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Supplementary Figure 1. Assignment of free 2D excitons in monolayer WSe2. This is the same 
data as in Fig. 1c in the maintext, with all reported excitonic feature identified and labeled. At hole 
doping side (negative gate voltage), from high energy to low energy, the identified excitonic 
features are: positively charged trion (𝑋𝑋+),1 positively charged dark trion (𝑋𝑋𝑑𝑑+),2,3 and 𝐾𝐾2, 𝐾𝐾1, Γ5, 
and 𝐾𝐾3 phonon replica of 𝑋𝑋𝑑𝑑+ (𝑋𝑋𝑑𝑑 𝐾𝐾2

+ , 𝑋𝑋𝑑𝑑 𝐾𝐾1
+ , 𝑋𝑋𝑑𝑑 𝛤𝛤5

+ , 𝑋𝑋𝑑𝑑 𝐾𝐾3
+ ).4-8 At charge neutral regime, from high 

energy to low energy, the identified excitonic feature are: bright exciton (𝑋𝑋0),1 intervalley dark 
exciton (𝐼𝐼0),6,7 dark exciton (𝑋𝑋𝑑𝑑),9-14 𝐾𝐾1 and 𝐾𝐾3 phonon replica of 𝐼𝐼0 (𝐼𝐼𝐾𝐾1

0 , 𝐼𝐼𝐾𝐾3
0 ),6 and Γ5 phonon 

replica of dark exciton 𝑋𝑋𝑑𝑑 Γ5.4-8 At electron doping side (positive gate voltage), from high energy 
to low energy, the identified excitonic features are: negatively charged intervalley (𝑋𝑋𝑇𝑇− ) and 
intravalley trion (𝑋𝑋𝑆𝑆−),15,16 𝑋𝑋−′ state,1 dark trion (𝑋𝑋𝑑𝑑−),2,3,9-14  𝑇𝑇1 state, 4-14 Γ5 and 𝐾𝐾3 phonon replica 
of 𝑋𝑋𝑑𝑑− (𝑋𝑋𝑑𝑑 𝛤𝛤5

− , 𝑋𝑋𝑑𝑑 𝐾𝐾3
− ).4-8  Note that the nature of the 𝑋𝑋−′  state and the 𝑇𝑇1 state are still under active 

investigation. 
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Supplementary Figure 2. Spatial homogeneity of excitonic satellite emission. a, 
Hyperspectral spatial map of satellite emission intensity, with spatial resolution of 333nm. 
Inset shows the optical image of the device with same orientation. Monolayer WSe2 region is 
marked out by the black dashed line. Scale bar is 10μm. b, Hyperspectral spatial map of the 
energy difference between the first satellite peak (S1) and X0.  

 
Supplementary Figure 3. Robust satellite properties across 10 samples. Waterfall plot of 
photoluminescence spectra from 10 different samples, showing homogeneous satellite binding 
energies and spectra structures. The energy axis is scaled relative to the neutral exciton. 
Spectrum are taken with no electrostatic gating and all flakes are slightly electron doped due 
to dilute donors. All samples were fabricated over a 3-year span. Devices HS17, HS19, HS21, 
HS22, MD2, MD5, MD7 were fabricated from flakes that are exfoliated from multiple crystals 
grown by vapor transport at ORNL. Devices F1, MD8, and MD3 were fabricated from flakes 
that are exfoliated from three different batches of crystals by flux growth at Columbia 
University.  
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Supplementary Figure 4. Power dependence from additional samples. a, 
Photoluminescence spectrum as function of excitation power (log scale) in Device 1, at gate 
voltage of 0.8V. b, Waterfall plot of normalized PL spectra at selected excitation powers in 
Device 1. 
 

 
Supplementary Figure 5. Linear polarization resolved satellite emission. a, 
Photoluminescence spectra with linearly polarized excitation and collection. Data were taken 
from device HS 17 with 10  µW 633nm CW laser excitation. Top and bottom panels are 
horizontally (H) and vertically (V) polarized excitation, respectively. b, Satellite 
photoluminescence intensity plot under horizontally polarized excitation with rotating linear 
polarization collection. Data were taken from device HS19 with 1.5 µW 724nm CW laser 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Supplementary Figure 6. Scanning tunneling microscopy and spectroscopy analysis of 
donor and acceptor defects of WSe2 bulk crystals at ~10K. STM topographic images of a, 
a donor defect (imaging conditions: 1.4 V, 50 pA) and b, an acceptor defect (imaging 
conditions: 2.0 V, 50 pA). Here, (a) and (b) correspond to the bright and dark defects shown 
in Fig. 3 in the main text. Differential conductance curves obtained on c, a donor defect and 
d, an acceptor defect. Here, D and A denote donor and acceptor bands, respectively. The 
differential conductance obtained on the bare WSe2 (black curve) is shown for comparison. 
The binding energies corresponding to donor and acceptor defects are about 110 meV and 125 
meV, respectively. e, Atomic resolution STM image of WSe2 bright donor defect (V=1.4V, 
I=100 pA) at room temperature. f, STS obtained on the WSe2 surface close (red) and far (blue) 
from the donor defect. A 30 meV shifted STS is shown in grey line for comparison.  
 



 
Supplementary Note 1. Assignment of donor type defect. 
Here, we present collective experimental evidences that the defect resulted in bound excitons is a 
donor type. Our gate dependent PL shows that defect bound excitons only appear when the 
monolayer is electron doped. This implies the defect band of interest is near the conduction band 
minimum (CBM). As shown by Fig 3 in the maintext, we have examined devices made of different 
crystals obtained by controllable growths. The devices showing defect bound excitons are slightly 
n doped, while the device made from crystals without defect bound excitons are slightly p doped. 
All devices are made by the same fabrication procedure. These facts suggest that the initial n 
doping is unlikely from trapped impurities between monolayer WSe2 and hBN introduced during 
fabrications. STM study shows that only the devices with bright defects (see Figs. 3a &d) produced 
defect bound excitons. We further performed scanning tunneling spectroscopy (STS) 
measurements on these defects. Supplementary Figures 6a and 6b show the STM topographic 
images of the bright and dark defects, as identified in Fig. 3 in the main text. Supplementary 
Figures 6c and d show the corresponding differential conductance curves. Clearly, for the crystal 
producing defect bound excitons, we observe a defect band below CBM (Supplementary Fig. 6c), 
with binding energy of about 110 meV. There are no other bands observed, ruling out the 
complicated charge levels within the gap. We further obtained STS on the WSe2 surface close (red) 
and far (blue) from the donor defect (Supplementary Fig. 6f). Careful analysis of the band edges 
of the valence and conduction bands on the different locations show that there is an energy offset 
between them, likely due to band bending. As seen in the figure, the offset between the two curves 

 
Supplementary Figure 7. Trion excitation dependent donor bound exciton 
photoluminescence. This is an expanded flow diagram of Fig. 5 in the main text and focuses 
on intervalley trion excitation with σ+

 polarized light. a, step 1 depicts unpolarized donor 
electrons without optical pumping. b, step 2 shows donor spin state initialization by optical 
pumping of intervalley trion. c, step 3 illustrates donor bound exciton formation. d, step 4 
shows donor bound dark exciton emission assisted by intervalley (K2) and intravalley (Γ5) 
phonons. See supplementary note 2 for details.  
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is about 30 meV, and corresponds to downward band bending near the defect. This supports the 
donor nature of the defect with positive charging. The defect binding energy in monolayer will be 
larger than 110 meV, but should be in the same order of magnitude and thus comparable to exciton 
binding energy in monolayers.17-22 This supports the shallow potential of the donor. In addition, 
the devices host defect bound excitons are slightly n doped at zero gate voltage, evident by the 
negative gate voltage for the charge neutrality point in gate dependent PL, as illustrated in Fig.1c 
and Fig. 3d in the maintext. This slightly intrinsic n doping is also consistent with the donor nature 
of the defect. On the other hand, the devices made of crystal in Fig. 3c, which does not have defect 
bound excitons, are slightly p doped (see gate dependent PL in Fig. 3f in the maintext). This is 
consistent with the observed defect band near the valence band maximum in Fig. S6d.  
 
Supplementary Note 2. Trion excitation dependent donor bound exciton photoluminescence. 
Here we will further clarify Fig. 5 in the maintext. For simplicity, we only focus on the excitation 
of intervalley trion with σ+

 polarized optical excitation (Supplementary Fig. 7).  
Step 1: without optical excitation. Supplementary Figure 7a depicts the valley-spin-coupled band 
edges and unpolarized donor bound electrons. 
Step 2: Donor spin state initialization. As illustrated in the top panel Supplementary Fig. 7b, 
resonant σ+

 polarized excitation creates +K valley polarized intervalley trion 𝑋𝑋𝑇𝑇−(+𝐾𝐾). In this 
continuous wave excitation experiment, maintaining a steady-state population of 𝑋𝑋𝑇𝑇−(+𝐾𝐾) “uses 
up” spin up species of the donor electrons. This optical pumping process then leaves the donor 
with spin down electrons (denoted as 𝐷𝐷𝐾𝐾,↓), as shown in the lower panel of Supplementary Fig. 7b. 
Step 3: Donor bound exciton formation. The bottom panel of Supplementary Fig. 7c illustrates that 
the spin polarized donor 𝐷𝐷𝐾𝐾,↓ then selectively binds to a dark exciton in the 𝐾𝐾’ valley to form D𝑋𝑋𝑑𝑑𝐾𝐾′, 
because of the Pauli exclusion between the electrons. Note that a steady state population of the 
𝑋𝑋𝑇𝑇−(+𝐾𝐾) is maintained in this whole process due to σ+ polarized continuous wave excitation (top 
panel Supplementary Fig. 7c). Dark exciton is the ground state and its long lifetime makes possible 
efficient formation of 𝐷𝐷𝑋𝑋𝑑𝑑. 
Step 4: Donor bound exciton light emission. D𝑋𝑋𝑑𝑑𝐾𝐾′ can emit light via two process. One is via defect 
mediated direct electron-hole recombination in the K` valley. The second is via phonon assisted 
stokes emission (Supplementary Fig. 7d). The top panel of Supplementary Fig. 7d shows 
intervalley spin-conserved electron scattering assisted by K2 phonon, which give rises to S2 peak 
via an intermediate bright trion state. The bottom panel shows the intravalley spin-flip electron 
scattering assisted by Γ5 phonon for S3 peak.  
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