlighted cell
represents the target pathway. The target pathway is ranked within the top two significant pathways in both cases. The list of
significantly impacted pathways identified by BLMA include several false positive pathways. In contrast, the list of pathways
that are significantly enriched with the global signature identified by GSMA is much more precise.

GSMA BLMA

Pathway p.fdr Pathway p.fdr

1
Herpes simplex
infection

5.01E-07
Staphylococcus aureus
infection

2.60E-14

2 Influenza A 8.42E-06 Influenza A 4.65E-13

3 Staphylococcus aureus infection 1.61E-05
Intestinal immune network for IgA
production

1.88E-11

4 Leishmaniasis 0.0012 Phagosome 9.81E-06

5 Systemic lupus erythematosus 0.0057 Systemic lupus erythematosus 1.27E-05
6 Measles 0.0057 Leishmaniasis 6.04E-05
7 Tuberculosis 0.0069 Transcriptional misregulation in

cancer
0.0001

8 Asthma 0.0115 Acute myeloid leukemia 0.0001
9 Viral myocarditis 0.0142 Measles 0.0002
10 HTLV-I infection 0.0157 NOD-like receptor signaling

pathway
0.0003

11 Allograft rejection 0.0185 Graft-versus-host disease 0.0004
12 Hepatitis B 0.0217 Herpes simplex infection 0.0010
13 Transcriptional misregulation in

cancer
0.0217 Epstein-Barr virus infection 0.0012

14 Cell adhesion molecules (CAMs) 0.0217 Viral carcinogenesis 0.0012
15 Th17 cell differentiation 0.0217 Viral myocarditis 0.0013
16 Pertussis 0.0244 Allograft rejection 0.0014
17 Phagosome 0.0244 Asthma 0.0028
18 Complement and coagulation

cascades
0.0265 Type I diabetes mellitus 0.0031

19
Intestinal immune network for IgA
production

0.0278 Antigen processing and presenta-
tion

0.0058

20 Cellular senescence 0.0278 Autoimmune thyroid disease 0.0081
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