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Supplementary Note 1. The across-sex design of generating two sets of local gEBV for 

markers prioritized in bulls and cows. 

 

The across-sex design was first, to reduce the bias that can arise if discovery, training and prediction is 

undertaken in the same population and second, to leverage the power from two independent populations. As 

shown in Supplementary Figure 1, the average genomic relationship between the bull and cow populations 

was around 0. We illustrate this across-sex analysis step-by-step using the following figure (Supplementary 

Figure 2). Three major steps were described: step 1: variant prioritization (discovery), step 2: BayesRC [1] 

and [2] BayesR modelling (training) and step 3: local gEBV calculation (prediction).  

 

 

Supplementary Figure 1. The distribution of the genomic relationships between bull and cow populations 

for breeds used in the discovery analysis: Australian Red (Aus.Red, n=125 ♂ × 424 ♀), Holstein (n=9,739 

♂ × 22,899 ♀) and Jersey (2,059 ♂ × 6,174 ♀). The genomic relationships (across-sex off-diagonal 

elements) were extracted from the genomic relationship matrix made by GCTA [3] using sequence variants 

with MAF >0.001 in 44,000+ bulls and cows. For each box, the minimum is the lowest point, the maximum 

is the highest point, whiskers are maxima 1.5 times of interquartile range, the bottom bound, middle line and 

top bound of the box are the 25th percentile, median and the 75th percentile, respectively. 

 



The process of discovery of variants in bulls, training in cows and bulls, and predicting into cows were 

visualized in Supplementary Figure 2a. Firstly, 165K variants were prioritized (discovered) in bulls. Then, 

these variants discovered in bulls were trained in cows (blue text in orange boxes) with BayesRC (step 2.1). 

BayesRC training in cows produced marker effects which will be used to calculate local gEBV into the cow 

population (step 3.1). Another product from the BayesRC training in cows (step 2.1) was the mixing 

proportions of the markers. For a BayesRC run, there may be 150,000 markers with 0 effects, 14,960 

markers each contributing 0.0001 of the additive genetic variance, 33 each contributing to 0.001 and 7 each 

contributing to 0.01 (Methods and equation 6 in the main text). This mixing proportion ([150,000, 14,960, 

33, 7]) will be used as the starting α value (instead of [1, 1, 1, 1,]) for the Dirichlet prior [2] for the BayesR 

run in bulls (step 2.2) which will significantly influence each BayesR iteration. Such BayesR training in the 

bull population will produce marker effects which will be used to predict local gEBV in the cows, again 

(step 3.2). Then, two sets of local gEBV estimated in the cow population using the same markers discovered 

from the bull population, were produced. 

 

Supplementary Figure 2. The flowchart of the cross-sex design for generating two sets of local gEBV for 

markers prioritized (discovered) from bulls and cows.  

 



The process of discovery of variants in cows, training in bulls and cows, and predicting into bulls were 

visualized in Supplementary Figure 2b. Firstly, 165K variants were prioritized (discovered) in cows (step 1). 

Then, these variants discovered from cows were trained in bulls (orange text in blue boxes) with BayesRC 

(step 2.1) and cow markers trained in bulls were used to predict bull local gEBV (step 3.1). BayesRC 

training in bulls produced marker effects which will be used to calculate local gEBV into the bull population 

(step 3.1). Another product from the BayesRC training in bulls (step 2.1) was the mixing proportions of the 

markers. For a BayesRC run, there may be 150,400 markers with 0 effects, 14,100 markers each 

contributing 0.0001 of the additive genetic variance, 499 each contributing to 0.001 and 1 each contributing 

to 0.01. This mixing proportion ([150,400, 14,100, 499, 1]) will be used as the starting α value (instead of [1, 

1, 1, 1,]) for the Dirichlet prior [2] for the BayesR run in cows (step 2.2) and will significantly influence 

each BayesR iteration. This BayesR training in the cow population will produce marker effects which will 

be used to predict local gEBV in the bull population, again (step 3.2). Then, two sets of local gEBV 

estimated in the bull population using the same markers discovered from the cow population, were 

produced. 

 

  



Supplementary Note 2. The programmatic calculation for the weighted correlation per each 

segment. 

 

For the calculation of the weighted correlation for each segment, an asymmetric variance-covariance matrix 

obtained from BayesRC [1] and BayesR [2] (Figure 3a) was used. For each variance-covariance matrix, only 

the diagonal elements with positive values and their associated rows and columns in the matrix were 

considered for the calculation. This was to eliminate unreliable estimates of the local gEBV values which 

did not agree between the BayesRC and BayesR mapping for the same trait.  

Because there were negative off-diagonal element (covariance) values in the matrices for many segments, 

simply summing the off-diagonal elements up would reduce the value of the numerator of equation 2, 

leading to an underestimated value of the weighted correlation which will inflate the estimation of the 

n(QTL) for some segments. On the other hand, the sum of the absolute value of the off-diagonal elements 

would increase the value of the numerator which will shrink the estimation of the n(QTL) for some 

segments. To properly account for the impact of negative off-diagonal values on the sum, we used an 

‘approximate absolute value’ which was implemented as a programmatic sign-flipping process for the 

asymmetric matrix for each segment:  

1. Determine the negative diagonal elements; if there are negative diagonal elements, discard the columns 

and rows associated with these negative diagonal elements 

2. Determine the firstly-appeared ‘trait’ of which the row and column contained the largest number of 

negative off-diagonal elements and count the total number of negative off-diagonal elements 

3. Flip the sign of all the off-diagonal elements of this trait and count the total number of negative off-

diagonal elements 

4. Compare the total number of negative off-diagonal elements between before and after the sign-flipping; if 

the total number of negative off-diagonal elements reduced after the sign-flipping, then, repeat step 1-3; if 

the total number of negative off-diagonal elements remained the same or became large after the sign-



flipping, then, stop, revert back to the state before the sign-flipping and keep the matrix before the sign-

flipping for calculating the weighted correlation 

An example of a 10 × 10 matrix was given to demonstrate this workflow in the following: 

 

Supplementary Figure 3. An example of 10 × 10 the asymmetric variance (diagonal elements, bold border) 

and covariance (off-diagonal elements) matrix to start the weighted correlation analysis. Cells of the 

negative off-diagonal elements were colored in grey whereas cells of the positive off-diagonal elements 

were colored in yellow. The negative diagonal elements for trait 7, 9 and 10 were in red text. In this 

example, the 7th row and column, 9th row and column and 10th row and column will be excluded for the 

weighted correlation analysis. 

 

 

Supplementary Figure 4. After the rows and columns for trait 7, 9 and 10 were excluded as described 

above, the firstly-appeared trait that had the largest number of negative off-diagonal values was trait 1 (red 

text). The row and column associated with trait 1 were labelled in red border and the sign of the off-diagonal 

elements in those cells with the red border will be flipped (× -1). The count of the number of the negative 

off-diagonal elements for each trait (No. ‘-’) and the total number of the negative off-diagonal elements in 

the matrix (No. ‘-’ total) were indicated in the figure. Cells of the negative off-diagonal elements were 

colored in grey whereas cells of the positive off-diagonal elements were colored in yellow. 



 

 

Supplementary Figure 5. After the sign-flipping for the off-diagonal elements for trait 1 as described 

above, the total number of the negative off-diagonal elements in the matrix reduced (20 before VS 12 after). 

Therefore, the process continues to determine the firstly-appeared trait that had the largest number of 

negative off-diagonal values. In this example, this trait is trait 4 (red text). Therefore, the row and column 

associated with trait 4 were labelled in red border and the sign of the off-diagonal elements in those cells 

with the red border will be flipped (× -1). The count of the number of the negative off-diagonal elements for 

each trait (No. ‘-’) and the total number of the negative off-diagonal elements in the matrix (No. ‘-’ total) 

were indicated in the figure. Cells of the negative off-diagonal elements were colored in grey whereas cells 

of the positive off-diagonal elements were colored in yellow. 

 

 

Supplementary Figure 6. After the sign-flipping for the off-diagonal elements for trait 4 as described 

above, the total number of the negative off-diagonal elements in the matrix reduced (12 before VS 0 after). 

Therefore, the process continues to determine the firstly-appeared trait that had the largest number of 

negative off-diagonal values. Although no negative off-diagonal elements were left, as the design of the 

calculation dictates, trait 1 will still be the firstly-appeared trait that had the largest number (0) of negative 



off-diagonal values. Therefore, the sign of the off-diagonal elements in those cells with the red border 

associated with trait 1 will be flipped (× -1). 

 

 

Supplementary Figure 7. After the sign-flipping for the off-diagonal elements for trait 1 as described 

above, the total number of the negative off-diagonal elements in the matrix increased (0 before VS 12 after). 

Therefore, the sigh-flipping will stop, revert to the previous step and save the matrix before this sign-flip for 

the weighted correlation with equation 2 as described in the main text. 

 

  



Supplementary Note 3. Comparison of genomic prediction accuracy using different variant 

selection methods. 

 

To further illustrate the advantage of different variant selection methods, we trained 8 sets of variants with 

data of 6 traits of 28.1k Australian cows and predicted into additional 14.1k Australian cows. Those 28.1k 

Australian cows were the same cows used as the training population in the main text to predict the EBV of 

New Zealand cow traits (Figure 5a) which consisted of 24.4k Holsteins, 2.5k Jerseys and 1.2k Australian 

Reds (described in Methods in the main text). The additional 14.1k validation Australian cows contained 

10.6k Holsteins, 2.1k Jerseys and 1.4k Australian Reds. The 28.1k training and 14.1k validation cows had 

no overlap with those 44,000 animals used in the main text to prioritise the variants from the XT-50K panel. 

The phenotypes for 6 traits of 28.1k training cows and 14.1k validation cows were obtained from the official 

May 2020 DataGene (https://datagene.com.au/) national dairy cattle evaluations, and they included: protein 

yield (Prot, Nreference= 21,270, Nvalidation= 13,430), fat yield (Fat, Nreference= 21,270, Nvalidation= 13,430), milk 

yield (Milk, Nreference= 21,270, Nvalidation= 13,430), protein percentage (ProtP, Nreference= 21,270, Nvalidation= 

13,430), fat percentage (FatP, Nreference= 21,270, Nvalidation= 13,430) and somatic cell count (Scc, Nreference= 

20,823, Nvalidation= 13052).  

The following 8 lists of variants were tested for their accuracy in prediction of gEBV for the 6 traits using 

above described design: 1) FAETHTop10k: top 10k variants based on their Functional-And-Evolutionary 

Trait Heritability (FAETH) ranking [4]; 2) FAETHTop80k: top 80k variants based on their ranking; 3) 

GWASTop10k: top 10k variants ranked based on their p-value of 34-trait GWAS meta-analysis in 

Australian bulls and cows [5]; 4) GWASTop80k: top 80k variants ranked based on their p-value of 34-trait 

GWAS meta-analysis in Australian bulls and cows; 5) FAETH.GWAS.Cluster+BayesRCTop.PP10k: top 

10k variants ranked based on their summed posterior probability (PP) across 34 traits from BayesRC runs in 

bulls and cows, using the 165k SNPs after the clustering of top 10% variants based on their FAETH and 

GWAS ranking (reflecting top variants from the step 3 in the main text); 6) 

FAETH.GWAS.Cluster+BayesRCTop.PP80k: top 80k variants ranked based on their summed PP across 34 

traits from BayesRC runs in bulls and cows; 7) FAETH.GWAS.Cluster+BayesRC.lgEBVTop80k: top 80k 

https://datagene.com.au/


variants corresponded to the selection of 80k variants as shown in Figure 1 in the main text, which were 

ranked based on their summed correlation squared with the variance of local gEBV from the BayesRC runs 

(equation 3 and step 4 in the main text) and 8) XT-50K: the final selection of 46k variants from the designed 

XT-50K panel. The rationale behind selecting top 10k variants based on their ranking of FAETH, GWAS 

and BayesRC was to test if large effect variants identified by those analysis can increase genomic prediction 

accuracy. The rationale behind selecting top 80k variants based on the ranking their FAETH, GWAS and 

BayesRC was to match the number of SNPs used in the top 80k variants we selected based on the variance 

of local gEBV. A proportion of our final 80K set had low beadchip array design scores and could not 

therefore be added to the XT-50K panel. 

The training of above variant lists used single-trait BayesR [2] with the model of 𝐲 = 𝐗𝐛 +𝐖𝐯 + 𝐞 where y 

was the vector of each decorrelated trait; X was the design matrix allocating phenotypes to fixed effects; b 

was the vector of the fixed effect of breed; W was the design matrix of marker genotypes; centred and 

standardised to have a unit variance; v was the vector of variant effects, distributed as a mixture of the four 

distributions (described above); e = vector of residual errors. and the prediction of gEBV used 𝑦𝑣̂ =

𝑊1:𝑛𝑣1:𝑛, where 𝑦̂𝑣  was the gEBV, 𝑊1:𝑛 was the design matrix of marker genotypes for 1 to n and 𝑣1:𝑛 was 

the variant effects from the training dataset. The accuracy of prediction was estimated as the Pearson 

correlation r between gEBV and the individual phenotype within each breed of the validation cows. 

Across 6 traits and 3 breeds (18 scenarios), 17 out of 18 times the 80k variants selected based on the lgEBV 

from BayesRC (‘FAETH.GWAS.Cluster+ BayesRC.lgEBVTop80k’) or the XT-50K variants topped the 

genomic prediction accuracy amongst other variant selections (Supplementary Figure 8). The 1 exception 

was that BayesRC PP ranking (‘FAETH.GWAS.Cluster+BayesRC.PPTop80k’) topped the prediction 

accuracy of milk yield in Jersey. Apart from the set of BayesRC lgEBV top80k and the XT-50K variants, 

the top 80k variants selected based on FAETH ranking (‘FAETHTop80k’) and based on BayesRC PP 

ranking (‘FAETH.GWAS.Cluster+BayesRCTop.PP80k’) showed competitive performances in prediction 

accuracies across traits and breeds. Across all scenarios, GWAS based on top variant selection had the worst 

prediction accuracies, compared to other variant selection methods (Supplementary Figure 8). 

 



 

Supplementary Figure 8. Genomic prediction accuracy across 6 traits and 3 breeds using 8 different 

genotype sets where different methods were applied to select variants. The bar with a black border indicates 

the variant set that showed the highest prediction accuracy (r) of any given variant set within each breed by 

trait validation. The horizontal black dashed line indicates the prediction accuracy for the best variant set. 

The 8 lists of selected variants are (from left to right): FAETHTop10k and FAETHTop80k: top 10k or 80k 

variants, based on their Functional-And-Evolutionary Trait Heritability (FAETH) ranking; GWASTop10k 

and GWASTop80k: top 10k or 80k variants, ranked based on their p-value of 34-trait GWAS; 

FAETH.GWAS.Cluster+BayesRC.PPTop10k and FAETH.GWAS.Cluster+BayesRC.PPTop80k: top 10k 

and 80k variants, ranked based on their summed posterior probability across 34 traits from BayesRC, using 

the 165k SNPs after the clustering of top 10% variants based on their FAETH and GWAS ranking; 

FAETH.GWAS.Cluster+BayesRC.lgEBVTop80k: top 80k variants ranked based on their summed 



correlation squared with the variance of local gEBV from BayesRC; and XT-50K: the final selection of 46k 

variants from the designed XT-50K panel. 

 

  



Supplementary Note 4. Comparison of genomic prediction accuracy of different existing 

bovine SNP chip panels. 

 

Our study aims at prioritising a set of variants that can be put on routinely used genotyping panels that 

usually have up to 50k markers. Ideally, we could whole-genome sequence, or use high-density panels to 

genotype every animal in national breeding programs. For example, the HD panel that contains up to 

800,000 SNPs is a useful genotyping tool. Also, there is a recently developed GGP-F250 panel which 

contains up to 250,000 SNPs, many of which are potentially functional SNPs [6], largely based on in silico 

functional prediction [7]. However, whole-genome or high-density genotyping of large populations is very 

expensive. Therefore, a panel with a small marker number such as 50k, enriched with potentially causal 

variants that provide a similar genomic prediction power to high-density panels, would be optimal for large-

scale genotyping. Such an informative panel can make the genotyping of animals very cost-effective to 

many farmers. 

To compare the prediction accuracy of our XT-50K with other existing panels, including the standard-50K, 

HD800K and GGP-F250 [6], we performed genomic prediction analysis using SNPs from these four panels. 

Up to 50k SNPs from the XT-50K and standard-50K, up to 600k SNPs from the HD [8] and up to 250k 

SNPs from GGP-F250 were trained using BayesR and used to predict gEBV of the 6 traits in 3 breeds as 

described in Note S3. 

Across 6 traits and 3 breeds (18 scenarios), 7 out of 18 times the XT-50K markers topped the genomic 

prediction accuracy and another 6 out of 18 times the HD markers topped the genomic prediction accuracy 

(Supplementary Figure 9). 5 out 18 times the GGP-F250 markers topped the genomic prediction accuracy 

(Supplementary Figure 9). These results show that the predictive power of the XT-50K, with much smaller 

number of markers, is at least as good as denser panels such as GGP-F250 and HD. The standard 50K panel 

had the worst prediction accuracy across all scenarios. 

 



 

Supplementary Figure 9. Genomic prediction accuracy of variants from 4 different bovine SNP chip 

panels across 6 traits and 3 breeds. The bar with black border indicates that variant set showing the highest 

prediction accuracy (r) compared to 3 other variant sets in that breed by trait validation. The horizontal black 

dashed line indicates the prediction accuracy of the best variant set. 

  



 

 

Supplementary Figure 10. Manhattan plots of the 165K variants after prioritization based variant clustering 

with their multi-trait p values in bulls (A) and cows (B).  

  



 

 

Supplementary Figure 11. Manhattan plots of the 80K variants in bulls (a) and cows (b), after 

prioritization based on the cross-sex Bayesian modeling and meta-analysis of local gEBV variance. 

  



 

Supplementary Figure 12. The flowchart showing the design process for the 50K-XT array. Flanking 

sequence for pre-selected 80K variants was extracted and flanking variants masked. DesignStudio (Illumina 

Inc) was used to calculate design score and designability. Designable markers with a design score > 0.4 were 

divided into Infinium I markers (occupying 2 beads) and Infinium II markers (occupying 1 bead). For 

Infinium I markers, iterative searching for LD mates (LD r square > 0.9) from the original variant selection 

that was Infinium II markers was conducted. All markers were then ranked based on trait-association 

statistics including the multi-trait p-value and the posterior probability of BayesRC mapping in both sexes. 

10K pre-existing markers, including those in previous standard panels and also prioritised by the current 

analysis, were selected regardless of their bead occupancy and trait-association statistics. Non-pre-existing 

markers (prioritised by the current study) were then selected in rank order until 50K beads were selected 

resulting in a total of 46K variants for the new 50K-XT array. The gap between the final marker selection 

was 57.1±0.4 Kb compared with 65±0.4 Kb for the Standard-50K panel. 

  



 

Supplementary Figure 13. Minor allele frequency (MAF) distribution of 17 million variants (all SNPs), 

variants from the standard-50K panel and from the XT-50K panel prioritised by us in the 44,000 Australian 

bulls and cows. The blue dashed vertical bars represent the mean of MAF in each panel. HOL: Holstein 

breed, JER: Jersey breed, MIX: crossbreeds and RED: Australian Red. 

 



Supplementary Table 1. Characteristics of Cholesky decorrelated traits for bulls and cows. The heritability was estimated using all sequence variants with minor allele 
frequency >0.001. 

Trait 

order 

Short 

name 
Full name Trait type 

Number of 

records in bulls 

Trait variance in 

bulls 

Heritability in 

bulls 

Number of records 

in cows 

Trait variance 

in cows 

Heritability of in 

cows 

1 Prot protein yield production 11923 1.000 0.7413 32347 1.000 0.388643 

2 ProtP protein percentage production 11923 0.981 0.8798 32347 1.008 0.675167 

3 FatP fat percentage production 11923 0.571 0.8127 32347 1.173 0.567957 

4 Milk milk yield production 11923 1.259 0.8506 29485 0.896 0.693051 

5 SCC somatic cell count production 11546 1.021 0.7801 26473 0.991 0.270388 

6 Fert fertility reproduction 11546 0.891 0.5151 26473 1.048 0.0898 

7 SurvDi survival reproduction 4830 0.872 0.3390 25379 1.024 0.071903 

8 Temp temperament management 4565 0.963 0.3729 15210 1.011 0.068926 

9 MSpeed milking speed management 4565 0.944 0.4914 15210 1.017 0.092791 

10 Like likeability management 4565 0.633 0.2260 15210 1.110 0.041934 

11 CentL central ligament linear assessment 2908 0.919 0.3925 6658 1.035 0.078289 

12 PinW pin width linear assessment 2908 0.936 0.4204 6658 1.028 0.181658 

13 PinSet pin set linear assessment 2908 0.985 0.4928 6658 1.007 0.223049 

14 RSet rear legs set linear assessment 2908 0.990 0.2383 6658 1.004 0.040869 

15 ForeA fore attachment linear assessment 2908 0.912 0.2973 6658 1.039 0.103978 

16 RearAH rear attachment height linear assessment 2908 0.861 0.4609 6658 1.061 0.122225 

17 RearAW rear attachment width linear assessment 2908 0.895 0.2852 6658 1.046 0.068192 

18 TeatPF front teat placement linear assessment 2908 0.837 0.5381 6658 1.071 0.219098 

19 Stat stature linear assessment 2903 0.833 0.5611 6635 1.073 0.200414 

20 Angul angularity linear assessment 2903 0.925 0.2092 6635 1.033 0.081199 

21 Bone bone quality linear assessment 2903 0.812 0.3214 6635 1.082 0.119098 

22 ChestW chest width linear assessment 2903 0.838 0.3209 6635 1.071 0.05169 

23 MuzW muzzle width linear assessment 2903 0.903 0.3091 6635 1.043 0.104275 

24 UdTex udder texture linear assessment 2903 0.611 0.0737 6635 1.171 0.016323 

25 OType overall type linear assessment 2903 0.663 0.1479 6635 1.148 0.099783 

26 Mamm mammary system linear assessment 2843 0.931 0.3325 6056 1.033 0.106601 

27 BodyD body depth linear assessment 2660 0.768 0.3602 6051 1.102 0.09744 

28 FootA foot angle linear assessment 2660 0.883 0.2808 6051 1.052 0.06033 

29 TeatL teat length linear assessment 2660 0.970 0.5416 6051 1.013 0.216478 

30 UdDep udder depth linear assessment 2660 0.607 0.3698 6051 1.173 0.096184 

31 Loin loin strength linear assessment 1880 0.883 0.3752 5901 1.037 0.091612 

32 RLeg rear leg view linear assessment 1624 0.984 0.2484 5734 1.005 0.074071 



33 TeatPR rear teat placement linear assessment 1582 0.827 0.4257 5727 1.048 0.078389 

34 BCS body condition score linear assessment 1439 0.773 0.1364 4086 1.080 0.07249 

 

  



Supplementary table 2. summary of local gEBV variance (lgebv.var) for 34 traits in each sex. 

bull min mean max cow min mean max 

tr01.lgebv.var 0 2.03884E-06 0.014850129 tr01.lgebv.var 0 1.9514E-06 0.008494631 

tr02.lgebv.var 0 5.52905E-06 0.011044388 tr02.lgebv.var 0 7.40714E-06 0.019846559 

tr03.lgebv.var 0 4.97815E-06 0.06232377 tr03.lgebv.var 0 7.23127E-06 0.048303855 

tr04.lgebv.var 0 1.08395E-05 0.026501331 tr04.lgebv.var 0 1.05838E-05 0.016548952 

tr05.lgebv.var 0 4.48897E-06 0.004853272 tr05.lgebv.var 0 1.91772E-06 0.019476154 

tr06.lgebv.var 0 1.51533E-06 0.00147693 tr06.lgebv.var 0 3.5146E-07 0.002765889 

tr07.lgebv.var 0 1.00662E-06 0.00313802 tr07.lgebv.var 0 2.04049E-07 0.00202942 

tr08.lgebv.var 0 8.63786E-07 0.005030508 tr08.lgebv.var 0 5.82585E-08 4.20376E-05 

tr09.lgebv.var 0 1.08583E-06 0.000564181 tr09.lgebv.var 0 2.56218E-07 0.000383454 

tr10.lgebv.var 0 4.16618E-07 0.000255559 tr10.lgebv.var 0 3.80633E-08 0.000337913 

tr11.lgebv.var 0 6.8515E-07 0.000973535 tr11.lgebv.var 0 3.3319E-07 8.70659E-05 

tr12.lgebv.var 0 9.34312E-07 0.000533084 tr12.lgebv.var 0 8.74747E-07 0.000579623 

tr13.lgebv.var 0 1.49131E-06 0.001626246 tr13.lgebv.var 0 1.3518E-06 0.002636798 

tr14.lgebv.var 0 7.06329E-07 0.000931157 tr14.lgebv.var 0 3.74399E-07 0.000648484 

tr15.lgebv.var 0 7.41879E-07 0.000387428 tr15.lgebv.var 0 5.70505E-07 0.000766782 

tr16.lgebv.var 0 8.8107E-07 0.000387732 tr16.lgebv.var 0 6.71761E-07 0.000306892 

tr17.lgebv.var 0 6.00062E-07 0.000103444 tr17.lgebv.var 0 4.21623E-07 0.000491854 

tr18.lgebv.var 0 1.16572E-06 0.000635738 tr18.lgebv.var 0 9.92409E-07 0.000609962 

tr19.lgebv.var 0 1.64528E-06 0.00155134 tr19.lgebv.var 0 1.65588E-06 0.004215092 

tr20.lgebv.var 0 1.09575E-06 0.000139662 tr20.lgebv.var 0 5.08806E-07 0.001071604 

tr21.lgebv.var 0 1.03857E-06 0.000180351 tr21.lgebv.var 0 1.88637E-06 0.004557177 

tr22.lgebv.var 0 5.91384E-07 0.000464256 tr22.lgebv.var 0 4.43038E-07 0.001395866 

tr23.lgebv.var 0 5.52088E-07 0.001265194 tr23.lgebv.var 0 5.31408E-07 0.000361651 

tr24.lgebv.var 0 1.753E-07 2.1599E-05 tr24.lgebv.var 0 2.23492E-07 3.10429E-05 

tr25.lgebv.var 0 2.95555E-07 0.000103169 tr25.lgebv.var 0 2.97965E-07 0.000380383 

tr26.lgebv.var 0 5.99923E-07 0.004330949 tr26.lgebv.var 0 3.33054E-07 0.000244207 

tr27.lgebv.var 0 6.5653E-07 0.000336248 tr27.lgebv.var 0 5.18959E-07 0.00021204 

tr28.lgebv.var 0 7.38505E-07 0.001607027 tr28.lgebv.var 0 2.99968E-07 0.000208941 

tr29.lgebv.var 0 1.80189E-06 0.003947483 tr29.lgebv.var 0 9.73451E-07 0.000472375 

tr30.lgebv.var 0 5.08624E-07 0.000126041 tr30.lgebv.var 0 5.15868E-07 6.15572E-05 

tr31.lgebv.var 0 1.14246E-06 0.00079715 tr31.lgebv.var 0 3.27328E-07 0.000135469 

tr32.lgebv.var 0 7.64049E-07 0.000130779 tr32.lgebv.var 0 3.22681E-07 0.000152997 

tr33.lgebv.var 0 1.2378E-06 0.001249247 tr33.lgebv.var 0 5.22815E-07 7.30413E-05 

tr34.lgebv.var 0 3.2396E-07 7.22906E-05 tr34.lgebv.var 0 3.90159E-07 0.000169495 



  



Supplementary Table 3. Overlap of traits between Australian (AUS) and US data.  

AUS trait 
order 

AUS trait full name 
AUS trait 

short name 
equivalent US 

trait short name 
equivalent US trait full 

name 
 short name of US trait not 

in AUS data 
full name of US trait not in 

AUS data 

1 protein yield Prot Protein Protein yield  Net_Merit Net merit 

2 protein percentage ProtP Pro_Percent Protein percentage  AFC Age at first calving 

3 fat percentage FatP Fat_Percent Fat percentage  DFB Days to firrst breedinga 

4 milk yield Milk Milk Milk yield  Heifer_Conc_Rate Heifer conception rate 

5 somatic cell count SCC SCS Somatic cell score  Cow_Conc_Rate Cow conception rate 

6 fertility Fert Dtr_Preg_Rate Daughter pregnancy rate  Sire_Calv_Ease Sire calving ease 

7 survival SurvDi Prod_Life Productive life  Dtr_Calv_Ease Daughter calving ease 

8 temperament Temp    Sire_Still_Birth Sire stillbirth 

9 milking speed MSpeed    Dtr_Still_Birth Daughter stillbirth 

10 likeability Like    Final_score Final score 

11 central ligament CentL    Strength Strength 

12 pin width PinW Rump_width Rump width  Dairy_form Dairy form 

13 pin set PinSet Rump_angle Rump angle  Rear_legs(side) Rear legs (side view) 

14 rear legs set RSet    Rear_ud_height Rear udder height 

15 fore attachment ForeA Fore_udder_att Fore udder attachment  Udder_cleft Udder cleft 

16 rear attachment height RearAH    Feet_and_legs Feet and legs composite 

17 rear attachment width RearAW    
CFI 

Days from calving to first 
insemination 

18 front teat placement TeatPF Front_teat_pla Front teat placement    

19 stature Stat Stature Stature    

20 angularity Angul      

21 bone quality Bone      

22 chest width ChestW      

23 muzzle width MuzW      

24 udder texture UdTex      

25 overall type OType      

26 mammary system Mamm      

27 body depth BodyD Body_depth Body depth    

28 foot angle FootA Foot_angle Foot angle    

29 teat length TeatL Teat_length Teat length    

30 udder depth UdDep Udder_depth Udder depth    

31 loin strength Loin      



32 rear leg view RLeg Rear_legs(rear) Rear legs (rear view)    

33 rear teat placement TeatPR Rear_teat_pla Rear teat placement    

34 body condition score BCS      

US trait details can be found in: Jiang J, et al. (2019) Functional annotation and Bayesian fine-mapping reveals candidate genes for important agronomic traits in Holstein 
bulls. Communications Biology 2(1):212. 
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