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Figure S1: Locations of five major sewage treatment plants in Qatar 
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Table S1 

Human RNAP internal control levels across different WWTPs 

8/7/2020 
Ct RNAP 

Assay 

Ct N1 

Assay 

Ct N2 

Assay 

Avg 

(N1,N2) 

Normalizing 

factor 

N1/N2, RNAP 

Normalized 

WWTP 1 45 30.2 30.1 30.15 1.410658307 21.373 

WWTP 2 35.6 29.9 30.5 30.2 1.115987461 27.06123596 

WWTP 3 35.5 29.4 29.8 29.6 1.112852665 26.59830986 

WWTP 4 33.4 27.5 27.9 27.7 1.047021944 26.45598802 

WWTP 5 34.2 28.2 28.5 28.35 1.072100313 26.44342105 

 

 

12/7/2020 Ct RNAP 

Assay 

Ct N1 

Assay 

Ct N2 

Assay 

Avg 

(N1,N2) 

Normalizing 

factor 

N1/N2, RNAP 

Normalized 

WWTP 1 35.7 29.9 31.1 30.5 1.119122257 27.2535014 

WWTP 2 37 29.8 30 29.9 1.159874608 25.77864865 

WWTP 3 35.2 29.6 30.1 29.85 1.103448276 27.0515625 

WWTP 4 31.9 29.6 28.5 29.05 1 29.05 

WWTP 5 34 28.6 29.7 29.15 1.065830721 27.34955882 

 

 

19/7/2020 Ct RNAP 

Assay 

Ct N1 

Assay 

Ct N2 

Assay 

Avg 

(N1,N2) 

Normalizing 

factor 

N1/N2, RNAP 

Normalized 

WWTP 1 36.113243 31.6 32.1 31.85 1.132076583 28.25984784 

WWTP 2 34.205288 30.8 31.1 30.95 1.072266082 28.64689538 

WWTP 3 33.64798 30.2 30.7 30.45 1.054795611 28.76023799 

WWTP 4 32.25049 29.6 30.5 30.05 1.010987147 28.43058114 

WWTP 5 34.05516 29.9 30.6 30.25 1.067559875 28.93299232 

 

 

26/7/2020 Ct RNAP 

Assay 

Ct N1 

Assay 

Ct N2 

Assay 

Avg 

(N1,N2) 

Normalizing 

factor 

N1/N2, RNAP 

Normalized 

WWTP 1 45 32.4 33.3 32.85 1.410658307 23.287 

WWTP 2 35.537243 30.7 31.9 31.3 1.114020157 28.09643956 

WWTP 3 35.80509 33.2 33.2 33.2 1.122416614 29.57903471 

WWTP 4 34.03934 31.5 31.7 31.6 1.06706395 29.61397019 

WWTP 5 32.37331 30.6 30.9 30.75 1.014837304 30.3004234 
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Table S2 

Estimated Infected Population 

Date 

 

WWTP Mean Flow,  

x 106 L/day 

Mean 

CNH4, 

mg/L 

Estimated Total 

Population, P 

N1 N2 

CRNA  

copy/L 

Infected 

Population 

CRNA  

copy/L 

Infected 

Population 

2
1
/6

/2
0
2
0
 WWTP 1 145.0 12.5 302131 42268 10855 ± 2253 36556 9388 ± 1977 

WWTP 2 283.4 20.1 949293 542056 271997 ± 51050 245184 123030 ± 23220 

WWTP 3 41.7 33.9 235763 161877 11961 ± 2461 293075 21656 ± 4277 

8
/7

/2
0
2
0
 

WWTP 1 133.9 9.9 221016 53736 12746 ± 2193 85397 20256 ± 5329 

WWTP 2 256.6 19.6 838067 74835 33997 ± 2917 79202 35981 ± 6955 

WWTP 3 43.9 32 234267 91947 7152 ± 1339 120100 9342 ± 1968 

WWTP 4 62.3 21.5 223392 452188 49919 ± 14405 485050 53547 ± 18016 

WWTP 5 241.5 21.2 853300 242727 103800 ± 11533 238948 102184 ± 14160 

1
2

/7
/2

0
2

0
 

WWTP 1 132.1 14.7 323650 60333 14113 ± 4181 58933 13786 ± 1744 

WWTP 2 286.3 19.1 911423 74835 37941 ± 3195 100652 51030 ± 5424 

WWTP 3 44.0 33.4 244894 82904 6458 ± 1026 94840 7388 ± 1085 

WWTP 4 61.8 32.6 335742 125170 13696 ± 5827 206282 22572 ± 8539 

WWTP 5 232.1 24.0 928400 140660 57811 ± 19221 123779 50873 ± 3945 

1
9

/7
/2

0
2

0
 

WWTP 1 136.7 11.6 264233 22620 5474 ± 999 24052 5821 ± 1193 

WWTP 2 282.6 19.2 904397 25793 12908 ± 2841 35810 17922 ± 5968 

WWTP 3 44.1 30.6 225058 37208 2908 ± 866 43569 3405 ± 986 

WWTP 4 59.3 28.1 277591 103239 10836 ± 1817 108080 11344 ± 2300 

WWTP 5 199.8 19.8 659340 85943 30407 ± 5609 82468 29177 ± 3870 

2
6
/7

/2
0
2
0
 

WWTP 1 131.5 12.3 269649 13499 3144 ± 790 14980 3489 ± 857 

WWTP 2 287.0 19.0 908928 42268 21483 ± 4244 34445 17507 ± 3500 

WWTP 3 44.3 29.5 217862 7889 619 ± 261 15898 1247 ± 406 

WWTP 4 63.5 37.7 399287 24703 2780 ± 719 38796 4366 ± 1026 

WWTP 5 217.0 16.7 603983 45203 17370 ± 3474 62434 23991 ± 4713 

1
2

/8
/2

0
2
0
 

WWTP 1 140.7 14.3 335402 35737 8906 ± 1886 47774 11905 ± 2450 

WWTP 2 276.4 20.4 939638 42268 20685 ± 4095 57106 27946 ± 5453 

WWTP 3 44.8 25.6 190942 24703 1958 ± 554 30582 2423 ± 648 

WWTP 4 62.5 29.2 303987 48342 5347 ± 1213 52232 5777 ± 1295 

WWTP 5 217.3 19.9 720712 31246 12023 ± 2472 39967 15379 ± 3101 
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1
6
/8

/2
0
2
0
 

WWTP 1 142.1 13.3 314926 28253 7108 ± 1547 33436 8412 ± 1793 

WWTP 2 287.8 20.3 973710 46747 23823 ± 4682 57106 29103 ± 5669 

WWTP 3 47.0 24.2 189668 49993 4163 ± 987 60605 5047 ± 1156 

WWTP 4 60.9 29 294466 35737 3855 ± 928 52232 5635 ± 1268 

WWTP 5 223.0 19.7 732183 97835 38633 ± 7451 103507 40873 ± 7870 

2
3
/8

/2
0
2
0
 

WWTP 1 155.5 15.0 388763 20196 5561 ± 1254 27153 7477 ± 1617 

WWTP 2 295.9 19.7 971594 24703 12944 ± 2645 46374 24300 ± 4771 

WWTP 3 47.0 27.2 213180 30215 2516 ± 667 55432 4616 ± 1074 

WWTP 4 58.0 31 299832 34557 3551 ± 869 34445 3540 ± 867 

WWTP 5 230.2 19.4 744313 59130 24103 ± 4734 84056 34264 ± 6634 

3
0

/8
/2

0
2

0
 

WWTP 1 136.5 16.0 364115 14199 3433 ± 846 34779 8409 ± 1793 

WWTP 2 286.2 19.8 944605 13313 6748 ± 1479 23884 12106 ± 2488 

WWTP 3 46.7 23.4 181997 55563 4591 ± 1069 66024 5456 ± 1234 

WWTP 4 62.7 32.4 338461 34581 3838 ± 925 42096 4672 ± 1085 

WWTP 5 210.3 20.1 704505 27573 10268 ± 2143 48155 17933 ± 3580 
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Table S3 

Estimation of total infected population  

Date Corrected  22 days of 

Cumulative Daily Positive 

Cases* 

Total Estimated** 

Infected Population 

(N1) 

21/6/2020 308,190 542,313 ± 51,159 

8/7/2020 191,990 239,646 ± 18,858 

12/7/2020 167,450 129,622  ± 20,788 

19/7/2020 147,600 73,401 ± 6,677 

26/7/2020 127,080 51,752 ± 5,594 

12/8/2020 129,810 53,731 ± 5,312 

16/8/2020 131,090 84,730 ± 9,037 

23/8/2020 117,690 50,871 ± 5,673 

30/8/2020 114,470 31,181± 3,081 

* Corrected based on 10% diagnosis ratio  

** Mathematical model calculation based on N1 assay 
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ST 1: Modeling Approach 

 

As mentioned in the main text the central limit theorem formula explained below gave 

reliable results for N and N for most of our data sets. In other words, the Monte-Carlo-Bayesian 

calculation explained in the following section were not required for most of the data sets.  

However, because the central limit theorem formula is derived by following the steps of the 

Bayesian probability theory calculation, we present this calculation first, and we then present the 

derivation of the central limit theorem formula in the next section. 

 

ST 1.1 Monte Carlo-Bayesian Approach 

The calculation to infer the number of infected individuals from the measured RNA 

concentration is performed as follows: 

In the main text, we discussed how Equation (1) could be used to give a good estimate for the 

infected population (N) from the measured RNA concentration CRNA. However, there is a 

conceptual complication with this approach. Since there are person-to-person variations in the 

parameters  and  each individual person among the N people that form the infected 

population has his/her individual values of  and . As a result, it is conceptually more natural 

and practically easier to calculate CRNA for a given value of N rather than calculate N for a given 

value of CRNA. When calculating CRNA from N, the person-to-person variations can be introduced 

straightforwardly and with rigorous mathematical justification. We can use random-variable 

generation tools to generate a large set of  and  values and then, assuming that N is known, 

choose N individual values of  and to calculate CRNA. By repeating this random-variable 

based calculation many times, we can obtain the probability distribution for CRNA values. In 

reality, CRNA is measured, and the task is to infer N, or more accurately the probability 

distribution for possible values of N that could produce the measured value of CRNA. The 

Bayesian approach reconciles these two opposing situations, what can be calculated easily and 

what needs to be calculated in reality. In this approach we first calculate CRNA probability 

distributions for a broad range of N values and then use Bayesian analysis to extract a probability 

distribution for N given a certain value of CRNA, which will be set to the actually measured value. 

As such, the Bayesian approach can be thought of as a form of reverse engineering. 

To start the calculation, we first determine the range of N values that we need to consider. 

For this purpose, we use an approximation based on the central limit theorem, which states that 

for very large values of N, variations in the different variables can be ignored and CRNA will be 

determined by the mean values of  and F. We can therefore obtain the initial estimate for N 

using the formula: 

𝑁𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝐶𝑅𝑁𝐴𝐹̅

𝛼̅𝛽̅(1 − 𝛾̅)
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Where the lines above the symbols indicate that we take the mean value of the variable. As will 

be explained below, this estimate might or might not be accurate depending on the widths of the 

different probability distributions involved. However, this estimate should generally give us the 

overall scale of N, and hence it helps us determine the overall scale of values that we need to 

consider in the Monte-Carlo calculations. For example, we can set the range of N values to be 

from zero to 2Nestimate. We could then use the values 0.1×Nestimate, 0.2×Nestimate, 0.3×Nestimate, …, 

2×Nestimate as trial values of N in the calculation described below. 

Setting N to a certain value means that we are assuming a known number of infected individuals, 

which is an assumption that we make in this intermediate step to be used later for inferring N 

from CRNA. For each value of N, considering that we have a population with N infected 

individuals, CRNA is given by 

𝐶𝑅𝑁𝐴 =
∑ 𝛼𝑖𝛽𝑖(1 − 𝛾𝑖)
𝑁
𝑖=1

𝐹
 

The index i is a counter for the number of infected individuals. Each individual has 

his/her own values of and. Therefore, to generate a Monte-Carlo data point, N different 

values for these variables are generated randomly. The whole population produces a single value 

F, which also contains some randomness. Therefore, one value for F is generated randomly for 

one Monte-Carlo data point. If we repeat the calculation of CRNA many times (M times [the 

number of Monte-Carlo samples]), we will obtain M different values. These values give the 

probability distribution of CRNA, e.g. by plotting a histogram from them, for a given value of N. 

For example, by dividing the range of CRNA values from zero to infinity into intervals of width , 

the probability of getting a value of CRNA in any of the intervals can be obtained by counting the 

number of Monte-Carlo data points in that range and divide it by the total number of Monte-

Carlo data points. We emphasize again that the calculation of many different values of CRNA is 

needed in this first step and that in the next step of the calculation we will use only the actual, 

measured value of CRNA. 

The calculation described so far results in a set of probability distributions: for each value 

of N, we obtain a distribution for CRNA values. Once we have all the probability distributions, we 

can use Bayes’ rule to obtain a probability distribution for N given a certain measured value of 

CRNA. Ignoring uncertainty in CRNA, we could choose an interval range  as described above and 

say that the probability P(CRNA|N) of obtaining the value CRNA (up to the uncertainty ) given a 

value N is calculated as explained above: the number of Monte-Carlo data points in the interval 

divided by the total number of Monte-Carlo data points for that value of N. Bayes’ rule can now 

be applied to find the probability P(N|CRNA) that the number of infected individuals is N given 

that the measured RNA concentration is CRNA: 

𝑃(𝑁|𝐶𝑅𝑁𝐴) =
𝑃(𝐶𝑅𝑁𝐴|𝑁)𝑃(𝑁)

𝑃(𝐶𝑅𝑁𝐴)
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If we assume that we do not have any additional information apart from CRNA to favor any value 

of N, then P(N) on the right-hand side is a constant. Since we know the measured value of CRNA, 

then there is no uncertainty in its value and the denominator is 1. Bayes’ rule then reduces to 

𝑃(𝑁|𝐶𝑅𝑁𝐴) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑃(𝐶𝑅𝑁𝐴|𝑁) 

The right-hand side, including the constant, can be determined as follows. For each value 

of N, we want to determine how many of the Monte-Carlo samples have a CRNA value that 

matches the experimentally measured value. For this purpose, we choose a value of acceptable 

deviation and count how many Monte-Carlo samples are within this distance of the 

experimentally measured value. This way we obtain a number of counts for each value of N. 

This number of counts is proportional to 𝑃(𝐶𝑅𝑁𝐴|𝑁), and therefore 𝑃(𝑁|𝐶𝑅𝑁𝐴) will also be 

proportional to this number of counts. To obtain a normalized probability distribution, we add up 

all the counts (for all values of N) and divide all the numbers of counted samples by this total 

number. Thus for every value of N we obtain a probability. This is the probability that the 

number of infected individuals is the corresponding value of N. (If the distance between N values 

is N, the probability of the value N is actually the probability that N is between N-N/2 and 

N+N/2.) 

If there is an uncertainty CRNA in the measurement of CRNA, one can use a somewhat different 

formula for extracting the probability 𝑃(𝑁|𝐶𝑅𝑁𝐴) from the Monte-Carlo CRNA values. One can 

now take a sum over all the obtained values of CRNA: 

𝑃(𝑁|𝐶𝑅𝑁𝐴) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ×∑𝑒
−
(𝐶𝑅𝑁𝐴,𝑖−𝐶𝑅𝑁𝐴,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

2

2𝛿𝐶𝑅𝑁𝐴
2

𝑀

𝑖=1

 

 

The values of CRNA in the Monte-Carlo ensemble that are very close to the measured 

value will each contribute almost 1 to the sum. Values that are within the measurement 

uncertainty will also make non-negligible contributions. Values in the ensemble that are very far 

from the measured values make very small contributions and barely affect the sum. Once the 

sum is obtained for each value of N, the constant is determined by the probability normalization 

condition, as explained above. 

 

ST 1.2 Central Limit Theorem 

Let us go back and see if we can use the central limit theorem to avoid the long Monte-

Carlo calculation described above. Specifically, let us assume that the central limit theorem gives 

a good approximation not only for the mean values but also for the probability distributions for 

CRNA for any given value of N. This approximation should become good for sufficiently large 

values of N. In fact, according to the central limit theorem, for sufficiently large N, all the 

variables related to this large population should follow normal distributions, which then 
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simplifies all subsequent calculations. With this assumption, we can proceed by saying that the 

total number of RNA copies MRNA will have a mean value 

𝑀̅𝑅𝑁𝐴 = 𝑁𝛼̅𝛽̅(1 − 𝛾̅) 

And variance 

𝛿𝑀𝑅𝑁𝐴
2 = 𝑁((𝛼̅2 + 𝛿𝛼2)(𝛽̅2 + 𝛿𝛽2)((1 − 𝛾̅)2 + 𝛿𝛾2) − (𝛼̅𝛽̅(1 − 𝛾̅))

2

) 

The RNA concentration CRNA will also follow a normal distribution that is approximately 

centered at 

𝐶𝑅𝑁𝐴 =
𝑀̅𝑅𝑁𝐴

𝐹̅
=
𝑁𝛼̅𝛽̅(1 − 𝛾̅)

𝐹̅
 

 And having a variance that is approximately given by: 

𝛿𝐶𝑅𝑁𝐴
2 = (𝑀̅𝑅𝑁𝐴

2 + 𝛿𝑀𝑅𝑁𝐴
2 ) (

1

𝐹̅2
+
𝛿𝐹2

𝐹̅4
) −

𝑀̅𝑅𝑁𝐴
2

𝐹̅2
 

The above formula for 𝛿𝐶𝑅𝑁𝐴
2  can be thought of as the intrinsic variance (𝛿𝐶𝑅𝑁𝐴

2 )𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐  in 

𝐶𝑅𝑁𝐴 . Another possible source for variations in 𝐶𝑅𝑁𝐴  is the measurement uncertainty or 

measurement error: if the measurement of 𝐶𝑅𝑁𝐴  has uncertainty characterized with the standard 

deviation (𝛿𝐶𝑅𝑁𝐴
2 )𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 , the total variance of 𝐶𝑅𝑁𝐴  will be given by: 

(𝛿𝐶𝑅𝑁𝐴
2 )𝑇𝑜𝑡𝑎𝑙 = (𝛿𝐶𝑅𝑁𝐴

2 )𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + (𝛿𝐶𝑅𝑁𝐴
2 )𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡  

Having obtained the mean values and variances assuming a fixed value of N, we can now use 

these values to estimate the standard deviation in N when Bayes’ rule is applied to obtain N. 

When we perform this inversion procedure to estimate N, we obtain a normal distribution whose 

standard deviation is given by 

𝛿𝑁 =
𝛿𝐶𝑅𝑁𝐴𝐹̅

𝛼̅𝛽̅(1 − 𝛾̅)
 

This is the central limit theorem formula for the standard deviation in N. Although 

evaluating it requires going through the few steps of calculating different mean values and 

standard deviations, these calculations are all straightforward algebraic calculations and do not 

require any random-variable sampling as in the Monte-Carlo approach described in the previous 

section. As a result, the central limit formula takes essentially no computational time, whereas 

the Monte-Carlo approach becomes increasingly time consuming as the size of the population N 

increases. 

 


