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Supplementary methods 

1. Initialization of actual time courses of new cases and current infections 

The proposed framework provides estimates of time courses of actual new cases and 
current infections based on daily reported counts of confirmed positive tests and deaths in a 
particular region and published estimates of key pandemic parameters such as the infection-
fatality-rate (IFR) and the mean duration from infection to death and recovery. For the purpose 
of this study data of daily confirmed cases and deaths for countries and U.S. states were taken 
from the repository by the Center for Systems Science and Engineering (CSSE) at Johns 
Hopkins University (1), and the COVID Tracking Project (2), respectively. Upon availability of 
other more granular data sets, the proposed framework can also be applied to smaller 
populations. The data of the country population as of July 2019 was from the United Nations (3), 
and the population data for U.S. states as July 2019 was from the U.S. Census Bureau (4). 

To begin with, the counts of daily confirmed cases and deaths were averaged in a 7-day 
rolling window to remove weekend effects, which tend to yield systematic drops in the Saturday 
and Sunday values. To obtain initial guesses on actual counts of daily new cases and 
recoveries, we first combined the daily death counts and the IFR estimate (𝐼𝐹𝑅0 = 0.66%) that 

was presented by Verity et al. (5) as follows: Let 𝐴𝐶𝑡, 𝐶𝐶𝑡 , 𝐼𝑡, 𝐷𝑡, 𝑅𝑡 denote the number of actual 
new cases, confirmed new cases, currently infected cases, new deaths, and new recoveries on 
day t, respectively. Using the mean duration estimates (5), we assumed that one new death on 

day t implied 1/𝐼𝐹𝑅0 new actual cases on day (𝑡 − 𝑑1), 𝑑1 = 18, and (
1

𝐼𝐹𝑅0
− 1) new recoveries 

on day (𝑡 + 𝑑2), 𝑑2 = 7. From this follows 

𝐴𝐶𝑡−𝑑1
(0)

=
1

𝐼𝐹𝑅0
𝐷𝑡,  𝑅𝑡+𝑑2

(0) = (
1

𝐼𝐹𝑅0
− 1)𝐷𝑡,  

𝐼𝑡
(0) = ∑ 𝐴𝐶𝑖

(0)𝑡
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𝑡
𝑖=1 −∑ 𝑅𝑖

(0)𝑡
𝑖=1 , for 𝑡 = 1, 2, … , 𝑇,  

where 𝐼𝑡
(0)

 is the derived initial estimate of the currently infected cases on day t. These initial 

time courses led to two other initial estimates for daily ascertainment rates (𝐴𝑡), and daily ratios 
of the confirmed new cases to currently infected cases, referred to as detected transmission 
rates (𝐷𝑇𝑡): 

𝐴𝑡
(0)

=
𝐶𝐶𝑡

𝐴𝐶𝑡
(0),  𝐷𝑇𝑡

(0)
=

𝐶𝐶𝑡

𝐼𝑡−1
(0) . 

Both ratio estimates displayed a common increasing trend in many countries, probably 
indicating that the under-ascertainment was gradually improving as the testing capacities were 
increasing. The common trend could be exploited to obtain better estimates of the daily 
ascertainment rates. 

 

2. Expectation-maximization iterations to update latent time courses 

An expectation-maximization (EM) algorithm was implemented to update the latent time 
courses involved in actual infections. To first extract the temporal trends of the estimated daily 
ascertainment rates and detected transmission rates, the two rate time courses were spline-
smoothed. Since the noise-levels around the temporal trends were different depending on 
regional population sizes, infection dynamics, and test reporting schemes, we applied multiple 
levels of smoothness and selected the optimal level after the complete EM computation as 
discussed below. For smoothing, we applied the R (6) function smooth.spline(). Since the 
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smoothed estimates of the detected transmission rates and ascertainment rates 

(𝐷𝑇𝑡
(0)
(ℎ), 𝐴𝑡

(0)
(ℎ), ℎ is a smoothness parameter) possessed a common trend, the estimated 

ascertainment rates could be improved by augmenting the information from 𝐷𝑇𝑡
(0)
(ℎ). The 

following regression model was applied to find a functional relation from 𝐷𝑇𝑡
(0)
(ℎ) to 𝐴𝑡

(0)
(ℎ): 

𝐴𝑡
(0)
(ℎ) = 𝛽0 + 𝛽1𝐷𝑇𝑡

(0)
(ℎ) + 𝛽2 {𝐷𝑇𝑡

(0)(ℎ)}
2
+ 𝜖𝑡,  for 𝑡 = 1, 2, … , 𝑇,  (Eq. 1) 

where the regression coefficients were estimated with constraints of 𝛽1, 𝛽2 ≥ 0 using an R 

function penalized(). Then, the estimated coefficients (𝛽̂𝑗
(0)
, 𝑗 = 0, 1, 2) were used to update the 

initial ascertainment rates: 

𝐴𝑡
(1) = 𝛽̂0

(0)
+ 𝛽̂1

(0)
𝐷𝑇𝑡

(0)(ℎ) + 𝛽̂2
(0)

{𝐷𝑇𝑡
(0)(ℎ)}

2
.     (Eq. 2) 

The above EM steps enabled iterative updates of the latent time courses on actual infections. 

For each smoothness parameter ℎ, the following EM algorithm was applied to obtain converged 
estimates (S1 Fig).  

Algorithm 1. EM iterations to update the latent time courses 

Input: Daily counts of confirmed new cases and deaths (𝐶𝐶𝑡 , 𝐷𝑡). Initial time courses of actual 
new cases, currently infected cases, new recoveries, ascertainment rates, and detected 

transmission rates (𝐴𝐶𝑡
(0)
, 𝐼𝑡
(0)
, 𝑅𝑡

(0)
, 𝐴𝑡

(0)
, 𝐷𝑇𝑡

(0)
). 

Output: Converged 𝐼𝑡
𝑐 , 𝐴𝐶𝑡

𝑐 , 𝐴𝑡
𝑐 , 𝐷𝑇𝑡

𝑐. 
 

1: while 𝐼𝑡
(𝑘)

 did not converge do 

2:     Apply spline smoothing to obtain 𝐷𝑇𝑡
(𝑘)(ℎ), 𝐴𝑡

(𝑘)(ℎ).  

3:     (M-step) Update the regression coefficients, 𝛽̂𝑗
(𝑘)
, 𝑗 = 0, 1, 2 as in (Eq. 1). 

4:     (E-step) Update daily ascertainment rates, 𝐴𝑡
(𝑘+1)

 as in (Eq. 2). 

5:     Update actual new case counts by 𝐴𝐶𝑡
(𝑘+1) = 𝐶𝐶𝑡 𝐴𝑡

(𝑘+1)⁄ . 

6:     Update current infection counts by 𝐼𝑡
(𝑘+1) = ∑ 𝐴𝐶𝑖

(𝑘+1)𝑡
𝑖=1 − ∑ 𝐷𝑖

𝑡
𝑖=1 − ∑ 𝑅𝑖

(0)𝑡
𝑖=1 . 

7:     Update detected transmission rates by 𝐷𝑇𝑡
(𝑘+1)

= 𝐶𝐶𝑡 𝐼𝑡−1
(𝑘+1)⁄ . 

8: end while 

 

3. Optimization toward the smallest variation of daily death rates 

After completing EM iterations with multiple smoothness parameters (ℎ), the converged 
time courses of currently infected cases were assessed by using corresponding daily rates of 
deaths among the infected cases: 

𝐷𝑅𝑡(ℎ) =
𝐷𝑡

𝐼𝑡−1
𝑐 (ℎ)

. 

The framework selected the smoothness parameter value (ℎ̂) and the final estimate of current 

infections (𝐼𝑡
𝑐(ℎ̂)) that produced the smallest coefficient of variation (CV) of 𝐷𝑅𝑡(ℎ) over time. 

Underlying this choice is the assumption that increasing variation in daily death rates would be 
less plausible.  

To obtain 95%-confidence intervals (CIs) of the current infection estimates, the same 
initialization and EM iterations were applied using the lower/upper limits of the IFR estimate and 
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the selected smoothness (ℎ̂). The workflow of the initialization, EM iterations, and calculating 
CIs are illustrated with the case of the U.S. time courses (S1 Fig).  

 

4. Data and code availability 

The estimates of actual new infections and currently infected cases have been updated 
daily for 50 countries with the most confirmed cases and 50 U.S. states since August 12, 2020, 
in the GitHub repository (https://github.com/JungsikNoh/COVID19_Estimated-Size-of-Infectious-
Population). All code, daily updated estimates, and visualizations are publicly available in this 
online repository.  
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