

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

False-negative RT-PCR for COVID-19 and a diagnostic risk score: a retrospective cohort study among patients admitted to hospital

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047110
Article Type:	Original research
Date Submitted by the Author:	19-Nov-2020
Complete List of Authors:	Gupta-Wright, Ankur; University College London, Institute for Global Health; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases, Clinical Research Department Macleod , Colin ; London North West University Healthcare NHS Trust; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases, Clinical Research Department Barrett, Jessica; London North West University Healthcare NHS Trust Filson, Sarah; London North West University Healthcare NHS Trust Corrah, Tumena; London North West University Healthcare NHS Trust Parris, Victoria; London North West University Healthcare NHS Trust Sandhu, Gurjinder; London North West University Healthcare NHS Trust Harris, Miriam; London North West University Healthcare NHS Trust Vaid, Nidhi; London North West University Healthcare NHS Trust Vaid, Nidhi; London North West University Healthcare NHS Trust Vaid, Nidhi; London North West University Healthcare NHS Trust Gandy, Nemi; London North West University Healthcare NHS Trust Chana, Harmeet; London North West University Healthcare NHS Trust Chana, Harmeet; London North West University Healthcare NHS Trust Chana, Harmeet; London North West University Healthcare NHS Trust Papineni, Padmasayee; London North West University Healthcare NHS Trust Papineni, Padmasayee; London North West University Healthcare NHS Trust Trust, Infectious Diseases
Keywords:	COVID-19, Molecular diagnostics < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: Original Research Article

<u>Title:</u>

False-negative RT-PCR for COVID-19 and a diagnostic risk score: a retrospective cohort study among patients admitted to hospital

Authors:

Ankur Gupta-Wright (1,2,3)*, Colin Kenneth Macleod (2,3)*, Jessica Barrett (3), Sarah Ann Filson (3), Tumena Corrah (3), Victoria Parris (3), Gurjinder Sandhu (3), Miriam Harris (3), Rachel Tennant (3), Nidhi Vaid (3), Junko Takata (3), Sai Duraisingham (3), Nemi Gandy (3), Harmeet Chana (3), Ashley Whittington (3), Alastair McGregor (3), Padmasayee Papineni (3) *Contributed equally

Author affiliations

- 1. Institute for Global Health, University College London, London UK
- 2. Clinical Research Department, London School of Hygiene & Tropical Medicine, London UK
- 3. London North West University Healthcare NHS Trust, London, United Kingdom

Corresponding author:

Ankur Gupta-Wright

Institute for Global Health

University College London

Mortimer Market, off Caper Street

London WC1E 6JB

ankurgw@outlook.com

+44 (0) 7764607560

Word Count: 3,759 (abstract 266)

Keywords: COVID-19, diagnosis, risk score, hospital

19, diag...

ABSTRACT

Objective: To describe the characteristics and outcomes of patients with a clinical diagnosis of COVID-19 and false negative SARS-CoV-2 RT-PCR, and develop and internally validate a diagnostic risk score to predict risk of COVID-19 (including RT-PCR negative COVID-19) amongst medical admissions

Design: Retrospective cohort study

Setting: Two hospitals within an acute NHS trust in London, UK

Participants: All patients admitted to medical wards between 2nd March and 3rd May 2020.

Outcomes: Main outcomes were diagnosis of COVID-19, SARS-CoV-2 RT-PCR results, sensitivity of SARS-CoV-2 RT-PCR and mortality during hospital admission. For the diagnostic risk score, we report discrimination, calibration and diagnostic accuracy of the model and simplified risk score, and internal validation.

Results: 4008 patients were admitted between 2nd March and 3rd May 2020. 1792 patients (44.8%) were diagnosed with COVID-19, of whom 1391 were SARS-CoV-2 RT-PCR positive, and 283 had only negative RT-PCRs. Compared to a clinical reference standard, sensitivity of RT-PCR in hospital patients was 83.1% (95% CI 81.2-84.8%). Broadly, patients with false-negative RT-PCR COVID-19 and those confirmed by positive PCR had similar demographic and clinical characteristics, but lower risk of ITU admission and lower in-hospital mortality (adjusted odds ratio 0.41, 95% CI 0.27-0.61). A simple diagnostic risk score comprising of age,

sex, ethnicity, cough, fever or shortness of breath, National Early Warning Score (NEWS2), C-Reactive Protein, and chest radiograph appearance had moderate discrimination (area under the receiver-operator-curve 0.83, 95% CI 0.82-0.85), good calibration and was internally validated.

ιθ is τ stic risk score. Conclusion: RT-PCR negative COVID-19 is common and is associated with lower mortality despite similar presentation. Diagnostic risk scores could potentially help triage patients requiring admission, but need external validation.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- Large cohort of consecutive acute medical admissions in two hospitals covering a diverse population in London, UK, during first COVID-19 'peak'
- Assessment of 'real world' performance of SARS CoV-2 RT-PCR from nasopharyngeal pective cohort s S-CoV-2 RT-PCR tests

swabs for diagnosis of COVID-19

- Inherent limitations of retrospective cohort study design, including some missing data •
- Not all patients had SARS-CoV-2 RT-PCR testing

BMJ Open

4	1
5	2
6	-
7	3
8	3
9 10	4
10 11	4
11 12	-
13	5
14	
15	6
16	
17	7
18	
19 20	8
20 21	
21	9
22 23)
24	10
25	10
26	
27	11
28	
29	12
30	
31 32	13
32 33	
34	14
35	
36	15
37	15
38	17
39	16
40	
41 42	17
42 43	
44	18
45	
46	19
47	
48	20
49	
50	21
51 52	<i>2</i> 1
52 53	$\gamma\gamma$
55 54	22
55	22
56	23
57	r.
58	24
59	
60	

INTRODUCTION

The coronavirus disease 2019 (COVID-19) global pandemic, caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented numbers of unwell and infectious patients requiring admission to hospital. The symptoms of COVID-19 can be non-specific, so diagnostic confirmation in hospital is often sought by detection of SARS-CoV-2 ribonucleic acid (RNA) sequences by reverse transcriptionpolymerase chain reaction (RT-PCR) from a clinical specimen.

9 Since the beginning of the pandemic, the standard sample for PCR testing has been a 0 nasopharyngeal swab (NPS) or aspirate, but there are concerns that a significant proportion of 1 cases test negative on initial RT-PCR of an NPS sample, with many patients having repeated 2 sampling to confirm the diagnosis.¹ A systematic review of real-world diagnostic sensitivity of 3 SARS-CoV-2 RT-PCR reports that up to 33% of patients with COVID-19 may have an initial 4 false negative NPS result despite a compatible clinical illness, consistent thoracic imaging 5 and/or subsequent positive antibodies to COVID-19.2-5 False negative RT-PCR may result from 6 inadequate nasopharyngeal sampling technique, delayed time to analysis, ineffective sample 7 storage, variable gene targets in RT-PCR assays leading to imperfect analytic sensitivity, or if a 8 patient is tested at a point when viral throat carriage is absent or below the detectable threshold 9 (either too early or too late).^{6,7} This high false negative rate complicates both hospital infection 0 control and clinical decision making. Being able to identify patients with a high probability of 1 COVID-19 despite a negative RT-PCR is crucial for effective clinical care.

The clinical characteristics and outcomes of hospitalised patients with COVID-19 have been
 well described globally, but these studies are limited to patients with RT-PCR confirmed

BMJ Open

25	COVID-19.8-10 The pattern of disease and outcomes of patients with false negative COVID-19
26	tests has not been well reported to date, nor has the diagnostic accuracy of RT-PCR assays in
27	secondary care settings in the United Kingdom (UK). Several studies have derived and
28	validated risk scores to assess severity and prognosis amongst patients with COVID-19.
29	However few risk scores focus on identifying patients with COVID-19 amongst those needing
30	hospital admission and those that do are from outside the UK, do not consider all hospital
31	admissions, rely on high-resolution computerised tomography (CT) scanning of the lungs, and
32	exclude patients without RT-PCR-confirmed disease. ¹¹
33	
34	We therefore aim to describe the characteristics and outcomes of patients with a clinical
35	diagnosis of COVID-19 but with negative RT-PCR from NPS, and the real-world sensitivity of
36	RT-PCR for COVID-19. Secondly, we describe predictors of COVID-19 amongst general
37	medical admissions, including assessing whether a simple diagnostic risk score could be
38	derived, internally validated, and used to predict which patients admitted to medical wards will
39	have COVID-19.
40	METHODS
41	Study design
42	This is a retrospective observational cohort study of consecutive admissions in London North
43	West University Healthcare NHS Trust, comprising two hospitals, Northwick Park and Ealing.
44	Patients were included in this study if they were admitted via the acute medical team between
45	2 nd March and 3 rd May 2020 inclusive.
46	
47	Data collection

BMJ Open

Cases were identified retrospectively through electronic medical admission lists. De-identified data on patient demographics, co-morbidities, clinical characteristics, vital signs, routine biochemical, haematological and microbiological tests, diagnosis and clinical outcomes were extracted from routinely collected clinical data using electronic patient record systems, and other NHS Trust health information systems. Physiological observations were those first recorded on admission to the emergency department. All biochemical and haematological data were from the first samples taken within 48 hours of admission. Thoracic imaging (chest radiographs and CT) were reported by consultant radiologists and coded based upon COVID-19 guidelines from the British Society of Thoracic Imaging (BSTI).¹² RT-PCR of a clinical specimen from NPS was the only SARS-CoV-2 testing available during the study period. The decision to test was based on a clinical suspicion of COVID-19. Testing was performed at the point of admission or as soon as possible afterwards. Due to high demand and limited capacity, some patients with high clinical suspicion did not undergo SARS-CoV-2 testing. Routine testing for all admissions was introduced after the study period. Most SARS-CoV-2 testing was done using Panther Fusion[™] (Hologic; ORF1ab Region 1 / 2 target) or Abbott RealTime[™] (RNA-dependent RNA polymerase, Nucleocapsid target) assays on NPS. Approval for this study was provided by London North West University Healthcare NHS Trust research and governance department, and the NHS Health Regulatory Authority (IRAS ID 285815). Written informed consent from participants was not obtained in compliance with Secretary of State for Health and Social Care 'Notice' under Regulation 3(4) of the Health Service Control of Patient Information Regulations 20021 (COPI) requiring health providers to

3 4	72	process confidential patient and Control of Patient Information Regulations due to the COVID-
5 6 7	73	19 pandemic.
7 8 9	74	
10 11	75	Definitions
12 13 14	76	Patients were assigned as having RT-PCR confirmed COVID-19 if they had a positive SARS-
15 16	77	CoV-2 RT-PCR within 7 days before or after the date of admission, and had a discharge
17 18 19	78	diagnosis of COVID-19 recorded by the clinical team. False-negative RT-PCR COVID-19 was
20 21	79	defined as patients with a discharge diagnosis of COVID-19 made by the clinical team and one
22 23	80	or more negative SARS-CoV-2 RT-PCR within 48 hours of admission in the absence of any
24 25 26	81	positive SARS-CoV-2 RT-PCR results. Patients with evidence of alternative diagnoses (i.e. not
27 28	82	COVID-19) made by the clinical team and no positive SARS-CoV-2 RT-PCR results were
29 30	83	defined as not having COVID-19. Medical records for patients with positive SARS-CoV-2 tests
31 32 33	84	greater than 7 days after admission but before discharge, and a diagnosis of COVID-19 were
34 35	85	reviewed as to whether the admission was likely to represent a missing or delayed SARS-CoV-
36 37 38	86	2 RT-PCR result (i.e. patients with community-acquired COVID-19) or nosocomial COVID-19
39 40	87	transmission. Mortality was assessed at discharge from hospital.
41 42	88	
43 44 45	89	Statistical methods
46 47	90	Basic descriptive statistics were performed, with continuous data presented as median
48 49	91	(interquartile range) and categorical data as frequency (%). Comparisons were made using chi-
50 51 52	92	squared tests for proportions, t-tests for means and Wilcoxon rank sum for medians. Logistic
53 54	93	regression was used to assess associations between variables and diagnosis of COVID-19. In
55 56 57	94	exploratory analyses to assess association between RT-PCR negative COVID-19 and
57 58 59		

1 2

BMJ Open

3 4 5	95	mortality, a multivariable logistic regression model was used adjusting for other variable
5 6 7	96	associated with poor outcomes in COVID-19. ¹³
8 9	97	
10 11 12	98	Sensitivity and false-negative RT-PCR
13 14	99	The real-world sensitivity of SARS-CoV-2 RT-PCR from NPS against a reference standard of a
15 16 17	100	clinical diagnosis of COVID-19 was estimated as the proportion of patients positive from any
18 19	101	RT-PCR, excluding those without any valid RT-PCR results. Sensitivity was also calculated by
20 21 22	102	restricting analyses to patients with two or more RT-PCR results from NPS taken in a 24- and
23 24	103	48-hour period. The reference standard was patients with at least one positive RT-PCR in the
26	104	time period. Incremental yield of a second RT-PCR following an initial negative result in
27 28 29	105	patients was also calculated. Specificity of SARS-CoV-2 RT-PCR was assumed to be 100%.
30 31	106	
27		
33	107	Diagnostic Risk Score
33 34 35	107 108	Diagnostic Risk Score In development of a score to predict COVID-19 among medical admissions, candidate predictor
 33 34 35 36 37 38 	108 109	
 33 34 35 36 37 38 39 40 	108	In development of a score to predict COVID-19 among medical admissions, candidate predictor
 33 34 35 36 37 38 39 40 41 	108 109	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning
 33 34 35 36 37 38 39 40 41 42 43 44 45 	108 109 110	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	108 109 110 111	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity),
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	108 109 110 111 112 113 114	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity), clinical symptoms associated with COVID-19 (cough, fever or shortness of breath), vital signs
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52	108 109 110 111 112 113	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity), clinical symptoms associated with COVID-19 (cough, fever or shortness of breath), vital signs (including National Early Warning [NEWS] Score 2), and laboratory bloods (including C-reactive
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53	108 109 110 111 112 113 114	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity), clinical symptoms associated with COVID-19 (cough, fever or shortness of breath), vital signs (including National Early Warning [NEWS] Score 2), and laboratory bloods (including C-reactive
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54	108 109 110 111 112 113 114 115	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity), clinical symptoms associated with COVID-19 (cough, fever or shortness of breath), vital signs (including National Early Warning [NEWS] Score 2), and laboratory bloods (including C-reactive protein (CRP) and arterial/venous blood gas) at the time of presentation to hospital.

BMJ Open

3	119
4	117
5	120
6 7	120
/ 8	
9	121
10	
11	122
12	
13	123
14	120
15	124
16	124
17	
18	125
19	
20	126
21	
22	127
23 24	14/
24 25	120
25 26	128
20	
28	129
29	
30	130
31	
32	131
33	151
55	
34	100
34 35	132
34 35 36	
34 35 36 37	132 133
34 35 36 37 38	
34 35 36 37 38 39	
34 35 36 37 38 39 40	133
34 35 36 37 38 39 40 41	133 134
34 35 36 37 38 39 40 41 42	133
34 35 36 37 38 39 40 41 42 43	133 134 135
34 35 36 37 38 39 40 41 42 43 44	133 134
34 35 36 37 38 39 40 41 42 43 44 45	 133 134 135 136
34 35 36 37 38 39 40 41 42 43 44	133 134 135
34 35 36 37 38 39 40 41 42 43 44 45 46	 133 134 135 136
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	 133 134 135 136
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	 133 134 135 136 137
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	 133 134 135 136 137 138
34 35 36 37 38 40 41 42 43 44 45 46 47 48 9 51 51	 133 134 135 136 137
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53	 133 134 135 136 137 138 139
34 35 36 37 39 40 41 42 43 44 50 51 52 53 54	 133 134 135 136 137 138
34 35 37 38 30 41 42 44 45 47 49 51 52 34 55 55 55	 133 134 135 136 137 138 139 140
34 35 36 37 389 41 423 445 447 489 51 523 55	 133 134 135 136 137 138 139
34 35 37 39 41 42 44 45 55 55 55	 133 134 135 136 137 138 139 140
3435363739414243445447449512556557	 133 134 135 136 137 138 139 140
34353637389401423445445447449512535555	 133 134 135 136 137 138 139 140 141

1

had fewer than 10% missing data. To derive a prediction model, we undertook univariable logistic regression analysis assessing associations between candidate variables and COVID-19 diagnosis (including all COVID-19 irrespective of RT-PCT status). We then used a backward elimination approach to create a multivariable predictive model, with stepwise elimination of variables, using likelihood ratio tests and Akaike information criterion to compare models. Interaction in the model were also assessed using likelihood ratio testing.

Points were assigned to each variable by identifying clusters of regression coefficients from the final model, then taking the median of those clustered coefficients and scaling so the lowest point score is at least one, and then rounding to the nearest integer.¹⁴ A COVID-19 diagnostic risk score was then derived by combining the points based on patient characteristics. Performance of both the full predictive model and risk score was assessed using the area under the receiver-operator curve (AUROC, also known as concordance-statistic) for discrimination, and plots of predicted probability of COVID-19 against observed risk of COVID-19 for calibration (calibration plots). Decision curve analysis was also conducted to help weigh benefits of using the model, compared to assuming all or no patients were diagnosed with COVID-19, and comparison with other single variables with strong associations with COVID-19. Internal model validation was done using the bootstrap procedure, with final model applied to each bootstrap sample (n=200), and an optimism corrected AUROC calculated.¹⁵ A prediction model was also generated using bootstrap samples and tested on the original dataset. Cut-off thresholds were defined to identify patients at high- and low-risk of COVID-19 after plotting risk score against observed COVID risk such that the high-risk group accounted for as many COVID-19 cases as the low-risk as few as possible. Sensitivity, specificity, positive predictive

BMJ Open

value (PPV) and negative predictive value (NPV) were calculated for each threshold, and NPV

and PPV calculated for varying prevalence of COVID-19 amongst medical admissions.

Sensitivity analysis used multivariate multiple imputation with chained equations for missing

data, assuming they were missing at random. Imputation was done for missing candidate

predictor variables using 20 imputations, and model generation and performance repeated. All

analyses were done using Stata version 16 (StataCorp 2019). Predictive modelling elements

Between 2nd March and 3rd May 2020, 4008 patients were admitted (2536 at Northwick Park

Hospital, and 1472 at Ealing Hospital), with 1792 (44.7%) diagnosed with COVID-19 (figure 1).

There were a median of 65 (IQR 57-76) admissions daily, including median daily admission of

47 (IQR 28-56) patients diagnosed with COVID-19 (supplementary figure 1). 1391 (77.6%)

COVID-19 diagnoses had at least one positive SARS-CoV-2 RT-PCR. 283 (15.8%) had at

least one negative and no positive RT-PCR, and 119 (6.6%) did not have a RT-PCR result.

There were several differences between patients with and without a COVID-19 diagnosis at

1). Most notably patients with COVID-19 were more likely to be male, be more unwell at

admission (NEWS score 6 vs 2 for patients without COVID-19) and more likely to need

lung infiltrates (79% vs 48%) and less likely to have clear lung fields (7% vs 33%).

discharge (including those with false negative RT-PCR results, table 1 and supplementary table

supplementary oxygen. On chest radiograph, patients with COVID-19 were more likely to have

are presented in accordance with TRIPOD guidance.¹⁶

3	142
4	143
5 6	144
0 7	144
, 8	145
9	143
10	140
11	146
12 13	1.45
13 14	147
15	
16	148
17	
	149
19	
20	150
21 22	
22	151
24	
25	152
26	
27	153
28	155
29 30	154
30 31	154
32	155
33	155
34	150
55	156
36	1.57
37 38	157
39	
40	158
41	
42	159
43	
44 45	160
46	
47	161
48	
49	162
50	
51	163
52 53	
53 54	164
55	
56	165
57	105
58	166
22	100
60	

RESULTS

Patient characteristics

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 167 4 5 6 7 8 9 10 11 170 12 13 171 14 15 16 17 18 173 19 ²⁰ 174 21 22 ₂₃ 175 24 25 176 26 27 28 177 29 30 178 31 ³² 179 33 34 ₃₅ 180 36 37 181 38 39 40 41 42 183 43 ⁴⁴ 184 45 46 47 185 48 49 186 50 51 52 53 54 188 55 56 189 57 58 59 190 60

67 Outcomes

1

Overall 248 (6.2%) of medical admissions were admitted to intensive care unit (ICU) for level 2 or 3 support. Patients with COVID-19 diagnosis were more likely to be admitted to ICU (12.7% compared to 1.0%, p<0.0001). Median time to intensive care admission was 1 day (IQR 0-3) from admission. Inpatient mortality was 15.6% overall with substantially higher mortality in patients with COVID-19 diagnosis (26.9% compared to 6.4%). 0.4% [n=16] remained admitted at the time of data extraction or were missing mortality status. Inpatient death occurred a median of 5 (IQR 2-10) days after admission for patients with COVID-19, and hospital stay was longer than for those without COVID-19 (median 5 [IQR 3-11] days compared to median 3 [IQR 1-7] days, P<0.0001).

178 Sensitivity of SARS-CoV-2 RT-PCR

Based on COVID-19 patients with a at least one valid SARS-CoV-2 RT-PCR result (n=1674), 16.9% (n=283) diagnosed with COVID-19 had at least one false-negative RT-PCR. 217 patients had a single negative result, with 66 having two or more negative results. Median time from admission to negative swab was 0 (IQR 0-1) days. Based on a clinical COVID-19 reference standard, the sensitivity of PCR was 83.1% (95% CI 81.2-84.8%). The diagnostic yield (i.e. including those without SARS-CoV-2 PCR results) of SAR-CoV-2 PCR testing of nasopharyngeal swabs was 77.6% (95% CI 75.6-79.5%). If restricted to patients with chest radiology suggestive of COVID-19, 198/968 patients with COVID-19 were RT-PCR negative, giving a sensitivity of 79.6%.

A total of 185 patients with COVID-19 had two RT-PCR tests within 24 hours, at least one of
 which was positive. 35/185 had a false-negative RT-PCR, giving a sensitivity of 81.1% (95% CI

Page 15 of 48

1

BMJ Open

2	
3	101
4	191
5	
6	192
7	174
8	193
9	
10	104
11	194
12	
13	195
14	175
15	
	196
16	
17	
18	197
19	
20	100
21	198
22	
22	199
23	1))
24	
25	200
26	
27	
28	201
20 29	
29	202
30	202
31	
32	203
33	205
34	
35	204
36	
50	205
37	205
38	
39	206
40	206
41	
42	207
43	207
44	208
45	
46	200
47	209
48	
49	210
50	210
51	211
52	
53	
54	212
55	
56	212
57	213
52	

74.7-86.5%). 62/254 patients with COVID-19 and two or more RT-PCR tests within 48 hours,
giving a sensitivity of 75.6% (95% CI 70.0-80.5%). 557 patients with two RT-PCR tests within
24 hours had an initial negative test, of whom 17 had a second test that was positive, giving an
incremental yield of 3.1% (95% CI 1.9-4.8%). 36/669 patients with an initial negative RT-PCR
had a second test that was positive within 48 hours, giving an incremental yield of 5.4% (95%
CI 3.9-7.4%).

¹198 False-negative COVID-19 RT-PCR

Of patients with RT-PCR negative COVID-19, 70.0% (198/283) had chest radiography or chest 9 0 CT suggestive of COVID-19 based on BSTI coding, 80.2% (227/283) had lung infiltrates on chest imaging, and only 6.7% (19/283) had normal lung fields on chest radiography. 88.0% 2 reported cough, fever or shortness of breath at admission. Broadly, patients with false-negative 3 RT-PCR COVID-19 and those confirmed by positive PCR had similar demographic and clinical 4 characteristics. Distribution of NEWS score and CRP were similar to RT-PCR-confirmed COVID-19 patients, and differed from those without COVID-19 diagnosis (supplementary figure 5 6 2). Notable differences include false-negative RT-PCR COVID-19 patients being more likely to 7 report shortness of breath, slightly longer duration of symptoms (median of 7 [IQR 3-12] days 8 compared to 6 [IQR 3-10] days for PCR-positive patients) (table 1). False negative RT-PCR 9 patients also had higher median lymphocyte and platelet counts.

Importantly, outcomes were worse for patients with RT-PCR confirmed COVID-19 compared to
those who were had a false-negative RT-PCR, with a higher proportion admitted to ITU (13.8
[95% CI 12.1-15.7 vs 7.8 [95% CI 5.2-11.5]%, p=0.006), and more patients dying during
admission (29.4 [95% CI 27.1-31.9]% vs 21.0 [95% CI 12.7-21.4]%, p<0.0001). When limited

1.

BMJ Open

1

1 2	
3_4 215 5	to patients with chest radiology suggestive of COVID-19, patients with false-negative RT-PCR
6 216 7	disease still had better outcomes than PCR-confirmed COVID-19 (ITU admission 8.4%,
8 217 9 217	mortality 16.3%, n=227). In exploratory analyses adjusted for age, sex, co-morbidities,
10 11 218 12	admission oxygen saturation and admission urea, OR for mortality was 0.41 (95% CI 0.27-0.61)
13 219 14	for RT-PCR negative compared to RT-PCR positive COVID-19 (see table supplementary table
$^{15}_{16}$ 220	2).
17 18 221 19	
²⁰ 222 21	Predictors of COVID-19 and diagnostic model
22 23 223 24	Several demographic and clinical variables were strongly associated with a diagnosis of
25 224 26	COVID-19, both in univariable and multivariable analysis (table 2). Abnormal chest radiography
²⁷ 28 29	with infiltrates (OR 7.8, 95% CI 6.3-9.6), CRP over 50 (OR 6.0, 95% CI 5.2-6.9) and NEWS 2
30 226 31	score 5 or more (OR 5.2, 95% CI 5.0-6.6) had the strongest associations with COVID-19
³² 227 33	diagnosis.
34 35 228 36	
37 229 38	The final multivariable diagnostic model included age (modelled as a binary variable being
³⁹ 40 230	between 50 and 70 years old), sex, ethnicity, reporting anyone of cough, fever or shortness of
41 42 231 43	breath, NEWS 2, CRP, and chest radiograph appearance (n=2,940 table 3). Discrimination of
44 232 45	the full model was moderate (AUC of ROC 0.83, 95% CI 0.82-0.85), with good calibration (see
46 47 233 48	figure 2). A simplified risk score was constructed based on β -coefficients (table 3), with similar
49 234 50	calibration and discrimination to the full model (AUC 0.83, 95% CI 8.1 – 8.4). Internal validation
51 52 53	using bootstrap samples (n=200) generated an optimism corrected AUC 0.82 (95% CI 0.80-
53 54 236 55	0.84, AUC for internal validated model 0.83 [95% CI 0.81 – 0.85]). Decision curve analysis
56 237 57	showed the diagnostic risk score model had better clinical utility across a range of thresholds
58 59 238 60	than treating all or no patients as having COVID-19, using a CRP of >50, or a NEWS score ≥5

BMJ Open

2		
3 4 5	239	(see figure 2). The model and risk score performed similarly in sensitivity analyses using
	240	multiple imputation instead of complete case analysis, and assessing the risk score using the
9	241	whole patient population (see supplementary table 3).
10 11 12	242	
13 14	243	The number and proportion of patients with or without COVID-19 diagnosis based on the risk
15 16 17	244	score is shown in figure 3. 446 (15%) of patients had a score of <4, of whom 10.9% (49/446)
18 19	245	were diagnosed with COVID-19. Using this threshold to identify patients <i>without</i> COVID-19 had
21	246	a 26.6% sensitivity, but 96.6% specificity, with an 89.0% positive predictive value (PPV,
24	247	supplementary table 4). 594 (20.2%) patients were above the high-risk threshold, set at a
26 27	248	diagnostic risk score >9. At high COVID-19 prevalence (50%), this threshold had a good PPV
28 29	249	(>90%), and at a low prevalence (<5%), had a high NPV. However, most patients fell in
31	250	between both thresholds. Potential uses for such a clinical score are highlighted in
33 34	251	supplementary table 5.
35 36	252	supplementary table 5.
38	253	
41	254	DISCUSSION
43	255	The key findings of this study are that SARS-CoV-2 RT-PCR negative COVID-19 is common
45 46	256	amongst patients admitted to hospital, with real-life sensitivity of RT-PCR testing from NPS
48	257	being 83% compared to a clinical reference standard of clinical diagnosis of COVID-19.
50	258	Patients with RT-PCR negative COVID-19 had similar clinical characteristics to RT-PCR
53	259	positive patients in this and other cohorts, ¹⁷ although significantly better outcomes (lower risk of
55	260	mortality and ITU admission). ^{13,17} The proportion and number of COVID-19 admissions was
56 57 58 59 60	261	increased during a three-week period from the 22 nd March to 11 th April 2020, and patients with

Page 18 of 48

1 2	
3	2.62
4	262
5	2(2
6 7	263
/ 8	264
9	264
10	0.65
11	265
12	• • •
13 14	266
15	
16	267
17	
18	268
19	
20 21	269
22	
23	270
24	
25	271
26	
27 28	272
29	
30	273
31	
32	274
33 34	
34 35	275
36	
37	276
38	
39	277
40 41	
41 42	278
43	
44	279
45	_,,
46	280
47 48	200
49	281
50	201
51	282
52	282
53	202
54 55	283
55 56	701
57	284
58	205
59	285
60	

COVID-19 were substantially more unwell than patients without COVID-19, with implications for
 service delivery. Mortality in patients admitted without COVID-19 was also high at 6.4%.
 The current gold standard diagnostic test for COVID-19, SARS-CoV-2 PCR from

asopharyngeal swabs, has several limitations which are challenging health systems and healthcare facilities management. We demonstrate, despite high analytical sensitivity, the reallife sensitivity of PCR is inadequate (around 80% at best).¹⁸ Repeat testing of patients with an initial negative RT-PCR only increased yield by 3-5% within 48 hours. In addition to slow turnaround times, and resource and logistical challenges, there is an urgent need for alternative rapid and accurate methods to triage and stratify patient's risk of COVID-19, to allow appropriate infection control measures and safe patient flow to cohort areas or isolation rooms, without overwhelming hospital infrastructure. CT imaging of lungs can lack specificity for COVID-19, and rapid RT-PCR platforms are expensive and have inadequate throughput for future peaks of COVID-19.^{19,20} Few studies have assessed pragmatic tools to assess risk of COVID-19 based on readily available clinical or laboratory variables.^{21,22}

We found several clinical, radiological and laboratory blood factors that were associated with COVID-19. Our diagnostic score had moderate performance for discriminating COVID-19 from other diagnoses (AUROC 0.83). A low risk threshold had a good specificity and PPV, therefore could be used identify patients with a low COVID risk for transfer to a low-risk cohort area. Similarly, the high-risk score had a good PPV and specificity, therefore these patients could be managed as having COVID-19, and cared for in isolation rooms or cohorts if necessary. Those patients in neither high- nor low-risk group may benefit from rapid COVID-19 RT-PCR or antigen testing, depending on capacity. However, this score would need external validation

Page 19 of 48

1

BMJ Open

2	
3	286
4	200
5	
6	287
7	
8	200
9	288
10	
11	289
	20)
12	
13	290
14	
15	291
16	291
17	
18	292
19	_>_
20	
	293
21	
22	294
23	294
24	
25	295
26	
27	•••
28	296
29	
30	297
	2)1
31	
32	298
33	
34	200
35	299
36	
37	300
38	200
39	
40	301
41	
	302
42	502
43	
44	303
45	
46	204
47	304
48	
49	305
50	505
51	
52	306
52 53	
	307
54	307
55	
56	308
57	-
58	200
59	309
60	

before use. Although derived from a cohort including unselected acute medical admissions, the
higher prevalence of other respiratory viral pathogens may impact performance, especially
specificity.²³ Furthermore, this score does not account for the vulnerability of individual patients
for severe COVID-19 (eg based on age or comorbidities), which would also impact decisions on
isolation and testing.²²

This is the first study, to our knowledge, reporting lower ITU admissions and mortality in RT-PCR negative patients with COVID-19, despite similar markers of disease severity at admission (NEWS, CRP, oxygen saturations and requirement for supplementary oxygen), and in multivariable adjusted model. Interestingly, the median duration of symptoms was slightly longer, and median lymphocyte count was slightly higher in PCR-negative patients, suggesting they presented slightly later in their disease course, and therefore may be at a phase of illness with lower viral burden in the upper respiratory tract.^{24–26} This may also be associated with their better prognosis. Other potential reasons for better outcomes in PCR-negative patients with COVID-19 include misclassification bias, where other respiratory conditions may have been classified as COVID-19. However, sensitivity analysis in patients with chest radiology suggestive of COVID-19 had similar findings, and a small number of misclassifications are unlikely to lead to such substantial differences in mortality.

During the study period, the overall number of daily admissions did not increase substantially.
However, the proportion of admissions that were related to COVID-19 increased substantially in
late March and early April, with a fall in non-COVID-19 admissions, as previously
documented.²⁷ This has implications for planning for future COVID peaks. Another important
finding was the high mortality in patients without COVID-19, an over two-fold increase from

BMJ Open

mortality in the previous year (2.4% compared to 6.4%).²⁷ Whilst we were unable to describe the causes of death amongst these patients, the increased mortality may result from late presentation to hospital due to national government-mandated 'lockdown' COVID-19 control measures and fear of nosocomial transmission risk. This has been previously documented in paediatric, cardiology, and oncology patients, but not amongst acute medical admissions.^{28,29} This study has several strengths. The cohort is in a large acute hospital trust with two sites

covering a diverse population, and all consecutive medical admissions were included. This is one of the first large cohorts to report data on unselected acute medical admissions, and one of the largest cohorts of RT-PCR negative patients with COVID-19. There are also several limitations. The retrospective nature of the study has inherent limitations, including missing data. Although we included consecutive admitted patients, not all patients had SARS-CoV-2 testing, and two different RT-PCR assays were used. The decision to repeat tests on patients with negative RT-PCR results was made by the responsible clinical team. The absence of serology or other confirmatory testing introduces a risk of misclassification bias and RT-PCR inclusion in the reference standard, and the influence of variables including in the diagnostic risk score on clinical diagnosis of COVID-19 introduces incorporation bias. However there remains no perfect reference standard for COVID-19 diagnosis and these biases are unlikely to significantly impact our findings. Our diagnostic risk model needs external validation, only has moderate discrimination, and is at risk of overfitting. Systematic reviews have struggled to identify other diagnostic clinical scores with high discrimination, and effective patient management is likely to involve a combination of clinical features, radiology and rapid PCRtesting.11

1!

BMJ Open

2		
4	334	In conclusion, we demonstrate that RT-PCR negative COVID-19 is common amongst patients
5 6 7	335	admitted to hospital, and is associated with a better outcome despite similar severity at
9	336	presentation. We derived and internally validated a diagnostic risk score with potential utility to
10 11 12	337	help triage patients admitted from the emergency department, although prospective trials of
	338	different approaches are warranted in future peaks of COVID-19.
15 16	339	
17 18	340	Acknowledgments
	341 342	The authors would like to acknowledge all staff at London North West University Healthcare
22	343	Trust who were involved in the care of patients during the study period, staff supporting the
	344	provision of clinical care, and all patients and their families.
26 27 28	345	
30	346	Funding statement
31 32 33	347	This research received no specific grant from any funding agency in the public, commercial or
	348	not-for-profit sector
37	349	
38 39 40	350	Author contributions
41 42	351	AGW, CKM, TC, VP, GS, RT, NV, SD, AW, AM and PP made substantial contribution to the
	352	conception of the work. AGW, CKM, AW, AM and PP made substantial contribution to the
45 46 47	353	design of the work. AGW, CKM, JB, SF, GS, JT, NG, HC contributed to data acquisition. AGW
49	354	and CKM analysed the data. AGW, CKM, AW, AM, PP contributed to data interpretation. AGW
50 51 52	355	and CFM drafted the manuscript. All authors contributed to revising the manuscript critically for
	356	important intellectual content, approved the final manuscript and are accountable for all aspects
	357	of the work.
57 58	358	
59 60		

1	
2 3 250	
4 359	Patient and Public Involvement Statement
5	
6 360 7	Due to the retrospective nature of this study, undertaken during the COVID-19 pandemic,
7	
8 9 361	patients or the public were not involved in the design, or conduct, or reporting, or dissemination
10	
₁₁ 362	plans of our research.
12 13 2 C2	
13 363 14	
16 ³⁶⁴	Competing interests statement
17	The suthers have no compating interacts to dealars
18 365 19	The authors have no competing interests to declare
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29 30	
31	The authors have no competing interests to declare
32	
33	
34 35	
36	
37	
38	
39 40	
40	
42	
43	
44 45	
45	
47	
48	
49 50	
50	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

		Not diagnosed	All COVID	p-value	COVID negative	COVID diagnosis	p-
		with COVID	diagnoses		PCR	PCR positive	value
		n=2215	n=1793		n=283	n=1391	
Age at admission, median		71 (51, 82)	69 (56, 81)		70 (54, 79)	70 (57, 81)	
years (IQR)		(n=2215)	(n=1793)	0.44	(n=283)	(n=1391)	0.27
Age 65 years or older		1266 (57.2%)	1005 (56.1%)	0.48	154 (54.4%)	800 (57.5%)	0.34
Sex	Female	1021 (46.1%)	651 (36.3%)	<0.001	112 (39.6%)	498 (35.8%)	0.23
	Male	1193 (53.9%)	1142 (63.7%)		171 (60.4%)	893 (64.2%)	
Ethnicity	South Asian	486 (21.9%)	447 (24.9%)	<0.001	57 (20.1%)	362 (26.0%)	0.15
	Asian Other	174 (7.9%)	211 (11.8%)		30 (10.6%)	162 (11.6%)	
	Black African or						
	Caribbean	212 (9.6%)	224 (12.5%)		33 (11.7%)	181 (13.0%)	
	Mixed Ethnicity	6 (0.3%)	10 (0.6%)		2 (0.7%)	8 (0.6%)	
	Unknown	330 (14.9%)	318 (17.7%)		53 (18.7%)	233 (16.8%)	
	White European	890 (40.2%)	458 (25.5%)		81 (28.6%)	361 (26.0%)	
	Other	117 (5.3%)	125 (7.0%)		27 (9.5%)	84 (6.0%)	
Index of Multiple							
Deprivation Decile,			5 (3, 6)				
median (IQR)		5 (3, 7) (n=2105)	(n=1743)	0.048	4 (3, 6) (n=277)	5 (3, 6) (n=1366)	0.043
Diabetes		563 (25.7%)	599 (33.6%)	<0.001	81 (28.9%)	482 (34.8%)	0.059
Hypertension		825 (37.7%)	739 (41.5%)	0.015	110 (39.3%)	590 (42.6%)	0.31
Ischaemic Heart Disease		413 (18.9%)	309 (17.3%)	0.21	44 (15.7%)	247 (17.8%)	0.40
Heart Failure		156 (7.1%)	70 (3.9%)	<0.001	14 (5.0%)	53 (3.8%)	0.36

Chronic Obstructive							
Pulmonary Disease		185 (8.5%)	112 (6.3%)	0.010	21 (7.5%)	88 (6.3%)	0.48
Asthma		200 (9.1%)	165 (9.3%)	0.89	19 (6.8%)	133 (9.6%)	0.14
Cancer		169 (7.7%)	78 (4.4%)	<0.001	11 (3.9%)	65 (4.7%)	0.58
HIV		21 (1.0%)	14 (0.8%)	0.56	3 (1.1%)	11 (0.8%)	0.64
Cerebrovascular Disease		110 (5.0%)	96 (5.4%)	0.61	15 (5.4%)	75 (5.4%)	0.97
Dementia		156 (7.1%)	188 (10.5%)	<0.001	29 (10.4%)	153 (11.0%)	0.74
Chronic Kidney Disease		263 (12.0%)	233 (13.1%)	0.31	33 (11.8%)	182 (13.1%)	0.54
Cough		537 (24.5%)	1114 (62.5%)	<0.001	177 (63.2%)	865 (62.4%)	0.80
Shortness of breath		687 (31.4%)	1171 (65.7%)	<0.001	203 (72.5%)	886 (63.9%)	0.006
Fever		547 (25.0%)	1117 (62.7%)	<0.001	184 (65.7%)	860 (62.0%)	0.25
Confusion		241 (11.0%)	195 (10.9%)	0.95	30 (10.7%)	153 (11.0%)	0.87
Symptom duration (days),			7 (3, 10)				
median (IQR)		4 (2, 12) (n=592)	(n=1083)	0.010	7 (3, 12) (n=163)	6 (3, 10) (n=844)	0.021
<u>Observations</u>			- L				
Pulse >120 bpm		203 (10.3%)	241 (14.3%)	<0.001	41 (15.4%)	177 (13.4%)	0.39
Respiratory rate >30 per							
minute		175 (8.9%)	568 (33.6%)	<0.001	90 (33.8%)	439 (33.3%)	0.87
Temperature >38°C		180 (9.2%)	605 (35.9%)	<0.001	72 (27.0%)	495 (37.7%)	<0.00
Systolic Blood Pressure							
<100 mmHg		108 (5.5%)	101 (6.1%)	0.51	16 (6.1%)	78 (6.0%)	0.97
Consciousness level	Alert	646 (95.1%)	596 (96.0%)	0.93	101 (97.1%)	449 (95.5%)	0.47
	Confusion	13 (1.9%)	11 (1.8%)		3 (2.9%)	8 (1.7%)	

	Verbal	8 (1.2%)	5 (0.8%)		0 (0.0%)	4 (0.9%)	
	Pain	5 (0.7%)	3 (0.5%)		0 (0.0%)	3 (0.6%)	
	Unresponsive	7 (1.0%)	6 (1.0%)		0 (0.0%)	6 (1.3%)	
O ₂ saturations <94%		198 (10.1%)	543 (32.2%)	<0.001	79 (29.8%)	430 (32.6%)	0.37
NEWS 2 Score, median			6 (3, 8)				
(IQR)		2 (1, 4) (n=1951)	(n=1666)	<0.001	6 (4, 7) (n=264)	6 (3, 8) (n=1299)	0.73
NEWS 2 Score ≥5		477 (24.4%)	1084 (65.1%)	<0.001	176 (66.7%)	840 (64.7%)	0.53
Supplementary oxygen		169 (8.8%)	529 (33.1%)	<0.001	96 (37.9%)	404 (32.4%)	0.091
PO₂ <8 mmHg		127 (35.4%)	251 (36.2%)	0.79	34 (27.9%)	205 (38.7%)	0.025
PCO₂ >6 mmHg		124 (34.5%)	75 (10.8%)	<0.001	12 (9.8%)	59 (11.1%)	0.68
Neutrophils >10 x10^9/L		361 (17.8%)	250 (15.6%)	0.083	52 (19.0%)	183 (14.7%)	0.078
Lymphocytes <1 x10^9/L		509 (25.1%)	736 (46.1%)	<0.001	107 (39.1%)	594 (47.8%)	0.009
Platelet count x10^9/L,		246.0 (193.0,	231.0 (177.0,		263.0 (206.0,	226.0 (172.0,	
median (IQR)		317.0) (n=2025)	306.0) (n=1597)	<0.001	343.0) (n=274)	297.0) (n=1242)	<0.001
Creatinine >120 mmol/L		507 (25.2%)	426 (26.9%)	0.24	64 (23.8%)	338 (27.4%)	0.23
CRP µg/mL, median (IQR)		16.1 (3.4, 66.9)	98.7 (46.0,		86.2 (41.7, 170.1)	101.5 (48.3, 180.2)	
		(n=1928)	175.3) (n=1590)	<0.001	(n=272)	(n=1237)	0.15
Influenza RT-PCR	Influenza A	11 (2.3%)	1 (0.2%)	<0.001	0 (n=72)	1 (0.2%) (n=445)	0.31
		(n=490)	(n=528)				
	Influenza B	9 (1.9%)	2 (0.4%)		1 (1.4%)	1 (0.2%)	

Table 1. Baseline characteristics for patients, including demographics, co-morbidities, admission vital signs and laboratory blood tests, stratified by diagnosis and SARS- CoV-2 RT-PCR status. Data on com-morbidities represents number with each condition. Where data are missing,

numbers in each category are presented. P-values are calculated using chi-squared for proportions, t-tests for means and Wilcoxon rank sum for medians. CRP C-reactive Protein, IQR inter quartile range. NEWS National Early Warning Score. PO2 partial pressure of oxygen, PCO2 partial pressure of carbon dioxide.

For peer review only

			Univariable Regres	ssion	Multivariable regre	ssion
Variable		N	Odds Ratio (95%	D	Odds Ratio (95%	Ð
			<u>CI)</u>		<u>CI)</u>	
Age	increase 10 years	4,00		0.015	•	
		8	1.05 (1 - 1.08)			
	50-70	4,00		<0.000		<0.000
		8	1.62 (1.4 - 1.86)	1	1.7 (1.4 - 2.08)	1
Sex	Male	4,00		<0.000		<0.000
		8	1.5 (1.3 - 1.71)	1	1.26 (1.1 - 1.52)	1
IMD Decile		3,84		0.013		
		8	0.97 (0.9 - 1)			
Diabetes		3,97		<0.000		
		1	1.46 (1.3 - 1.68)	1		

Hypertension		3,97		0.007		
		1	1.17 (1 - 1.33)			
Ethnicity		4,00				
		8				
	White	1,34		<0.000		<0.000
		8	1	1	1	1
	Asian	1,31				
		8	1.94 (1.7 - 2.26)		1.82 (1.5 - 2.27)	
	Black	436	2.05 (1.6 - 2.56)		1.85 (1.4 - 2.53)	
	Mixed/ Other	258	2.13 (1.6 - 2.79)		2.25 (1.5 - 3.33)	
	Unknown	648	1.87 (1.5 - 2.27)		1.77 (1.3 - 2.34)	
Symptoms		3,97		6.		
		1				
	Cough			<0.000		
			5.13 (4.5 - 5.88)	1		
	Shortness of			<0.000		
	breath		4.19 (3.7 - 4.79)	1		
	Fever			<0.000		
			5.04 (4.4 - 5.78)	1		
Respiratory rate	Any of above	4,00		<0.000		<0.000
-		8	6.29 (5.4 - 7.36)	1	3.11 (2.5 - 3.85)	1
Oxygen		3,65		<0.000		
saturations		4	1.14 (1.1 - 1.15)	1		

Page 29 of 48

 BMJ Open

NEWS Score	Continuous	3,64		<0.000		
	(linear)	7	0.89 (0.9 - 0.9)	1		
	Continuous	3,61		<0.000		
	(linear)	7	1.39 (1.3 - 1.42)	1		
CRP	>5			<0.000		<0.000
			5.76 (5 - 6.65)	1	2.39 (2 - 2.87)	1
	every 10 increase	3,51		<0.000		
		8	1.01 (1 - 1.01)	1		
Lymphocytes	>50			<0.000		<0.000
			5.99 (5.2 - 6.93)	1	3.11 (2.6 - 3.75)	1
	Continuous	3,62		<0.000		
	(linear)	4	0.66 (0.6 - 0.72)	1		
Chest x-ray	<1			<0.000		<0.000
			2.54 (2.2 - 2.93)	1	1.72 (1.4 - 2.08)	1
		3,58				
		1				
	Normal	718		<0.000		<0.000
			1	1	1	1
	lung infiltrates	2,26				
		2	7.79 (6.3 - 9.65)		3.75 (2.9 - 4.91)	
	other abnormality	601	3.56 (2.8 - 4.6)		1.94 (1.4 - 2.68)	
	CVCX0	424		<0.000		
			1	1		

CVCX1	1,04	25.85 (18.7 -		
	0	35.66)		
CVCX2	435	2.98 (2.3 - 3.93)		
CVCX3	129	1.64 (1.1 - 2.44)		

Table 2. Univariable and multivariable logistic regression analysis for risk of COVID-19 diagnosis. P-values calculated using likelihood ratio . n a.. . variables in τ.. .STI) classification of ches. tests. There was no evidence of interaction between variables in the final multivariable model. N=2,490 for multivariable model. CVCX represents British Society of Thoracic Imaging (BSTI) classification of chest x-ray. CRP C-reactive Protein

<u>Variable</u>		Coefficient	Standard error	Diagnsoti c score points
Age	50-70	0.53 (0 - 0.41)	0.09	1
Sex	Male	0.23 (0.3 - 0.73)	0.10	1
Ethnicity	Asian	0.6 (0.4 - 0.82)	0.11	1
	Black	0.62 (0.3 - 0.93)	0.16	1
	Mixed/Other	0.81 (0.4 - 1.2)	0.20	1
	Unknown	0.57 (0.3 - 0.85)	0.14	1
Cough, fever or shortness of breath		1.13 (0.9 - 1.35)	0.11	2
NEWS2 Score	>5	0.87 (0.7 - 1.05)	0.09	2
CRP	>50	1.13 (1 - 1.32)	0.09	2
Lymphocytes	<1	0.54 (0.4 - 0.73)	0.10	1
Chest x-ray	lung infiltrates	1.32 (1.1 - 1.59)	0.14	2
	other abnormality	0.66 (0.3 - 0.98)	0.16	1

Table 3. Multivariable logistic regression diagnostic model for COVID-19, with regression (β) co-efficients and diagnostic score points. The constant (intercept) was -4.0 (95% cl -4.4 to - 3.6). N= 2,940.

			F	Prevalenc	e	
Low-risk diagnostic score	Study	0.5	0.2	0.1	0.05	0.01
threshold (<4)	population					
Sensitivity	26.6%	-	-	-	-	-
Specificity	96.6%	-	-	-	-	-
PPV	89.0%	88.7%	66.2%	46.6%	29.2%	7.3%
NPV	56.0%	56.8%	84.0%	92.2%	96.2%	99.2%

High-risk diagnostic score threshold (>9)						
Sensitivity	37.0%	-	-	-	-	-
Specificity	96.1%	-	-	-	-	-
PPV	90.1%	90.4%	70.1%	51.0%	33.0%	8.6%
NPV	61.2%	60.4%	85.9%	93.2%	96.7%	99.3%

Table 4. Diagnostic performance of a low COVID-19 risk threshold (less than 4 points on the diagnostic score) and high-risk threshold (greater than 9 points). Low-risk threshold diagnostic accuracy is for identifying patients <u>without</u> COVID-19, whereas high-risk threshold is for identifying patients <u>with</u> COVID-19

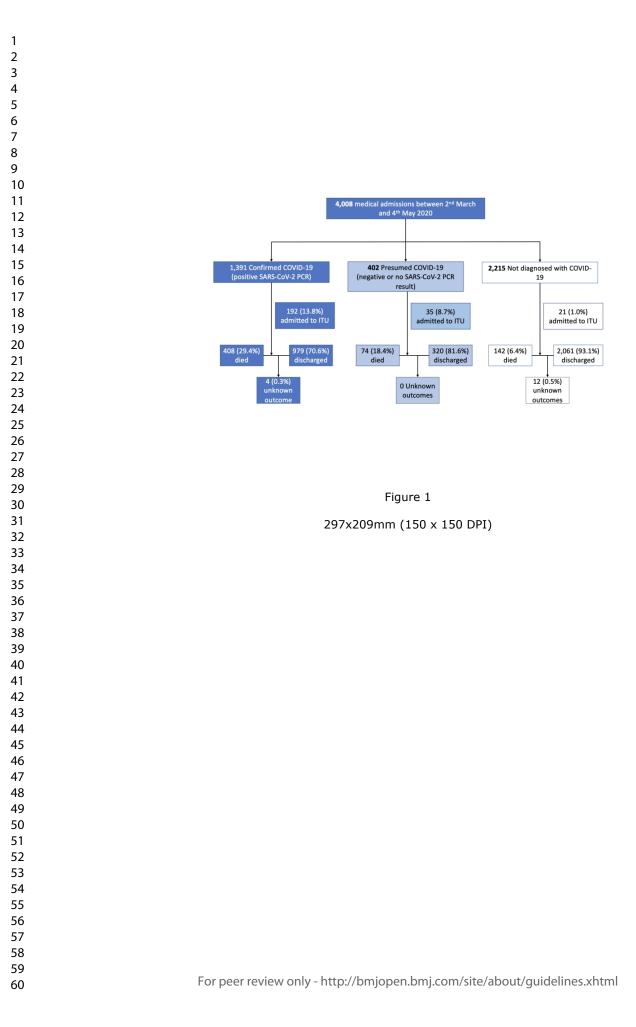
Figure 1. Patient flow diagram by final diagnosis and SARS-CoV-2 RT-PCR status with outcomes. Note 'presumed COVID' includes patients who were RT-PCR negative (n=293) and those who did not have a valid RT-PCR results (n=109)

Figure 2. (A) Receiver operator curve for the full diagnostic predictive model. Area under the curve (AUC) 0.839 (95%CI 0.824-0.853), N=2,940. (B) Calibration plot showing observed compared to predicted risk of COVID-19 diagnosis as deciles, with 95% confidence interval. The dashed green line shows perfect calibration. (C) Decision curve analysis showing standardised net benefit at different threshold probabilities for diagnosing patients with COVID-19, comparing diagnosing all patients as COVID-19 (blue solid line), diagnosing no patients with COVID-19 (solid red line), and various diagnostic risk models, including the COVID diagnostic score (full model and simplified risk score), C-reactive protein over 50, and National Early Warning Score of 5 or more. CRP C-reactive Protein, NEWS National Early Warning Score

Figure 3. (A) Overlaid histogram of COVID diagnostic risk score and number of patients with COVID-19 (white) and alternative (not COVID-19) diagnoses. (B) Proportion (%) of patients with COVID-19 (orange) or alternative (not COVID-19, blue) diagnoses by COVID diagnostic risk score. N=2,940

Long C, Xu H, Shen Q, et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-

References


PCR or CT? Eur J Radiol 2020; 126. DOI:10.1016/j.ejrad.2020.108961. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, et al. False-Negative Results of Initial Rt-Pcr Assays for Covid-19: a Systematic Review. 2020; : 1-26. Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2 Infection -Challenges and Implications. N Engl J Med 2020; 383: e38. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020; : 200343. Brogna B, Bignardi E, Brogna C, et al. Typical CT findings of COVID-19 pneumonia in patients presenting with repetitive negative RT-PCR. Radiography 2020. DOI:10.1016/j.radi.2020.09.012. Watson J, Whiting PF, Brush JE. Interpreting a covid-19 test result. BMJ 2020; 369: 1-7. Jang S, Rhee J-Y, Wi YM, Jung BK. Viral Kinetics of SARS-CoV-2 over the preclinical, clinical, and postclinical period. Int J Infect Dis 2020; published online Nov. DOI:10.1016/j.ijid.2020.10.099. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708-20. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ 2020; 369. DOI:10.1136/bmj.m1985. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama 2020; 10022: 1-8. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ 2020; 369. DOI:10.1136/bmj.m1328. British Society of Thoracic Imaging. COVID-19 CXR Report Proforma. . Knight SR, Ho A, Pius R, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. BMJ 2020; 370: 1-13. Baik Y, Rickman HM, Hanrahan CF, et al. A clinical score for identifying active tuberculosis while awaiting microbiological results: Development and validation of a multivariable prediction model in sub-Saharan Africa. PLOS Med 2020; 17: e1003420. Altman DG, Vergouwe Y, Royston P, Moons KGM. Prognosis and prognostic research:

Validating a prognostic model. BMJ 2009; 338: 1432-5.

- 16 Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. *BMC Med* 2015; **13**: 1.
- 17 De Angelis G, Posteraro B, Biscetti F, *et al.* Confirmed or unconfirmed cases of 2019 novel coronavirus pneumonia in Italian patients: a retrospective analysis of clinical features. *BMC Infect Dis* 2020; **20**. DOI:10.1186/s12879-020-05504-7.
- 18 Tang Y-W, Schmitz JE, Persing DH, Stratton CW. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. 2020 www.chinamerlin.com/en/index.php?pproducts_show&id166&s_id&c_id68& (accessed Oct 15, 2020).
- Gibani MM, Toumazou C, Sohbati M, *et al.* Assessing a novel, lab-free, point-of-care test for SARS-CoV-2 (CovidNudge): a diagnostic accuracy study. *The Lancet Microbe* 2020; 0. DOI:10.1016/s2666-5247(20)30121-x.
- Salameh JP, Leeflang MMG, Hooft L, *et al.* Thoracic imaging tests for the diagnosis of COVID-19. *Cochrane Database Syst Rev* 2020; 2020.
 DOI:10.1002/14651858.CD013639.pub2.
- 21 Wake RM, Morgan M, Choi J, Winn S. Reducing nosocomial transmission of COVID-19: implementation of a COVID-19 triage system. *Clin Med* 2020; **20**: e141–5.
- 22 Patterson B, Marks M, Martinez-Garcia G, *et al.* A novel cohorting and isolation strategy for suspected COVID-19 cases during a pandemic. *J Hosp Infect* 2020; **105**: 632–7.
- 23 Pormohammad A, Ghorbani S, Khatami A, *et al.* Comparison of influenza type A and B with COVID-19: A global systematic review and meta-analysis on clinical, laboratory and radiographic findings. *Rev Med Virol* 2020; published online Oct 9. DOI:10.1002/rmv.2179.
- Zheng S, Fan J, Yu F, *et al.* Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020:
 Retrospective cohort study. *BMJ* 2020; **369**. DOI:10.1136/bmj.m1443.
- 25 To KKW, Tsang OTY, Leung WS, *et al.* Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. *Lancet Infect Dis* 2020; **20**: 565–74.
- Xiao AT, Tong YX, Gao C, Zhu L, Zhang YJ, Zhang S. Dynamic profile of RT-PCR findings from 301 COVID-19 patients in Wuhan, China: A descriptive study. *J Clin Virol* 2020; **127**: 104346.
- 27 NHS Digital. Summary Hospital-level Mortality Indicator (SHMI) Deaths associated with hospitalisation, England, March 2019 February 2020. 2020. https://digital.nhs.uk/data-

1 2 3 4 5		and-information/publications/statistical/shmi/2020-07/shmi-march-2019february-2020
6 7	28	(accessed Oct 14, 2020). Lynn RM, Avis JL, Lenton S, Amin-Chowdhury Z, Ladhani SN. Delayed access to care
8 9 10		and late presentations in children during the COVID-19 pandemic: A snapshot survey of 4075 paediatricians in the UK and Ireland. Arch. Dis. Child. 2020; 0 .
10 11 12		DOI:10.1136/archdischild-2020-319848.
13 14	29	Pessoa-Amorim G, Camm CF, Gajendragadkar P, et al. Admission of patients with
15		STEMI since the outbreak of the COVID-19 pandemic: a survey by the European
16 17		Society of Cardiology. <i>Eur Hear journal Qual care Clin outcomes</i> 2020; 6 : 210–6.
18 19		
20 21		
22 23		
24 25		
26 27		
28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
59 60		

BMJ Open

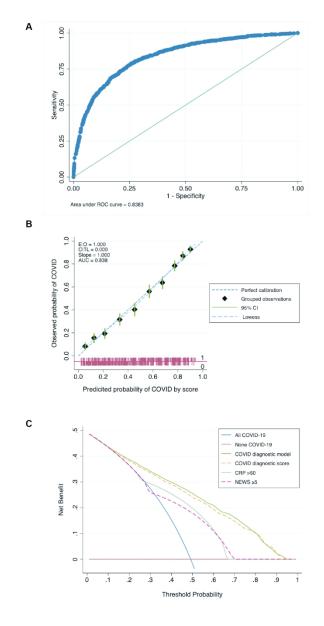
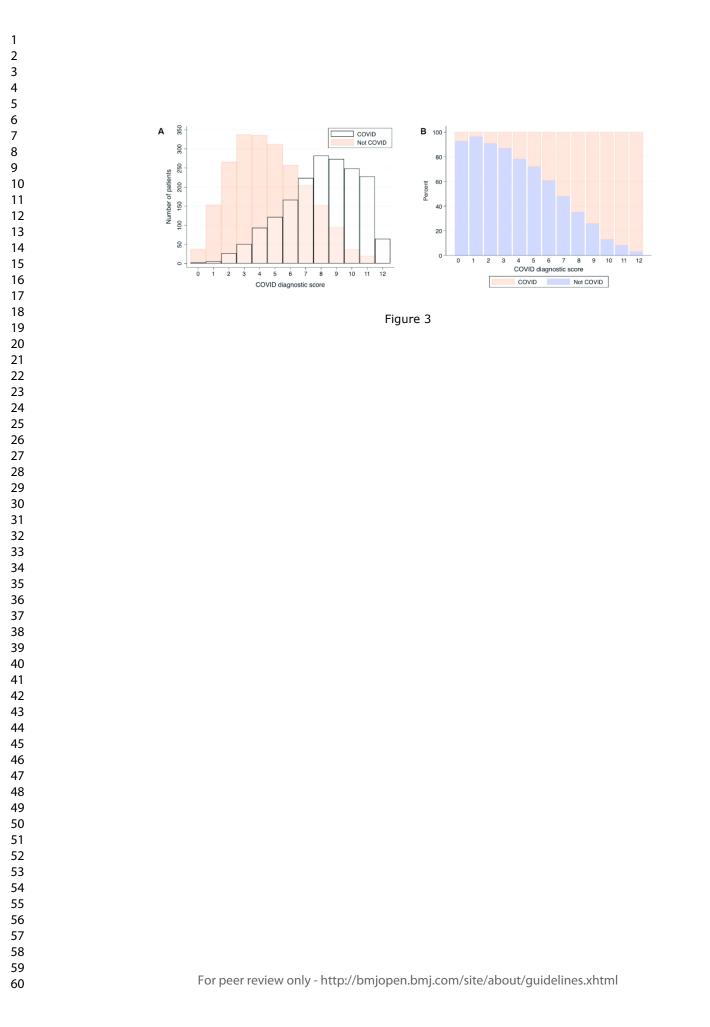



Figure 2

1	
2	
3	Supplementary Appendix- False-negative RT-PCR for COVID-19 and a diagnostic risk score: a
4 5	retrospective cohort study among patients admitted to hospital
6	readspective conort study among patients admitted to hospital
7	
8	
9	
10	
11 12	
12	
14	
15	
16	
17	
18	
19 20	
20 21	
22	
23	
24	
25	
26	
27 28	
28	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40	
41 42	
42	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55 56	
56 57	
58	
59	
60	

		Not diagnosed with		p-value	COVID negative	COVID diagnosis	р-
	1	COVID	diagnoses		PCR	PCR positive	value
		n=2215	n=1793		n=283	n=1391	
<u>Symptoms</u>							
Cough		537 (24.5%)	1114 (62.5%)	<0.001	177 (63.2%)	865 (62.4%)	0.80
Chest pain		335 (15.3%)	109 (6.1%)	<0.001	23 (8.2%)	80 (5.8%)	0.12
Diarrhoea		152 (6.9%)	131 (7.4%)	0.62	25 (8.9%)	96 (6.9%)	0.24
Fall		277 (12.7%)	166 (9.3%)	<0.001	24 (8.6%)	129 (9.3%)	0.70
Symptom duration (days), median (IQR)		4 (2, 12) (n=592)	7 (3, 10) (n=1083)	0.010	7 (3, 12) (n=163)	6 (3, 10) (n=844)	0.022
Observations		20					
Pulse, median (IQR)		89 (75, 106) (n=1964)	96 (83, 110) (n=1689)	<0.001	98 (85, 110) (n=266)	96 (83, 110) (n=1319)	0.050
Pulse >120 bpm		203 (10.3%)	241 (14.3%)	<0.001	41 (15.4%)	177 (13.4%)	0.39
Respiratory rate per minute, median (IQR)		20 (18, 23) (n=1966)	26 (21, 32) (n=1688)	<0.001	26 (22, 32) (n=266)	26 (20, 32) (n=1318)	0.59
Respiratory rate >30 per minute		175 (8.9%)	568 (33.6%)	<0.001	90 (33.8%)	439 (33.3%)	0.87
Temperature °C, median (IQR)		36.7 (36.4, 37.1) (n=1961)	37.5 (36.8, 38.4) (n=1684)	<0.001	37.3 (36.7, 38) (n=267)	37.5 (36.8, 38.4) (n=1313)	0.00
Temperature >38°C		180 (9.2%)	605 (35.9%)	<0.001	72 (27.0%)	495 (37.7%)	<0.0
Systolic Blood Pressure mmHg, median (IQR)		136 (119, 154) (n=1948)	132 (117, 147) (n=1666)	<0.001	131 (118, 146.5) (n=264)	132 (117, 148) (n=1299)	0.88
Systolic Blood Pressure mmHg <100		108 (5.5%)	101 (6.1%)	0.51	16 (6.1%)	78 (6.0%)	0.97
O ₂ saturations %, median (IQR)		97 (96, 99) (n=1961)	96 (92, 97) (n=1686)	<0.001	95 (93, 98) (n=265)	96 (92, 97) (n=1317)	0.55
O ₂ saturations <94%		198 (10.1%)	543 (32.2%)	<0.001	79 (29.8%)	430 (32.6%)	0.37
NEWS 2 Score, median (IQR)		2 (1, 4) (n=1951)	6 (3, 8) (n=1666)	<0.001	6 (4, 7) (n=264)	6 (3, 8) (n=1299)	0.73
NEWS 2 Score ≥5		477 (24.4%)	1084 (65.1%)	<0.001	176 (66.7%)	840 (64.7%)	0.53
Supplementary oxygen	Yes	169 (8.8%)	529 (33.1%)	<0.001	96 (37.9%)	404 (32.4%)	0.09

Blood gas and pathology						
PO ₂ (KPa), median (IQR)	8.8 (7.3, 11.1) (n=359)	8.7 (7.4, 10.7) (n=693)	0.51	9.1 (7.7, 10.6) (n=122)	8.5 (7.3, 10.7) (n=530)	0.1
PO ₂ <8 v	127 (35.4%)	251 (36.2%)	0.79	34 (27.9%)	205 (38.7%)	0.0
pCO ₂ (KPa), median (IQR)	5.2 (4.4, 6.7) (n=359)	4.6 (4.1, 5.2) (n=693)	<0.001	4.6 (4.1, 5.2) (n=122)	4.6 (4.1, 5.2) (n=530)	0.8
pCO₂ >6	124 (34.5%)	75 (10.8%)	<0.001	12 (9.8%)	59 (11.1%)	0.6
Haemoglobin (g/L), mean (SD)	121.7 (23.2) (n=2026)	124.4 (21.1) (n=1598)	<0.001	122.2 (21.0) (n=274)	124.6 (20.9) (n=1243)	0.0
Neutrophil count (x10^9/L), median (IQR)	5.9 (4.1, 8.6) (n=2026)	5.8 (4.0, 8.3) (n=1598)	0.20	6.7 (4.5, 9.1) (n=274)	5.6 (3.9, 8.0) (n=1243)	<0
Neutrophils >10 x10^9/L	361 (17.8%)	250 (15.6%)	0.083	52 (19.0%)	183 (14.7%)	0.0
Lymphocyte count (x10^9/L), median (IQR)	1.4 (0.9, 2.0) (n=2026)	1.0 (0.7, 1.4) (n=1598)	<0.001	1.1 (0.8, 1.4) (n=274)	1.0 (0.7, 1.4) (n=1243)	0.0
Lymphocytes <1 x10^9/L	509 (25.1%)	736 (46.1%)	<0.001	107 (39.1%)	594 (47.8%)	0.0
Platelet count (x10^9/L), median (IQR)	246.0 (193.0, 317.0) (n=2025)	231.0 (177.0, 306.0) (n=1597)	<0.001	263.0 (206.0, 343.0) (n=274)	226.0 (172.0, 297.0) (n=1242)	<0
Platelets <100 x10^9/L	80 (4.0%)	62 (3.9%)	0.92	11 (4.0%)	50 (4.0%)	0.9
ALT, median (IQR)	22.0 (15.0, 36.0) (n=1755)	31.0 (18.0, 51.0) (n=1412)	<0.001	31.0 (18.0, 55.0) (n=245)	30.0 (19.0, 51.0) (n=1096)	0.
Creatinine (mmol/L), median (IQR)	84.0 (65.0, 121.0) (n=2011)	86.0 (67.0, 124.0) (n=1582)	0.057	80.0 (65.0, 117.0) (n=269)	87.0 (68.0, 127.0) (n=1235)	0.0
Creatinine >120 mmol/L	507 (25.2%)	426 (26.9%)	0.24	64 (23.8%)	338 (27.4%)	0.2
Urea (mmol/L), median (IQR)	6.0 (4.0, 9.8) (n=2025)	6.1 (4.0, 10.6) (n=1584)	0.58	5.5 (3.8, 8.9) (n=270)	6.4 (4.1, 11.0) (n=1236)	0.0
CRP μg/mL, median (IQR)	16.1 (3.4, 66.9) (n=1928)	98.7 (46.0, 175.3) (n=1590)	<0.001	86.2 (41.7, 170.1) (n=272)	101.5 (48.3, 180.2) (n=1237)	0.1
CRP >50 μg/mL	599 (31.1%)	1160 (73.0%)	<0.001	191 (70.2%)	917 (74.1%)	0.1
Glucose (mmol/L), median (IQR)	6.6 (5.6, 8.5) (n=1182)	7.1 (5.9, 9.3) (n=910)	<0.001	6.7 (5.9, 9.1) (n=147)	7.1 (5.9, 9.3) (n=710)	0.4
Lactate >2 mmol/L	41 (3.5%)	30 (3.3%)	0.83	5 (3.4%)	21 (3.0%)	0.7

BMJ Open

Supplementary Table 1. Baseline characteristics for patients, including co-morbidities, admission vital signs and laboratory blood tests, stratified by diagnosis and SARS- CoV-2 RT-PCR status. Data on com-morbidities represents number with each condition. Where data are missing, numbers in each category are presented. P-values are calculated using chi-squared for proportions, t-tests for means and Wilcoxon rank sum for medians. CRP C-reactive Protein, IQR inter quartile range. NEWS National Early Warning Score. PO2 partial pressure of oxygen, PCO2 partial pressure of carbon dioxide.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5 6
6
7
8
9
10
11
12
13
14 15
15
16
17
14 15 16 17 18 10
19
20
21
22
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
27
24
25
26
27
28
29
30
31
32
33
34
34 35
36
36 37
37 38
38
39
40
41
42
43
44
45
46
47
48
49
49 50
51
52
53
54
55
56
57
58
59
60

60

<u>Variable</u>		Odds ratio (95% Cl)	P-value
COVID-19 RT-PCR negative		0.41 (0.3 - 0.6)	<0.0001
Age, years		1.06 (1.0 - 1.1)	<0.0001
Sex	Female	0.90 (0.7 - 1.2)	0.446
Co-morbidities	1	1.13 (0.8 - 1.7)	0.552
	2 or more	1.45 (1.0 - 2.1)	0.042
CRP		1.00 (1.0 – 1.0)	<0.0001
Oxygen Saturations			
<94%		1.41 (1.1 - 1.9)	0.016
Urea		1.04 (1 - 1.1)	<0.0001

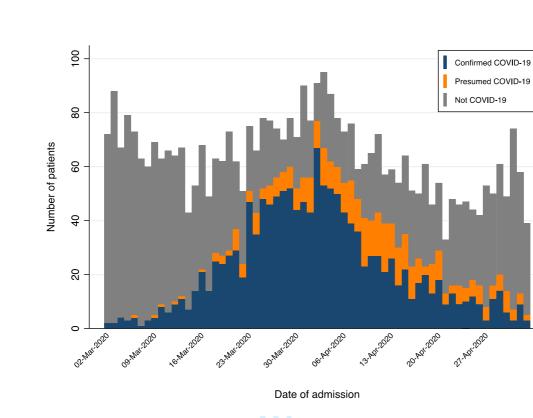
Supplementary Table 2. Multivariable logistic regression model assessing association between COVID-19 PCR-status and mortality, adjusting for other variables known to be risk-factors for mortality in COVID-19. Continuous variables modelled as linear. No interactions in the final model. P-vales calculated by likelihood ratio tests. N= 1,414.

<u>Variable</u>		ß-Coefficient	Odds ratio (95% CI)	Diagnostic score points
Age	50-70	0.4 (0.2 - 0.6)	1.5 (1.2-1.8)	1
Sex	Male	0.2 (0.0 - 0.3)	1.2 (1.0-1.4)	1
Ethnicity	Asian	0.6 (0.4 - 0.8)	1.8 (1.4-2.1)	1
	Black	0.6 (0.4 - 0.9)	1.9 (1.4-2.5)	1
	Mixed/Other	0.8 (0.4 - 1.1)	2.2 (1.5-3.1)	1
	Unknown	0.5 (0.3 - 0.8)	1.7 (1.3-2.2)	1
Cough, fever or shortness		1.3 (1.2 - 1.5)		2
of breath NEWS2 Score	>5	0.9 (0.7 - 1.1)	3.8 (3.2-4.5)	2
CRP	>50	1.1 (1.0 - 1.3)	2.4 (2.0-2.9) 3.0 (2.6-3.7)	2
Lymphocytes	<1	0.6 (0.4 - 0.8)	1.8 (1.5 – 2.2)	1
Chest x-ray	lung infiltrates	1.3 (1.0 - 1.5)	3.6 (2.8 -4.5)	2
	other abnormality	0.7 (0.4 - 0.9)	1.9 (1.4-2.6)	1

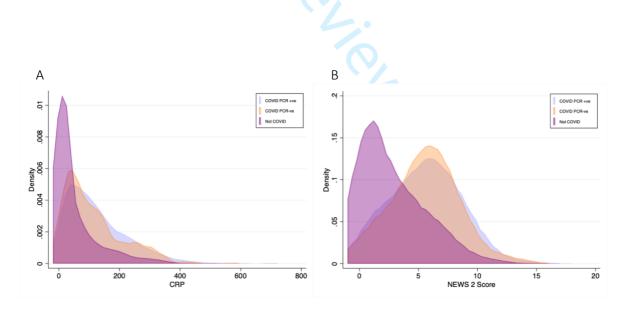
Supplementary Table 3. Logistic regression multivariable model for COVID-19 diagnosis using multivariate multiple imputation using chained equations for missing data in candidate predictor variables, with odds ratio and ß co-efficients. N=3,968. Area under the receiver operator curve (ROC) = 0.86 (95% CI 0.84 - 0.87).

2
3
4
4 5 6
6
7
/
8
9
10
11
12
13
14
14
14 15 16 17 18
16
17
18
19
20
20 21
∠ I 22
22
20 21 22 23 24 25 26 27 28 29 30
24
25
26
20
27
28
29
30
31
32
33
27
34 35
35
36
37
38
38 39
40
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
55
74
55
56
57
58
59
60

1 2


				Prevalenc	е	
Low-risk diagnostic score	Study	0.5	0.2	0.1	0.05	0.01
threshold (<4)	population					
Sensitivity	26.6%	-	-	-	-	-
Specificity	96.6%	-	-	-	-	-
PPV	89.0%	88.7%	66.2%	46.6%	29.2%	7.3%
NPV	56.0%	56.8%	84.0%	92.2%	96.2%	99.2%
High-risk diagnostic score						
threshold (>9)						
Sensitivity	37.0%	-	-	-	-	-
Specificity	96.1%	-	-	-	-	-
PPV	90.1%	90.4%	70.1%	51.0%	33.0%	8.6%
NPV	61.2%	60.4%	85.9%	93.2%	96.7%	99.3%

Supplementary Table 4. Diagnostic performance of a low COVID-19 risk threshold (less than 4 points on the diagnostic score) and high-risk threshold (greater than 9 points). Low-risk threshold diagnostic accuracy is for identifying patients <u>without</u> COVID-19, whereas high-risk threshold is for identifying patients <u>with COVID-19</u>



COVID status based on diagnostic risk score (proportion of patients expected during 'peak')	Management
Low risk, COVID-19 diagnostic risk score <4	 Alternative diagnosis most likely Rapid RT-PCR or antigen test, if negative send to 'COVID-negative' area
Medium risk, COVID-19 diagnostic score 4-9	 Uncertain if COVID-19 is cause for presentation Will need further testing to determine COVID-19 diagnosis Either test with Rapid RT-PCR or antigen test, or consider CT imaging, or standard COVID-19 RT-PCR testing and move to isolation in
High risk, COVID-19 diagnostic score >9	 COVID-19 most likely Isolate patient in COVID-19 area or isolation room and standard COVID-19 RT-PCR testing

Supplementary Table 5. Potential application of COVID-19 diagnostic risk score

Supplementary Figure 1. Number of patients admitted and final diagnosis by date of admission. Confirmed COVID-19 is patients with a positive SARS-CoV-2 PCR from nasopharyngeal swab, presumed COVID-19 is patients without a positive SARS-CoV-2 PCR but a discharge diagnosis of COVID-19. Not COVID-19 are patients without a positive SARS-CoV-2 PCR and an alternative diagnosis. N=4008.

Supplementary Figure 2. Distribution of (A) C-reactive protein (N=3518) and (B) National Early Warning Score (NEWS) (N=3889) by diagnosis at the time of hospital admission.

False-negative RT-PCR for COVID-19 and diagnostic risk score: a retrospective cohort study among patients admitted to hospital STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cohort studies*

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods		No	
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	4-5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/ measurement	Data sources/ 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe		
Bias	9	Describe any efforts to address potential sources of bias	5-6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5-6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	5-6
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	6
		(d) If applicable, explain how loss to follow-up was addressed	NA
		(e) Describe any sensitivity analyses	5-6

 BMJ Open

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	Figure 1/page 7
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1, page 7
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
		(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	7, figure S2
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	7-8
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	7-8
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7-8
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	10-11
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	12
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

False-negative RT-PCR for COVID-19 and diagnostic risk score: a retrospective cohort study among patients admitted to hospital

TRIPOD Checklist: Prediction Model Development and Validation

Title 1 D_V Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted. Abstract 2 D_V Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions. Background and objectives 3a D_V Expain the medical contoxt (including whether diagnostic or prognostic) and rationale existing models. Source of data 4a D_V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), sparsitely for the development and validation data sets, it applicable. Source of data 4a D_V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), sparsitely for the development and validation data set, it applicable. Participants 5b D_V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), sparsitely or the data), sparsitely setting (g.g., printing care, secondary care, general population) including number and location, of centres. Participants 5b D_V Describe telphylicipants, statistical applicable. 5c Outcome 6a D_V Repart any actions to bind assessment of the outcome to be predicted. 7c Predictors D_V	Section/Topic Title and abstract	Item		Checklist Item	Page
Tube I U.V. target population, and the outcome to be predicted. Abstract 2 D.V. Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions. Immediation Background and objectives Sa D.V. Explain the medical context (including whether the study describes the development or validating from the study describes the development or validation of the model or both. Methods Explain the medical context (including whether the study describes the development or validation of the model or both. Source of data 4a D.V. Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), subjectives is validation of centres. Source of data 5b D.V. Describe the study design or source of data (e.g., primary care, secondary care, general population) including moment parteel, including truth and, including how and when assistem. Describe telephone Describe telephone Outcome 6b D.V. Describe telephone Describe				Identify the study as developing and/or validating a multivariable prediction model, the	
Australia V predictors, outcome, statistical analysis, reading, and conclusions. Background and objectives 3 D/V Explain the medical context (including whether diagnostic or prognostic) and rationale diversing medials. Source of data 4 D/V Explain the medical context (including whether the study describes the development or validation of the model or beth. Source of data 4 D/V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data ests, if applicable. Participants 5a D/V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data ests, if applicable. Outcome 6a D/V Describe fielding up certains of the study setting (e.g., primary care, secondary care, general population including number and location of centres. Describe fielding up centres in private trial the prediction model, including how and tocation developing or validating the multivariable prediction model, including how and when they were measured. D Predictors 7 D/V. Report any actions to bind assessment of free ducking or the analyses methods D 10a D. Describe how predictors. Describe how predictors. D Statistical	Title	1	D;V	target population, and the outcome to be predicted.	1
Introduction Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models. 3b D:V. Explain the medical context (including whether the study desorbes the development or validation of the model or both. Source of data 4 D:V. Specify the cbjectives, including whether the study desorbes the development or validation of the model or both. Participants 5a D:V. Describe the study design or source of data (e.g., reindomized trial, cohort, or registry data), separately for the development and validation data set. If applicable. Outcome 5a D.V. Specify the key study dates, including start of accruat; end of accruat; end, if applicable. Outcome 6a D.V. Describe eligibility criteria to participants. Discribe eligibility criteria to participants. Cleardy define all predictors used in developing or validating the multivariable prediction. Discribe eligibility criteria to participants. Discribe eligibility criteria to participants. Cleardy define all predictors used in developing or validating the multivariable prediction. Discribe eligibility criteria to participants. Discribe eligibility criteria to participants. Predictors 7a D:V. Report any accions to binind assessment of predictors ore tontone eligibilit	Abstract	2	D;V		2
Baskground and objectives 3a D.V for developing or validating the multivariable prediction model, including references to existing models. Source of data 4a D.V Specify the objectives, including whether the study describes the development or validation of the model of both. Source of data 4a D.V Specify the objectives, including starf of carcula, and f car	ntroduction		1		
Background and objectives existing models. existing models. 3b D;V Specify the objectives, including whether the study describes the development or validation of the model or both. Source of data 4a D;V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable. Participants 5a D;V Specify the key study dates, including start of accrual; and, if applicable, end of following, ins of the study desting (a.g., primary care, secondary care, general opplicable). Outcome 6a D;V Objective details of treatments received, if relevant. Outcome 6a D;V Clearly define all predictors used in developing or validating the multivariable prediction when assessed. 7a D;V Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were masured. 7b D;V Clearly define all predictors used of generative at at. 8sing data 9 D;V Explain now the study size was arrived at. 10a D Describe how the generative and. f.g. 10a D Describe how the genedide in the analyses. f.g.					
and objectives Example 10/V Example 10/	Background	3a	D;V		3
Source of data Source data Source of data Source of					
Methods Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable, end of follow-up. Participants 5a D.V. Specify the key study dates, including start of accural, end of accural; end of accurac; end end of end end of end end of end end end of end		3b	D;V		3
Source of data Image: the second	Methods		1		
Source of data Image: Control of the development and valuation data sets, it applicable, and of follow-up, end of follow-up, end of follow-up, end of follow-up end of fol		4-		Describe the study design or source of data (e.g., randomized trial, cohort, or registry	4
4b D:V. Specify the key study dates, including start of accrual; and, if applicable, end of follow-up. Participants 5a D:V. Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres. Image: Specify key elements of the study setting (e.g., primary care, secondary care, general population). Outcome 6a D:V. Describe eligibility onteria for participants. Image: Specify key elements of the outcome to be predicted. Image: Specify key elements of the outcome to be predicted. Image: Specify key elements of the outcome to be predicted. Image: Specify key elements of the outcome to be predicted. Image: Specify key elements of the outcome to be predicted. Image: Specify key elements of the outcome to be predicted. Image: Specify key elements of the outcome and other predictors. Predictors 7b D:V. Report any actions to bind assessment of predictors for the outcome and other predictors. Image: Specify key of model, all model-building prodictors for the outcome and other predictors. Statistical analysis 10b D. Describe how predictors were handled (e.g., complete-case analysis, single imputation method. Image: Specify key of model, all model-building productions were calculated. Image: Specify key of model, all model-building productors were calculated. Statistical analysis 10b D <td< td=""><td>Source of data</td><td>4a</td><td>D;v</td><td></td><td>4</td></td<>	Source of data	4a	D;v		4
Sa D;V Specify key elements of the study setting (e.g., primary care, secondary care, general population including number and location of centres. Image: Secondary Care, general population including number and location of centres. Outcome 6a D;V. Describe eligibility criteria for participants. Image: Secondary Care, general describe of centres. Outcome 6a D;V. Cleardy define the outcome that is predicted by the prediction model, including how and when they were measured. Image: Secondary Care, general and centre of the outcome to be predicted. Image: Secondary Care, general and centre of an analysis of the multivariable predictors. Sample size 8 D;V. Report any actions to blind assessment of the outcome and other predictors. Image: Secondary S		4b	D;V		4
Participants Describe eligibility criteria of participants Production of centres. Outcome 6a D/V Describe eligibility criteria for participants No Outcome 6a D/V Revert any actions to blind assessment of the outcome to be predicted. No Predictors 7a D/V Report any actions to blind assessment of the outcome to be predicted. No Sample size 8 D/V Exerct with a ween handled (e.g., complete-case analysis, single imputation, multiple imputation, multiple are lad were handled in the analyses. 10 Statistical analysis 10a D Describe how predictors were handled in the analyses. 10 Statistical analysis 10c V For validation, describe how the single data were handled in the analyses. 10 Bow V Describe how predictors were calculated. 10 10 Describe how predictors were handled in the analyses. 10 Bow V For validation, describe how the predictions were calculated. 10 10 Describe how predictors were handled in the analyses. 10 Bow V Specify type of model. all model-building procedures (including any predictors were calculated. 10 10				end of follow-up.	
PraintClpants Sb D.V Describe eligibility criteria for participants. Outcome 6a D.V Give editasion of the event. N Outcome 6a D.V Give editasion of the event. N Predictors 7a D.V Clearly define all predictors used in developing or validating the multivariable prediction N Sample size 8 D.V Explain how the study size was arrived at. N Statistical 10a D Describe how measing data weer handled (e.g., complete-case analysis, single 6 10a D Describe how predictors were handled in the analyses. 6 6 Statistical 10b D Describe how predictors were handled in the analyses. 6 10a D Describe how predictors were handled in the analyses. 6 7 10b D Specify type of model, all model-pullding procedures (including any predictor selection), and method. 6 10d D Specify type of model, all model-pullding recurves (including the number of participants (including the number of part		5a	D;V		4
Sec D.V Give details of treatments received, if relevant. N Outcome 6a D.V Clearly define the outcome that is predicted by the prediction model, including how and when sessessed. N Predictors 7a D.V Report any actions to bind assessment of the outcome to be predicted. N Sample size 8 D.V Report any actions to bind assessment of the outcome and other predictors for the outcome and other predictors. N Missing data 9 D.V Explain how the study size was arrived at. N Statistical analysis 10a D Describe how predictors. were handled (e.g., complete-case analysis, single imputation, multiple imputation, multiple imputation, mitable imputation with details of any imputation method. N Statistical analysis 10b D Specify type or model, all model-building procedures (including any predictor selection), and method for internal validation. N No Por validation, describe how the predictors were calculated. N N 10b D Describe any model updating (e.g., recalibration) arising from the validation, if done. N 10c V Describe any model updating (e.g., recalibration) arising from the validation, if done.	Participants	5b	D:V		4
Outcome bit UV when assessed. 6b D.V. Report any actions to blind assessment of the outcome to be predicted. N Predictors 7a D.V. Report any actions to blind assessment of predictors for the outcome and other model, including how and when they were measured. N Sample size 8 D.V. Explain how the study size was arrived at. N Missing data 9 D.V. Explain how the study size was arrived at. N 10a D Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method. N 10b D Describe how predictors were handled (e.g., complete-case analysis, single imputation, describe how the predictions were calculated. N 10c V For validation, describe how the predictions were calculated. N 10b D Specify yie of model, all model-building procedures (including any predictor selection), and method for internal validation. N 10c V For validation, describe how the predictions were calculated. N 10c V Describe any model updating (e.g., recalibration) arising from the validation. If done.					NA
Outcome Image: Second Sec		62	עים		6
Predictors 7a D;V Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured. Sample size 8 D;V Report any actions to blind assessment of predictors for the outcome and other predictors. No Sinsing data 9 D;V Explain how the study size was arrived at. Implementation multiple imputation with details of any imputation method. Implementation method. Statistical analysis 10a D Describe how predictors were handled in the analyses. Implementation. Statistical analysis 10b D Specify type of model, all model-building procedures (including any predictor selecton). Implementation. 10c V For validation. describe how the predictions were calculated. Implementation. 10c V For validation. For validation. Implementation. 10c V Describe any model updating (e.g., recalibration) arising from the validation, if done. Implementation. 11 D;V Provide details on how risk groups were created, if done. Implementation. 12 V For validation. Identify any differences from the development data in setting, eligibility in the any sith and	Outcome				
Predictors Tail D,V Report any actions to bind assessment of predictors for the outcome and other predictors. Sample size 8 D/V Explain how the study size was arrived at. N Missing data 9 D,V Explain how the study size was arrived at. N Statistical analysis 10a D Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method. 6 10b D Describe how predictors were handled in the analyses. 6 statistical analysis 10c V For validation, describe how the predictions were calculated. 6 10c V Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. 6 10c V For validation, identify any differences from the development data in setting, eligibility or iteria, outcome, and predictors. N Provide details on how risk groups were created, if done. 0 0 N Provide details on how risk groups were created, if done. 0 0 0 Provide details on how risk groups were created, if done. 0 0 0		6b	D;V		NA
Preductors Tb D;V Report any actions to blind assessment of predictors for the outcome and other predictors. N Sample size 8 D;V Explain how the study size was arrived at. Image: transmissing data were handled (e.g., complete-case analysis, single imputation, multiple imputation, imit details of any imputation method. Image: transmissing data were handled in the analyses. Image: transmissing data were handled in the data were frame analysis. Image: transmissing data for predictors and outcome. Image: transmissing data for predictors and outcome each ana		7a	D;V		6
Avg predictors. predictors. Sample size 8 D;V Explain how the study size was arrived at. Imputation, multiple imputation) with details of any imputation method. Missing data 9 D;V bescribe how metiods were handled in the analyses. Imputation, multiple imputation, multiple imputation, madde-building procedures (including any predictor selection), and method for internal validation. Imputation method. Statistical analysis 10e V For validation, describe how the predictions were calculated. Imputation multiple imputation method. 10b D Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. Imputation multiple imputation multiple imputation method. 10c V For validation, describe how the predictors were calculated. Imputation multiple imputation multiple imputation arising from the validation, if done. 11 D;V Provide details on how risk groups were created, if done. Imputation multiple models. 12 V For validation, show a comparison with the evelopment data in setting, eligibility visual and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. Participants 13a D;V V for validation, show a comparison with the develop	Predictors				
Sample size 8 D;V Explain how the study size was arrived at. Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method. 6 Statistical analysis 10a D Describe how predictors were handled in the analyses. 6 Statistical analysis 0 D Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. 6 10b D Specify type of model, all model-building procedures (including any predictor selection), multiple imputation, distance (including any predictor selection), and method for internal validation. 6 10c V For validation. describe how the predictions were calculated. 6 10a D;V For validation, describe any model updating (e.g., recalibration) arising from the validation, if done. 6 Development 12 V For validation, describe any model updating (e.g., recalibration) arising from the validation, if done. 6 Participants 13a D;V with deta and predictors. 6 Resulta 0 D;V with an withthout the outcome and, if applicable, a summary of the		7b	D;V		NA
Missing data 9 D:V Describe how missing data were handled (e.g., complete-case analysis, single 6 Statistical analysis methods 10a D Describe how predictors were handled in the analyses. 6 10b D Describe how predictors were handled in the analyses. 6 10b D Describe how predictors were handled in the analyses. 6 10c V For validation, describe how the predictions were calculated. 6 10d D:V Specify the of model updating (e.g., recalibration) anising from the validation, if done. 6 10d V Describe the flow of participants through the study. including the number of participants vs. validation, identify any differences from the development data in setting, eligibility vs. validation, identify any differences from the development data in setting, eligibility vs. validation, and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. For validation, sow a comparison with the development data of the distribution of participants validation, sow a comparison with the development data of the distribution of predictors, including the number of participants with missing data for predictors and outcome. For validation, and wa comparison with the development data of the distribution of upper validation, and we acomparison with the development data of the distribution of upper traidation atow a comparison with the development data of the distribution o	Sample size	8	D;V		6
Total Statistical Total Control Imputation, multiple imputation, with details of any imputation method. Statistical analysis 10b D Describe how predictors were handled in the analyses. 10c V Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. 10c V For validation, describe how the predictions were calculated. 10c V 10d D;V Specify all measures used to assess model performance and, if relevant, to compare multiple models. 10c V Describe any model updating (e.g., recalibration) arising from the validation, if done. No 10e V Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. Participants 13a D;V Discribe the flow of participants through the study, including the number of participants with missing data for predictors and outcome. Participants 13b D;V Discribe the unadjusted association between each candidate predictor and outcome. Participants 14a D Specify the number of participants and outcome events in each analysis. 16 Model 14a D Specify the number of participants and outcome. 17a <t< td=""><td></td><td>q</td><td>עים</td><td></td><td>6-7</td></t<>		q	עים		6-7
Statistical analysis methods 10b D Specify type of model, all model-building procedures (including any predictor selection), 10c V 10c V For validation, describe how the predictions were calculated. C 10d Dv/ Provide details on how risk groups were created, if done. C Risk groups 11 D/V Provide details on how risk groups were created, if done. C Development vs. validation 12 V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors. C Results 13a D,V Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. For available predictors, including the number of participants with missing data for predictors and outcome. Tree 13b D,V For validation, show a comparison with the development data of the distribution of inpedictors and outcome. Tree Model development 14a D Specify the number of participants and outcome events in each analysis. Tree Model development 15a D If done, report the unadjusted association between each candidate predictor and outcome. <td>wildowig data</td> <td>-</td> <td></td> <td></td> <td></td>	wildowig data	-			
Statistical analysis 100 D and method for internal validation. Add method for internal validation. analysis 10c V For validation, describe how the predictions were calculated. Image: calculated.<		10a	D		6
analysis methods 10c V For validation, describe how the predictions were calculated. For analysis 10d D:V Specify all measures used to assess model performance and, if relevant, to compare multiple models. Image: Specify all measures used to assess model performance and, if relevant, to compare multiple models. Image: Specify all measures used to assess model performance and, if relevant, to compare multiple models. Image: Specify all measures used to assess model performance and, if relevant, to compare multiple models. Image: Specify all measures used to assess model performance and, if relevant, to compare multiple models. Image: Specify all measures used to assess model performance and, if relevant, to compare multiple models. Image: Specify all measures used to assess model performance and, if relevant, to compare multiple models. Image: Specify all measures used to assess model performance and, if applicable, a summary of the follow-up time. A diagram may be helpful. Image: Specify all measures used to assess model performance of participants with missing data for predictors and outcome. Image: Specify all measures used to assess model performance and if applicable, a summary of the follow-up time. A diagram may be helpful. Image: Specify all measures used to assess predictors and outcome. Image: Specify all measures used to assess and the development data of the distribution of important variables (demographics, predictors and outcome. Image: Specify all measures used to assess predictors and outcome. Image: Specify all measures used to assess predictors and outcome. Image: Specify all measures used to asseciatio	Statistical	10b	D		6
methods 10d D;V Specify all measures used to assess model performance and, if relevant, to compare multiple models. Risk groups 11 D;V Provide details on how risk groups were created, if done. Notestand to the study of the study including (e.g., recalibration) arising from the validation, if done. Notestand to the study of the study including the number of participants of the follow-up time. A diagram may be helpful. Participants 13a D;V Describe the flow of participants through the study, including the number of participants with missing data for predictors and outcome. Provide demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. Provide demographics, predictors and outcome. Provide demographics, predictors and outcome. Model 14a D Specify the number of participants and outcome events in each analysis. Predictors and model intercept or baseline survival at a given time point). Predictor and outcome. Model 15a D Explain how to the use the prediction model. Predictors and outcome. Predictors and outcome. Model 16 D. Explain how to the use the predictor model to allow predictors for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Predintime point). Model performan		10c	V		6-7
Idual DV multiple models. 10e V Describe any model updating (e.g., recalibration) arising from the validation, if done. Risk groups 11 D.V Provide details on how risk groups were created, if done. 6 Development vs. validation 12 V For validation, identify any differences from the development data in setting, eligibility or iteria, outcome, and predictors. No Results 13a D.V Escribe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. Perticipants Participants 13b D.V Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for prover dictors and outcome. Trainicipants Model 14a D Specify the number of participants and outcome events in each analysis. Trainicipants Model 14a D Specify the number of participants and outcome. Trainicipants for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Trainicipants Model 15b D Explain how to the use the prediction					
Risk groups 11 D;V Provide details on how risk groups were created, if done. 6 Development vs. validation 12 V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors. 6 Results		100	D;v	multiple models.	6
Development vs. validation 12 V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors. N Results 13a D;V Describe the flow of participants through the study, including the number of participants diagram may be helpful. Fig. Participants 13a D;V Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. Training available predictors), including the number of participants with missing data for predictors and outcome. Training available predictors), including the number of participants with missing data for predictors and outcome. Training available predictors), including the number of participants and outcome events in each analysis. Training available predictors), including the number of participants and outcome. Training available predictors and outcome. Training available prediction model to allow predictions for individuals (i.e., all regression outcome. Training available prediction model. Training available predictin model. Training available prediction			-		NA
vs. validation 12 V criteria, outcome, and predictors. Results Participants 13a D,V Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. Fig. 2000 Participants 13b D,V Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. Ta 13c V For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Ta Model 14a D Specify the number of participants and outcome events in each analysis. Ta Model 14a D Specify the number of participants and outcome events in each analysis. Ta Model 15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Ta Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model sperification, model. Ta Model-updating 17 V If done, report the results with refere		11	D;V		6-7
Results 13a D;V Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. Figure 1 Participants 13b D;V Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. Ta Model 13c V For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Ta Model 14a D Specify the number of participants and outcome events in each analysis. Ta Model 14b D If done, report the unadjusted association between each candidate predictor and outcome. Ta Model 15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Ta Model 16 D;V Report performance measures (with Cls) for the prediction model. Ta Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model Ta Interpretation 18 D;V Discuss any limitations of t		12	V		NA
Participants 13a D;V Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. Fig. 13b D;V Describe the characteristics of the participants (basic demographics, clinical features, available predictors, including the number of participants with missing data for predictors and outcome. Ta 13c V For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Ta Model development 14a D Specify the number of participants and outcome events in each analysis. Ta Model development 14b D If done, report the unadjusted association between each candidate predictor and outcome. Ta Model performance 15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Ta Model performance 16 D;V Report performance measures (with Cls) for the prediction, model. Model Interpretation 17a U If done, report the results from any model updating (i.e., model specification, model Model Interpretation			1		
Participants 13a D;V Describe the flow of participants through ite study, including the fulline of participants diagram may be helpful. participants 13b D;V Discussion Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. Train the study including the number of participants with missing data for predictors and outcome. Train the study including the number of participants with missing data for predictors and outcome. Train the study including the number of participants with missing data for predictors and outcome. Train the study including the number of participants with missing data for predictors and outcome. Train the study including the number of participants and outcome). Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including the number of participants and outcome. Train the study including t					Figure
Participants diagram may be helpful. participants 13b D;V Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. Tailable 13c V For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Model 14a D Specify the number of participants and outcome events in each analysis. Tailable (development) Model 14b D Specify the number of participants and outcome events in each analysis. Tailable (development) Model 14b D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Tailable performance Model 16 D;V Report performance measures (with Cls) for the prediction model. Model specification, model Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Model Interpretation 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a		139			1,
Participants Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. Take 13b D;V For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Important variables (demographics, predictors and outcome). Model 14a D Specify the number of participants and outcome events in each analysis. Important variables (demographics, predictors and outcome). Model 14a D Specify the number of participants and outcome events in each analysis. Important variables (demographics, predictors and outcome). Model 14b D If done, report the unadjusted association between each candidate predictor and outcome. Important variables (demographics, predictors for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Important variables (demographics, encircle). Important variables (de		100	D, V		page
13b D;V available predictors), including the number of participants with missing data for predictors and outcome. 13c V available predictors), including the number of participants with missing data for important variables (demographics, predictors and outcome). Notes Model development 14a D Specify the number of participants and outcome events in each analysis. Ter validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Notes Model development 14a D Specify the number of participants and outcome events in each analysis. Ter validation, show a comparison with the development data of the distribution of outcome. Model development 15a D If done, report the unadjusted association between each candidate predictor and outcome. Ter validation, show a comparison with Class of the store and the prediction model. Model specification 15b D Explain how to the use the prediction model. Ter validation, show a comparison with Class of the store and prediction model. Ter validation, show a comparison with Class of the prediction model. Ter validation, show a comparison with Class of the store and prediction model. Model specification 17 V If done, report the results from any model updating (i.e., model specification, model performance). Ter validation, discuss th	Darticinanta				7
Image: Interpretation	Participants	13h	D;V		Table
Image: Nodel Image: Text Sector For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Image: Text Sector Image: Text Sector Image: Text Sector Text Se		100			1
13c V important variables (demographics, predictors and outcome). Important variables (demographics, predictors and outcome). Model 14a D Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Model 14b D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Ta Model 15b D Explain how to the use the prediction model. Ta Model 16 D;V Report performance measures (with CIs) for the prediction model. Surgerformance. Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Nodel specification, model specification, model specification, model metropredictor, missing data). Discussion 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for futu		120	V		NA
Model development 14b D If done, report the unadjusted association between each candidate predictor and outcome. Ta outcome. Model specification 15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Ta Model performance 16 D;V Report performance measures (with Cls) for the prediction model. Superformance Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Number of the study (such as nonrepresentative sample, few events per predictor, missing data). Number of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 20 <					NA
development 14b D If done, report the unadjusted association between each candidate predictor and outcome. If and outcome. Model specification 15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Train the full prediction model. Model specification 15b D Explain how to the use the prediction model. Train the full prediction model. Model performance 16 D;V Report performance measures (with CIs) for the prediction model. Superformance Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Nodel specification, model performance). Discussion Implications 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Implications 20 D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 10 Implications 20 D;V D	Model	14a	D		7
Model specification 15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Ta Model performance 16 D;V Report performance measures (with CIs) for the prediction model. Superformance Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Nodel updating (i.e., model specification, model Nodel Discussion 18 D;V D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Cher information 20 D;V Discuss the potential clinical use of the model and implications for future research. 10		14b	D		Table
Model specification 15a D coefficients, and model intercept or baseline survival at a given time point). Model performance 15b D Explain how to the use the prediction model. Image: Complex	•				2 Table
specification 15b D Explain how to the use the prediction model. Model performance 16 D;V Report performance measures (with CIs) for the prediction model. superformance Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model N Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model N Discussion Implications 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Interpretation 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Corporation Exercise information Exercise information data information da		15a	D		3
Model performance 16 D;V Report performance measures (with CIs) for the prediction model. Superior managementation measures (with CIs) for the prediction model. Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model N Discussion Imitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Interpretation 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Other information Sumplementary Exception about the quantiability of supplementary secures on the secure of supplementary secure of supplementary secure of supplementary secure o	specification	15b	D		9
performance 16 D;V Report performance measures (with Cis) for the prediction model. Superior the prediction model. Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Nodel-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Nodel-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Nodel-updating Nodel-	Model				9,
Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). Model-updating Model-updatind-updatindating Model-updating		16	D;V	Report performance measures (with CIs) for the prediction model.	supple
Initiations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Interpretation 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Other information Sumplementary Descurption information				If done, report the require from one model undefine (i.e. used at an efficient on the	ment
Discussion 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Interpretation 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Other information Examplementary Examplementary 10	Model-updating	17	V		NA
Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Interpretation 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Other information Sumplementary Ensuring about the availability of supplementary securace, such as studies 0	Discussion	1	1		1
Limitations 10 D,V predictor, missing data). 10 Interpretation 19a V For validation, discuss the results with reference to performance in the development data, and any other validation data. 10 Interpretation 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Other information Sumptomentary Exemption about the availability of supplementary resources, such as studies 0		40	DAL	Discuss any limitations of the study (such as nonrepresentative sample, few events per	40.44
Interpretation Isa V data, and any other validation data. Itel Interpretation 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Other information Sumplementary Descuss the potential clinical use of the model and implications for future research. 10	Limitations	18	D;V	predictor, missing data).	10-11
Interpretation data, and any other validation data. 19b D;V Give an overall interpretation of the results, considering objectives, limitations, results 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Other information Sumplementary Descuss the potential clinical use of the model and implications for future research. 10		19a	V		10-11
19b D;V Give an overall interpretation of the results, considering objectives, limitations, results 10 Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10 Other information 20 D;V Discuss the potential clinical use of the model and implications for future research. 10	Interpretation	100			10-1
Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 10- ta Other information Sumplementary Sumplementary Sumplementary		19b	D;V		10-11
Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. tage Other information Sumplementary Description information about the subjicability of supplementary resources, such as study. Discuss the potential clinical use of the model and implications for future research. tage					10-11
Other information	Implications	20	D:V	Discuss the potential clinical use of the model and implications for future research	table
Other information					S5
Supplementary information bout the availability of supplementary resources, such as study For peer review of the availability of supplementary resources, such as study em					
information T-or peer review of the transformed at a sets m/site/about/quidelines.xhtml em		21	עיּק	Provide information about the availability of supplementary resources, such as study	Supp
	Information	For	peer re	vperotoool, webt calculator carendata sets m/site/about/guidelines.xhtml	emen

False-negative RT-PCR for COVID-19 and diagnostic risk score: a retrospective cohort study among patients admitted to hospital

TRIPOD Checklist: Prediction Model Development and Validation

				ary appen dix
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	12

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

<text>

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

False-negative RT-PCR for COVID-19 and a diagnostic risk score: a retrospective cohort study among patients admitted to hospital

1	RM1 Open
Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047110.R1
Article Type:	Original research
Date Submitted by the Author:	06-Jan-2021
Complete List of Authors:	Gupta-Wright, Ankur; University College London, Institute for Global Health; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases, Clinical Research Department Macleod , Colin ; London North West University Healthcare NHS Trust; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases, Clinical Research Department Barrett, Jessica; London North West University Healthcare NHS Trust Filson, Sarah; London North West University Healthcare NHS Trust Corrah, Tumena; London North West University Healthcare NHS Trust Parris, Victoria; London North West University Healthcare NHS Trust Sandhu, Gurjinder; London North West University Healthcare NHS Trust Harris, Miriam; London North West University Healthcare NHS Trust Vaid, Nidhi; London North West University Healthcare NHS Trust Takata, Junko; London North West University Healthcare NHS Trust Gandy, Nemi; London North West University Healthcare NHS Trust Gandy, Nemi; London North West University Healthcare NHS Trust Chana, Harmeet; London North West University Healthcare NHS Trust Chana, Harmeet; London North West University Healthcare NHS Trust Whittington, Ashley; London North West University Healthcare NHS Trust McGregor , Alastair; London North West University Healthcare NHS Trust Papineni, Padmasayee; London North West University Healthcare NHS Trust Trust, Infectious Diseases
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Diagnostics
Keywords:	COVID-19, Molecular diagnostics < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: Original Research Article

<u>Title:</u>

False-negative RT-PCR for COVID-19 and a diagnostic risk score: a retrospective cohort study among patients admitted to hospital

Authors:

Ankur Gupta-Wright (1,2,3)*, Colin Kenneth Macleod (2,3)*, Jessica Barrett (3), Sarah Ann Filson (3), Tumena Corrah (3), Victoria Parris (3), Gurjinder Sandhu (3), Miriam Harris (3), Rachel Tennant (3), Nidhi Vaid (3), Junko Takata (3), Sai Duraisingham (3), Nemi Gandy (3), Harmeet Chana (3), Ashley Whittington (3), Alastair McGregor (3), Padmasayee Papineni (3) *Contributed equally

Author affiliations

- 1. Institute for Global Health, University College London, London UK
- 2. Clinical Research Department, London School of Hygiene & Tropical Medicine, London UK
- 3. London North West University Healthcare NHS Trust, London, United Kingdom

Corresponding author:

Ankur Gupta-Wright

Institute for Global Health

University College London

Mortimer Market, off Caper Street

London WC1E 6JB

ankurgw@outlook.com

+44 (0) 7764607560

Word Count: 3,832 (abstract 266)

Keywords: COVID-19, diagnosis, risk score, hospital

ABSTRACT

Objective: To describe the characteristics and outcomes of patients with a clinical diagnosis of COVID-19 and false negative SARS-CoV-2 RT-PCR, and develop and internally validate a diagnostic risk score to predict risk of COVID-19 (including RT-PCR negative COVID-19) amongst medical admissions

Design: Retrospective cohort study

Setting: Two hospitals within an acute NHS trust in London, UK

Participants: All patients admitted to medical wards between 2nd March and 3rd May 2020.

Outcomes: Main outcomes were diagnosis of COVID-19, SARS-CoV-2 RT-PCR results, sensitivity of SARS-CoV-2 RT-PCR and mortality during hospital admission. For the diagnostic risk score, we report discrimination, calibration and diagnostic accuracy of the model and simplified risk score, and internal validation.

Results: 4008 patients were admitted between 2nd March and 3rd May 2020. 1792 patients (44.8%) were diagnosed with COVID-19, of whom 1391 were SARS-CoV-2 RT-PCR positive, and 283 had only negative RT-PCRs. Compared to a clinical reference standard, sensitivity of RT-PCR in hospital patients was 83.1% (95% CI 81.2-84.8%). Broadly, patients with false-negative RT-PCR COVID-19 and those confirmed by positive PCR had similar demographic and clinical characteristics, but lower risk of ICU admission and lower in-hospital mortality (adjusted odds ratio 0.41, 95% CI 0.27-0.61). A simple diagnostic risk score comprising of age,

BMJ Open

sex, ethnicity, cough, fever or shortness of breath, National Early Warning Score (NEWS2), C-Reactive Protein, and chest radiograph appearance had moderate discrimination (area under the receiver-operator-curve 0.83, 95% CI 0.82-0.85), good calibration and was internally validated.

Conclusion: RT-PCR negative COVID-19 is common and is associated with lower mortality despite similar presentation. Diagnostic risk scores could potentially help triage patients requiring admission, but need external validation.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- Large cohort of consecutive acute medical admissions in two hospitals covering a diverse population in London, UK, during first COVID-19 'peak'
- Assessment of 'real world' performance of SARS CoV-2 RT-PCR from nasopharyngeal .ective cohort . .COV-2 RT-PCR test.

swabs for diagnosis of COVID-19

- Inherent limitations of retrospective cohort study design, including some missing data •
- Not all patients had SARS-CoV-2 RT-PCR testing

BMJ Open

4	1
5	2
6	-
7	3
8	3
9 10	4
10 11	4
11 12	-
13	5
14	
15	6
16	
17	7
18	
19 20	8
20 21	
21	9
22 23)
24	10
25	10
26	
27	11
28	
29	12
30	
31 32	13
32 33	
34	14
35	
36	15
37	15
38	17
39	16
40	
41 42	17
42 43	
44	18
45	
46	19
47	
48	20
49	
50	21
51 52	<i>2</i> 1
52 53	$\gamma\gamma$
55 54	22
55	22
56	23
57	r.
58	24
59	
60	

INTRODUCTION

The coronavirus disease 2019 (COVID-19) global pandemic, caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented numbers of unwell and infectious patients requiring admission to hospital. The symptoms of COVID-19 can be non-specific, so diagnostic confirmation in hospital is often sought by detection of SARS-CoV-2 ribonucleic acid (RNA) sequences by reverse transcriptionpolymerase chain reaction (RT-PCR) from a clinical specimen.

9 Since the beginning of the pandemic, the standard sample for PCR testing has been a 0 nasopharyngeal swab (NPS) or aspirate, but there are concerns that a significant proportion of 1 cases test negative on initial RT-PCR of an NPS sample, with many patients having repeated 2 sampling to confirm the diagnosis.¹ A systematic review of real-world diagnostic sensitivity of 3 SARS-CoV-2 RT-PCR reports that up to 33% of patients with COVID-19 may have an initial 4 false negative NPS result despite a compatible clinical illness, consistent thoracic imaging 5 and/or subsequent positive antibodies to COVID-19.2-5 False negative RT-PCR may result from 6 inadequate nasopharyngeal sampling technique, delayed time to analysis, ineffective sample 7 storage, variable gene targets in RT-PCR assays leading to imperfect analytic sensitivity, or if a 8 patient is tested at a point when viral throat carriage is absent or below the detectable threshold 9 (either too early or too late).^{6,7} This high false negative rate complicates both hospital infection 0 control and clinical decision making. Being able to identify patients with a high probability of 1 COVID-19 despite a negative RT-PCR is crucial for effective clinical care.

The clinical characteristics and outcomes of hospitalised patients with COVID-19 have been
 well described globally, but these studies are limited to patients with RT-PCR confirmed

BMJ Open

25	COVID-19.8-10 The pattern of disease and outcomes of patients with false negative COVID-19
26	tests has not been well reported to date, nor has the diagnostic accuracy of RT-PCR assays in
27	secondary care settings in the United Kingdom (UK). Several studies have derived and
28	validated risk scores to assess severity and prognosis amongst patients with COVID-19.
29	However few risk scores focus on identifying patients with COVID-19 amongst those needing
30	hospital admission and those that do are from outside the UK, do not consider all hospital
31	admissions, rely on high-resolution computerised tomography (CT) scanning of the lungs, and
32	exclude patients without RT-PCR-confirmed disease. ¹¹
33	
34	We therefore aim to describe the characteristics and outcomes of patients with a clinical
35	diagnosis of COVID-19 but with negative RT-PCR from NPS, and the real-world sensitivity of
36	RT-PCR for COVID-19. Secondly, we describe predictors of COVID-19 amongst general
37	medical admissions, including assessing whether a simple diagnostic risk score could be
38	derived, internally validated, and used to predict which patients admitted to medical wards will
39	have COVID-19.
40	METHODS
41	Study design
42	This is a retrospective observational cohort study of consecutive admissions in London North
43	West University Healthcare NHS Trust, comprising two hospitals, Northwick Park and Ealing.
44	Patients were included in this study if they were admitted via the acute medical team between
45	2 nd March and 3 rd May 2020 inclusive.
46	
47	Data collection

BMJ Open

Cases were identified retrospectively through electronic medical admission lists. De-identified data on patient demographics, co-morbidities, clinical characteristics, vital signs, routine biochemical, haematological and microbiological tests, diagnosis and clinical outcomes were extracted from routinely collected clinical data using electronic patient record systems, and other NHS Trust health information systems. Physiological observations were those first recorded on admission to the emergency department. All biochemical and haematological data were from the first samples taken within 48 hours of admission. Thoracic imaging (chest radiographs and CT) were reported by consultant radiologists and coded based upon COVID-19 guidelines from the British Society of Thoracic Imaging (BSTI).¹² RT-PCR of a clinical specimen from NPS was the only SARS-CoV-2 testing available during the study period. The decision to test was based on a clinical suspicion of COVID-19. Testing was performed at the point of admission or as soon as possible afterwards. Due to high demand and limited capacity, some patients with high clinical suspicion did not undergo SARS-CoV-2 testing. Routine testing for all admissions was introduced after the study period. Most SARS-CoV-2 testing was done using Panther Fusion[™] (Hologic; ORF1ab Region 1 / 2 target) or Abbott RealTime[™] (RNA-dependent RNA polymerase, Nucleocapsid target) assays on NPS. Approval for this study was provided by London North West University Healthcare NHS Trust research and governance department, and the NHS Health Regulatory Authority (IRAS ID 285815). Written informed consent from participants was not obtained in compliance with Secretary of State for Health and Social Care 'Notice' under Regulation 3(4) of the Health Service Control of Patient Information Regulations 20021 (COPI) requiring health providers to

3 4	72	process confidential patient and Control of Patient Information Regulations due to the COVID-
5 6 7	73	19 pandemic.
7 8 9	74	
10 11	75	Definitions
12 13 14	76	Patients were assigned as having RT-PCR confirmed COVID-19 if they had a positive SARS-
15 16	77	CoV-2 RT-PCR within 7 days before or after the date of admission, and had a discharge
17 18 19	78	diagnosis of COVID-19 recorded by the clinical team. False-negative RT-PCR COVID-19 was
20 21	79	defined as patients with a discharge diagnosis of COVID-19 made by the clinical team and one
22 23	80	or more negative SARS-CoV-2 RT-PCR within 48 hours of admission in the absence of any
24 25 26	81	positive SARS-CoV-2 RT-PCR results. Patients with evidence of alternative diagnoses (i.e. not
27 28	82	COVID-19) made by the clinical team and no positive SARS-CoV-2 RT-PCR results were
29 30	83	defined as not having COVID-19. Medical records for patients with positive SARS-CoV-2 tests
31 32 33	84	greater than 7 days after admission but before discharge, and a diagnosis of COVID-19 were
34 35	85	reviewed as to whether the admission was likely to represent a missing or delayed SARS-CoV-
36 37 38	86	2 RT-PCR result (i.e. patients with community-acquired COVID-19) or nosocomial COVID-19
39 40	87	transmission. Mortality was assessed at discharge from hospital.
41 42	88	
43 44 45	89	Statistical methods
46 47	90	Basic descriptive statistics were performed, with continuous data presented as median
48 49	91	(interquartile range) and categorical data as frequency (%). Comparisons were made using chi-
50 51 52	92	squared tests for proportions, t-tests for means and Wilcoxon rank sum for medians. Logistic
53 54	93	regression was used to assess associations between variables and diagnosis of COVID-19. In
55 56 57	94	exploratory analyses to assess association between RT-PCR negative COVID-19 and
57 58 59		

1 2

BMJ Open

3 4 5	95	mortality, a multivariable logistic regression model was used adjusting for other variable
5 6 7	96	associated with poor outcomes in COVID-19.13
8 9	97	
10 11 12	98	Sensitivity and false-negative RT-PCR
13 14	99	The real-world sensitivity of SARS-CoV-2 RT-PCR from NPS against a reference standard of a
15 16 17	100	clinical diagnosis of COVID-19 was estimated as the proportion of patients positive from any
	101	RT-PCR, excluding those without any valid RT-PCR results. Sensitivity was also calculated by
21	102	restricting analyses to patients with two or more RT-PCR results from NPS taken in a 24- and
22 23 24	103	48-hour period. The reference standard was patients with at least one positive RT-PCR in the
25 26	104	time period. Incremental yield of a second RT-PCR following an initial negative result in
27 28 29	105	patients was also calculated. Specificity of SARS-CoV-2 RT-PCR was assumed to be 100%.
	106	
33	107	Diagnostic Risk Score
33 34 35	107 108	Diagnostic Risk Score In development of a score to predict COVID-19 among medical admissions, candidate predictor
33 34 35 36		
 33 34 35 36 37 38 39 40 	108	In development of a score to predict COVID-19 among medical admissions, candidate predictor
 33 34 35 36 37 38 39 40 41 42 	108 109	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning
 33 34 35 36 37 38 39 40 41 42 43 44 45 	108 109 110	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	108 109 110 111	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity),
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	108 109 110 111 112	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity), clinical symptoms associated with COVID-19 (cough, fever or shortness of breath), vital signs
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52	108 109 110 111 112 113	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity), clinical symptoms associated with COVID-19 (cough, fever or shortness of breath), vital signs (including National Early Warning [NEWS] Score 2), and laboratory bloods (including C-reactive
33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53	108 109 110 111 112 113 114	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity), clinical symptoms associated with COVID-19 (cough, fever or shortness of breath), vital signs (including National Early Warning [NEWS] Score 2), and laboratory bloods (including C-reactive
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54	108 109 110 111 112 113 114 115	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity), clinical symptoms associated with COVID-19 (cough, fever or shortness of breath), vital signs (including National Early Warning [NEWS] Score 2), and laboratory bloods (including C-reactive protein (CRP) and arterial/venous blood gas) at the time of presentation to hospital.
33 34 35 36 37 38 40 42 43 445 46 47 48 50 51 52 54 55 57	 108 109 110 111 112 113 114 115 116 	In development of a score to predict COVID-19 among medical admissions, candidate predictor variables were selected based on <i>a priori</i> knowledge, published literature, clinical reasoning and the need for variables to be objective, reproducible, available in the emergency department soon after presentation. We considered demographic characteristics (age, sex, ethnicity), clinical symptoms associated with COVID-19 (cough, fever or shortness of breath), vital signs (including National Early Warning [NEWS] Score 2), and laboratory bloods (including C-reactive protein (CRP) and arterial/venous blood gas) at the time of presentation to hospital.

BMJ Open

1

119 had fewer than 10% missing data. To derive a prediction model, we undertook univariable 120 logistic regression analysis assessing associations between candidate variables and COVID-19 121 diagnosis (including all COVID-19 irrespective of RT-PCT status). We then used a backward elimination approach to create a multivariable predictive model, with stepwise elimination of variables, using likelihood ratio tests and Akaike information criterion to compare models. 124 Interaction in the model were also assessed using likelihood ratio testing. Points were assigned to each variable by identifying clusters of regression coefficients from the final model, then taking the median of those clustered coefficients and scaling so the lowest point score is at least one, and then rounding to the nearest integer.¹⁴ A COVID-19 diagnostic risk score was then derived by combining the points based on patient characteristics. Performance of both the full predictive model and risk score was assessed using the area under the receiver operating characteristic (ROC) curve (AUROC curve, also known as concordance-statistic) for discrimination, and plots of predicted probability of COVID-19 against observed risk of COVID-19 for calibration (calibration plots). Decision curve analysis was also 134 conducted to help weigh benefits of using the model, compared to assuming all or no patients were diagnosed with COVID-19, and comparison with other single variables with strong associations with COVID-19. Internal model validation was done using the bootstrap procedure, with final model applied to 139 each bootstrap sample (n=200), and an optimism corrected AUROC curve calculated.¹⁵ A prediction model was also generated using bootstrap samples and tested on the original dataset. Cut-off thresholds were defined to identify patients at high- and low-risk of COVID-19

- after plotting risk score against observed COVID risk such that the high-risk group accounted
- 60

BMJ Open

for as many COVID-19 cases as the low-risk as few as possible. Sensitivity, specificity, positive

predictive value (PPV) and negative predictive value (NPV) were calculated for each threshold,

admissions. Sensitivity analysis used multivariate multiple imputation with chained equations

for missing data, assuming they were missing at random. Imputation was done for missing

candidate predictor variables using 20 imputations, and model generation and performance

Between 2nd March and 3rd May 2020, 4008 patients were admitted (2536 at Northwick Park

Hospital, and 1472 at Ealing Hospital), with 1792 (44.7%) diagnosed with COVID-19 (figure 1).

There were a median of 65 (IQR 57-76) admissions daily, including median daily admission of

47 (IQR 28-56) patients diagnosed with COVID-19 (supplementary figure 1). 1391 (77.6%)

COVID-19 diagnoses had at least one positive SARS-CoV-2 RT-PCR. 283 (15.8%) had at

least one negative and no positive RT-PCR, and 119 (6.6%) did not have a RT-PCR result.

There were several differences between patients with and without a COVID-19 diagnosis at

1). Most notably patients with COVID-19 were more likely to be male, be more unwell at

admission (NEWS score 6 vs 2 for patients without COVID-19) and more likely to need

lung infiltrates (79% vs 48%) and less likely to have clear lung fields (7% vs 33%).

discharge (including those with false negative RT-PCR results, table 1 and supplementary table

repeated. All analyses were done using Stata version 16 (StataCorp 2019). Predictive

modelling elements are presented in accordance with TRIPOD guidance.¹⁶

and NPV and PPV calculated for varying prevalence of COVID-19 amongst medical

2 3		
4	143	
5		
6	144	
7		
8	145	
9		
10	146	
11 12	110	
12 13	147	
14	14/	
15	1.40	
16	148	
17		
18	149	
19		
20	150	
21		
22 23	151	
23 24		
25	152	
26	152	
27	150	
28	153	
29		
30	154	
31		
32	155	
33 34		
35	156	
36		
37	157	
38	10 /	
39	158	
40	150	
41	150	
42 43	159	
45 44	1 (0	
45	160	
46		
47	161	
48		
49	162	
50		
51	163	
52		
53 54	164	
54 55	107	
56	165	
57	165	
58	1.6.6	
59	166	

60

RESULTS

Patient characteristics

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

supplementary oxygen. On chest radiograph, patients with COVID-19 were more likely to have

1		
2 3 4	167	
5 6 7	168	Outcomes
7 8 9	169	Overall 248 (6.2%) of medical admissions were admitted to intensive care unit (ICU) for level 2
10 11 12	170	or 3 support. Patients with COVID-19 diagnosis were more likely to be admitted to ICU (12.7%
	171	compared to 1.0%, p<0.0001). Median time to intensive care admission was 1 day (IQR 0-3)
10	172	from admission. Inpatient mortality was 15.6% overall with substantially higher mortality in
17 18 19	173	patients with COVID-19 diagnosis (26.9% compared to 6.4%). 0.4% [n=16] remained admitted
20 21	174	at the time of data extraction or were missing mortality status. Inpatient death occurred a
22 23 24	175	median of 5 (IQR 2-10) days after admission for patients with COVID-19, and hospital stay was
	176	longer than for those without COVID-19 (median 5 [IQR 3-11] days compared to median 3 [IQR
27 28	177	1-7] days, P<0.0001).
29 30 31	178	
32 33	179	Sensitivity of SARS-CoV-2 RT-PCR
34 35 36	180	Based on COVID-19 patients with a at least one valid SARS-CoV-2 RT-PCR result (n=1674),
	181	16.9% (n=283) diagnosed with COVID-19 had at least one false-negative RT-PCR. 217
39 40	182	patients had a single negative result, with 66 having two or more negative results. Median time
41 42 43	183	from admission to negative swab was 0 (IQR 0-1) days. Based on a clinical COVID-19
44 45	184	reference standard, the sensitivity of PCR was 83.1% (95% CI 81.2-84.8%). The diagnostic
46 47 48	185	yield (i.e. including those without SARS-CoV-2 PCR results) of SAR-CoV-2 PCR testing of
	186	nasopharyngeal swabs was 77.6% (95% CI 75.6-79.5%). If restricted to patients with chest
51 52	187	radiology suggestive of COVID-19, 198/968 patients with COVID-19 were RT-PCR negative,
53 54 55	188	giving a sensitivity of 79.6%.
56 57	189	
58 59		
60		

BMJ Open

A total of 185 patients with COVID-19 had two RT-PCR tests within 24 hours, at least one of which was positive. 35/185 had a false-negative RT-PCR, giving a sensitivity of 81.1% (95% CI 74.7-86.5%). 62/254 patients with COVID-19 and two or more RT-PCR tests within 48 hours, giving a sensitivity of 75.6% (95% CI 70.0-80.5%). 557 patients with two RT-PCR tests within 24 hours had an initial negative test, of whom 17 had a second test that was positive, giving an incremental yield of 3.1% (95% CI 1.9-4.8%). 36/669 patients with an initial negative RT-PCR had a second test that was positive within 48 hours, giving an incremental yield of 5.4% (95% CI 3.9-7.4%).

199 False-negative COVID-19 RT-PCR

Of patients with RT-PCR negative COVID-19, 70.0% (198/283) had chest radiography or chest CT suggestive of COVID-19 based on BSTI coding, 80.2% (227/283) had lung infiltrates on chest imaging, and only 6.7% (19/283) had normal lung fields on chest radiography. 88.0% reported cough, fever or shortness of breath at admission. Broadly, patients with false-negative RT-PCR COVID-19 and those confirmed by positive PCR had similar demographic and clinical characteristics. Distribution of NEWS score and CRP were similar to RT-PCR-confirmed COVID-19 patients, and differed from those without COVID-19 diagnosis (supplementary figure 2). Notable differences include false-negative RT-PCR COVID-19 patients being more likely to report shortness of breath, slightly longer duration of symptoms (median of 7 [IQR 3-12] days compared to 6 [IQR 3-10] days for PCR-positive patients) (table 1). False negative RT-PCR patients also had higher median lymphocyte and platelet counts.

Importantly, outcomes were worse for patients with RT-PCR confirmed COVID-19 compared to
 those who were had a false-negative RT-PCR, with a higher proportion admitted to ICU (13.8

1,

3 4 214	[95% CI 12.1-15.7 vs 7.8 [95% CI 5.2-11.5]%, p=0.006), and more patients dying during
5 6 215 7	admission (29.3 [95% CI 27.0-31.8]% vs 16.6 [95% CI 12.7-21.4]%, p<0.0001). When limited
8 9 216	to patients with chest radiology suggestive of COVID-19, patients with false-negative RT-PCR
10 11 217 12	disease still had better outcomes than PCR-confirmed COVID-19 (ICU admission 8.4%,
13 218 14	mortality 16.3%, n=227). In exploratory analyses adjusted for age, sex, co-morbidities,
15 16 219 17	admission oxygen saturation and admission urea, OR for mortality was 0.41 (95% CI 0.27-0.61)
18 220 19	
²⁰ 221 21	2).
22 23 222 24	
25 223 26	Predictors of COVID-19 and diagnostic model
²⁷ 28 29	Several demographic and clinical variables were strongly associated with a diagnosis of
30 225 31	COVID-19, both in univariable and multivariable analysis (table 2). Abnormal chest radiography
³² 226 33 34	with infiltrates (OR 7.8, 95% CI 6.3-9.6), CRP over 50 (OR 6.0, 95% CI 5.2-6.9) and NEWS 2
35 227 36	score 5 or more (OR 5.2, 95% CI 5.0-6.6) had the strongest associations with COVID-19
37 228 38	
³⁹ 229 40	
42 230 43	
44 231 45 46	
47 232 48	
49 233 50	the full model was moderate (AUROC curve 0.83, 95% CI 0.82-0.85), with good calibration (see
51 52 53	
54 235 55	
56 236 57 58	
58 59 237 60	(95% CI 0.80-0.84, AUC for internal validated model 0.83 [95% CI 0.81 – 0.85]). Decision curve

Page 17 of 49

1 2

BMJ Open

4	38	analysis showed the diagnostic risk score model had better clinical utility across a range of
5 6 2. 7	39	thresholds than treating all or no patients as having COVID-19, using a CRP of >50, or a
8 9 2-	40	NEWS score ≥5 (see figure 2). The model and risk score performed similarly in sensitivity
10 11 24 12	41	analyses using multiple imputation instead of complete case analysis, and assessing the risk
13 2. 14	42	score using the whole patient population (see supplementary table 3).
$^{15}_{16} 2^{-1}_{17}$	43	
17 18 24 19	44	The number and proportion of patients with or without COVID-19 diagnosis based on the risk
20 21 2	45	score is shown in figure 3. 446 (15%) of patients had a score of <4, of whom 10.9% (49/446)
22 23 24 24	46	were diagnosed with COVID-19. Using this threshold to identify patients <i>without</i> COVID-19 had
25 2. 26		a 26.6% sensitivity, but 96.6% specificity, with an 89.0% positive predictive value (PPV, table
27 28 20	48	4). 594 (20.2%) patients were above the high-risk threshold, set at a diagnostic risk score >9.
29 30 24 31	49	At high COVID-19 prevalence (50%), this threshold had a good PPV (>90%), and at a low
³² 2 33	50	prevalence (<5%), had a high NPV. However, most patients fell in between both thresholds.
34 35 2: 36	51	Potential uses for such a clinical score are highlighted in supplementary table 4.
37 2: 38	52	
³⁹ 2:	53	
41 42 2: 43	54	DISCUSSION
44 45	55	The key findings of this study are that SARS-CoV-2 RT-PCR negative COVID-19 is common
46 47 2: 48	56	amongst patients admitted to hospital, with real-life sensitivity of RT-PCR testing from NPS
49 2: 50	57	being 83% compared to a clinical reference standard of clinical diagnosis of COVID-19.
51 52 52	58	Patients with RT-PCR negative COVID-19 had similar clinical characteristics to RT-PCR
53 54 2: 55	59	positive patients in this and other cohorts, ¹⁷ although significantly better outcomes (lower risk of
56 2 57	60	mortality and ICU admission). ^{13,17} The proportion and number of COVID-19 admissions was
58 59 2 60	61	increased during a three-week period from the 22 nd March to 11 th April 2020, and patients with

COVID-19 were substantially more unwell than patients without COVID-19, with implications for

service delivery. Mortality in patients admitted without COVID-19 was also high at 6.4%.

nasopharyngeal swabs, has several limitations which are challenging health systems and

healthcare facilities management. We demonstrate, despite high analytical sensitivity, the real-

life sensitivity of PCR is inadequate (around 80% at best).¹⁸ Repeat testing of patients with an

turnaround times, and resource and logistical challenges, there is an urgent need for alternative

appropriate infection control measures and safe patient flow to cohort areas or isolation rooms,

initial negative RT-PCR only increased yield by 3-5% within 48 hours. In addition to slow

rapid and accurate methods to triage and stratify patient's risk of COVID-19, to allow

without overwhelming hospital infrastructure. CT imaging of lungs can lack specificity for

COVID-19, and rapid RT-PCR platforms are expensive and have inadequate throughput for

future peaks of COVID-19.^{19,20} Few studies have assessed pragmatic tools to assess risk of

We found several clinical, radiological and laboratory blood factors that were associated with

COVID-19. Our diagnostic score had moderate performance for discriminating COVID-19 from

therefore could be used identify patients with a low COVID risk for transfer to a low-risk cohort

necessary. Those patients in neither high- nor low-risk group may benefit from rapid COVID-19

RT-PCR or antigen testing, depending on capacity. However, this score would need external

other diagnoses (AUROC curve 0.83). A low risk threshold had a good specificity and PPV,

area. Similarly, the high-risk score had a good PPV and specificity, therefore these patients

could be managed as having COVID-19, and cared for in isolation rooms or cohorts if

COVID-19 based on readily available clinical or laboratory variables.^{21,22}

The current gold standard diagnostic test for COVID-19, SARS-CoV-2 PCR from

Page 18 of 49

1	
2	
3	262
4	202
5	2(2
6	263
7	
8 9	264
9 10	
10	265
12	200
13	266
14	200
15	
16	267
17	
18	268
19	-
20	269
21	209
22	
23	270
24	
25	271
26	
27	272
28	212
29	
30	273
31	
32	274
33	
34	275
35	213
36	
37	276
38	
39	277
40	
41 42	278
42 43	210
43 44	
44 45	279
45 46	
40 47	280
48	
49	281
50	201
51	
52	282
53	
55 54	283
55	~ =
56	284
57	∠04
58	• • -
59	285
60	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 49

BMJ Open

2		
3 4 5	286	validation before use. Although derived from a cohort including unselected acute medical
6 7	287	admissions, the higher prevalence of other respiratory viral pathogens may impact
8 9	288	performance, especially specificity. ²³ Furthermore, this score does not account for the
	289	vulnerability of individual patients for severe COVID-19 (eg based on age or comorbidities),
12 13 14	290	which would also impact decisions on isolation and testing. ²²
15 16	201	
17 18 19	292	This is the first study, to our knowledge, reporting lower ICU admissions and mortality in RT-
	293	PCR negative patients with COVID-19, despite similar markers of disease severity at admission
	294	(NEWS, CRP, oxygen saturations and requirement for supplementary oxygen), and in
24 25 26	295	multivariable adjusted model. Interestingly, the median duration of symptoms was slightly
27 28	296	longer, and median lymphocyte count was slightly higher in PCR-negative patients, suggesting
29 30 31	297	they presented slightly later in their disease course, and therefore may be at a phase of illness
	298	with lower viral burden in the upper respiratory tract. ^{24–26} This may also be associated with their
	299	better prognosis. Other potential reasons for better outcomes in PCR-negative patients with
36 37 38	300	COVID-19 include misclassification bias, where other respiratory conditions may have been
		classified as COVID-19. However, sensitivity analysis in patients with chest radiology
	302	suggestive of COVID-19 had similar findings, and a small number of misclassifications are
43 44 45	303	unlikely to lead to such substantial differences in mortality. RT-PCR result may therefore be
	304	important in prognostic scores for COVID-19, especially as its association with mortality was
48 49 50	305	independent of other key predictors such as age and sex. Patients with RT-PCR negative
	306	COVID-19 should also be included in treatment trials, and the efficacy of treatment could be
	307	analysed separately given their different outcomes.
55 56 57	308	
57		

BMJ Open

2		
3	309	г
4	509	L
5 6	310	ŀ
6 7	510	Г
, 8	211	
9	311	l
10		
11	312	C
12		
13	313	f
14 15		
16	314	r
17		
18	315	t
19		
20	316	F
21	010	г
22	317	r
23	517	1
24 25	318	
26	318	F
27	210	
28	319	
29		
30	320	٦
31		
32	321	C
33 34		
35	322	C
36		
37	323	t
38		-
39	324	li
40	521	
41	325	
42 43	525	C
44	276	1
45	326	t
46	227	
47	327	t
48		
49	328	C
50 51		
52	329	a
53		
54	330	F
55		
56	331	c
57		
58	332	t
59 60		
50		

1

During the study period, the overall number of daily admissions did not increase substantially. However, the proportion of admissions that were related to COVID-19 increased substantially in ate March and early April, with a fall in non-COVID-19 admissions, as previously documented.²⁷ This has implications for planning for future COVID peaks. Another important inding was the high mortality in patients without COVID-19, an over two-fold increase from mortality in the previous year (2.4% compared to 6.4%).²⁷ Whilst we were unable to describe the causes of death amongst these patients, the increased mortality may result from late presentation to hospital due to national government-mandated 'lockdown' COVID-19 control neasures and fear of nosocomial transmission risk. This has been previously documented in paediatric, cardiology, and oncology patients, but not amongst acute medical admissions.^{28,29} This study has several strengths. The cohort is in a large acute hospital trust with two sites covering a diverse population, and all consecutive medical admissions were included. This is one of the first large cohorts to report data on unselected acute medical admissions, and one of the largest cohorts of RT-PCR negative patients with COVID-19. There are also several imitations. The retrospective nature of the study has inherent limitations, including missing data. Although we included consecutive admitted patients, not all patients had SARS-CoV-2 esting, and two different RT-PCR assays were used which may have slightly different primer argets and analytical sensitivities, and may impact generalisability. The decision to repeat tests on patients with negative RT-PCR results was made by the responsible clinical team. The absence of serology or other confirmatory testing introduces a risk of misclassification bias and RT-PCR inclusion in the reference standard, and the influence of variables including in the diagnostic risk score on clinical diagnosis of COVID-19 introduces incorporation bias. However here remains no perfect reference standard for COVID-19 diagnosis and these biases are

Page 21 of 49

BMJ Open

1 2		
З	333	unlikely to significantly impact our findings. Our diagnostic risk model needs external validation,
	334	only has moderate discrimination, and is at risk of overfitting. Systematic reviews have
9	335	struggled to identify other diagnostic clinical scores with high discrimination, and effective
10 11 12	336	patient management is likely to involve a combination of clinical features, radiology and rapid
13 14	337	PCR-testing. ¹¹
15 16 17	338	
18 19	339	In conclusion, we demonstrate that RT-PCR negative COVID-19 is common amongst patients
21	340	admitted to hospital, and is associated with a better outcome despite similar severity at
22 23 24	341	presentation. We derived and internally validated a diagnostic risk score with potential utility to
25 26	342	help triage patients admitted from the emergency department, although prospective trials of
27 28 29	343	different approaches are warranted in future peaks of COVID-19.
30	344	
	345	Acknowledgments
	346	
34 35 36	347	The authors would like to acknowledge all staff at London North West University Healthcare
38	348	Trust who were involved in the care of patients during the study period, staff supporting the
39 40 41	349	provision of clinical care, and all patients and their families.
	350	
	351	Funding statement
45 46 47	352	This research received no specific grant from any funding agency in the public, commercial or
48 49	353	not-for-profit sector
50 51 52	354	
	355	Author contributions
50	356	AGW, CKM, TC, VP, GS, RT, NV, SD, AW, AM, MH and PP made substantial contribution to
57 58 59 60	357	the conception of the work. AGW, CKM, AW, AM and PP made substantial contribution to the

4	358	design of the work. AGW, CKM, JB, SF, GS, JT, NG, HC, MH contributed to data acquisition.
5 6 3 7	359	AGW and CKM analysed the data. AGW, CKM, AW, AM, PP contributed to data interpretation.
~	360	AGW and CKM drafted the manuscript. All authors contributed to revising the manuscript
10 11 3	361	critically for important intellectual content, approved the final manuscript and are accountable
12 13 3 14	362	for all aspects of the work.
15 16	363	
17 18 3	364	Data availability statement
19 20 g 21	365	Data are available upon reasonable request, subject to approval by the London North West
22 23 3	366	University Healthcare NHS Trust Research and Governance Department and approval from
24 25 <u>3</u> 26	367	relevant ethics and regulatory bodies.
27 28 ²	368	
29 30 3 31	369	Patient and Public Involvement Statement
32 g 33	370	Due to the retrospective nature of this study, undertaken during the COVID-19 pandemic,
34 35 -	371	patients or the public were not involved in the design, or conduct, or reporting, or dissemination
36 37 <u>3</u> 38	372	plans of our research.
39 40 ²	373	
41 42 3 43	374	Competing interests statement The authors have no competing interests to declare
44 g 45	375	The authors have no competing interests to declare
46 47		
48		
49 50		
50		
52		
53		
54 55		
55 56		
57		
58		
59		
60		

		Not	All COVID	p-	COVID diagnosis	COVID diagnosis	p-
		diagnosed	diagnoses	value	PCR negative	PCR positive	value
		with COVID	_	_			
		n=2215	n=1793		n=283	n=1391	
Age at admission, median		71 (51, 82)	69 (56, 81)				
years (IQR)		(n=2215)	(n=1793)	0.44	70 (54, 79) (n=283)	70 (57, 81) (n=1391)	0.27
Age 65 years or older		1266 (57.2%)	1005 (56.1%)	0.48	154 (54.4%)	800 (57.5%)	0.34
Sex	Female			<0.000			
		1021 (46.1%)	651 (36.3%)	1	112 (39.6%)	498 (35.8%)	0.23
	Male	1193 (53.9%)	1142 (63.7%)		171 (60.4%)	893 (64.2%)	
Ethnicity	South Asian	104		<0.000			
		486 (21.9%)	447 (24.9%)	1	57 (20.1%)	362 (26.0%)	0.15
	Asian Other	174 (7.9%)	211 (11.8%)		30 (10.6%)	162 (11.6%)	
	Black African or						
	Caribbean	212 (9.6%)	224 (12.5%)	1	33 (11.7%)	181 (13.0%)	
	Mixed Ethnicity	6 (0.3%)	10 (0.6%)		2 (0.7%)	8 (0.6%)	
	Unknown	330 (14.9%)	318 (17.7%)		53 (18.7%)	233 (16.8%)	
	White European	890 (40.2%)	458 (25.5%)		81 (28.6%)	361 (26.0%)	
	Other	117 (5.3%)	125 (7.0%)		27 (9.5%)	84 (6.0%)	
Index of Multiple Deprivation		5 (3, 7)	5 (3, 6)				
Decile, median (IQR)		(n=2105)	(n=1743)	0.048	4 (3, 6) (n=277)	5 (3, 6) (n=1366)	0.04
Diabetes				<0.000			
		563 (25.7%)	599 (33.6%)	1	81 (28.9%)	482 (34.8%)	0.05
Hypertension		825 (37.7%)	739 (41.5%)	0.015	110 (39.3%)	590 (42.6%)	0.31

Ischaemic Heart Disease	413 (18.9%)	309 (17.3%)	0.21	44 (15.7%)	247 (17.8%)	0.40
Heart Failure			<0.000			
	156 (7.1%)	70 (3.9%)	1	14 (5.0%)	53 (3.8%)	0.36
Chronic Obstructive						
Pulmonary Disease	185 (8.5%)	112 (6.3%)	0.010	21 (7.5%)	88 (6.3%)	0.48
Asthma	200 (9.1%)	165 (9.3%)	0.89	19 (6.8%)	133 (9.6%)	0.14
Cancer			<0.000			
	169 (7.7%)	78 (4.4%)	1	11 (3.9%)	65 (4.7%)	0.58
HIV	21 (1.0%)	14 (0.8%)	0.56	3 (1.1%)	11 (0.8%)	0.64
Cerebrovascular Disease	110 (5.0%)	96 (5.4%)	0.61	15 (5.4%)	75 (5.4%)	0.97
Dementia			<0.000			
	156 (7.1%)	188 (10.5%)	1	29 (10.4%)	153 (11.0%)	0.74
Chronic Kidney Disease	263 (12.0%)	233 (13.1%)	0.31	33 (11.8%)	182 (13.1%)	0.54
Cough			<0.000			
	537 (24.5%)	1114 (62.5%)	1	177 (63.2%)	865 (62.4%)	0.80
Shortness of breath			<0.000			
	687 (31.4%)	1171 (65.7%)	1	203 (72.5%)	886 (63.9%)	0.006
Fever			<0.000			
	547 (25.0%)	1117 (62.7%)	1	184 (65.7%)	860 (62.0%)	0.25
Confusion	241 (11.0%)	195 (10.9%)	0.95	30 (10.7%)	153 (11.0%)	0.87
Symptom duration (days),	4 (2, 12)	7 (3, 10)				
median (IQR)	(n=592)	(n=1083)	0.010	7 (3, 12) (n=163)	6 (3, 10) (n=844)	0.021
Observations						

Pulse >120 bpm				<0.000			
		203 (10.3%)	241 (14.3%)	1	41 (15.4%)	177 (13.4%)	0.39
Respiratory rate >30 per				<0.000			
minute		175 (8.9%)	568 (33.6%)	1	90 (33.8%)	439 (33.3%)	0.87
Temperature >38°C				<0.000			
		180 (9.2%)	605 (35.9%)	1	72 (27.0%)	495 (37.7%)	<0.00
Systolic Blood Pressure <100							
mmHg		108 (5.5%)	101 (6.1%)	0.51	16 (6.1%)	78 (6.0%)	0.97
Consciousness level	Alert	646 (95.1%)	596 (96.0%)	0.93	101 (97.1%)	449 (95.5%)	0.47
	Confusion	13 (1.9%)	11 (1.8%)		3 (2.9%)	8 (1.7%)	
	Verbal	8 (1.2%)	5 (0.8%)		0 (0.0%)	4 (0.9%)	
	Pain	5 (0.7%)	3 (0.5%)		0 (0.0%)	3 (0.6%)	
	Unresponsive	7 (1.0%)	6 (1.0%)		0 (0.0%)	6 (1.3%)	
O ₂ saturations <94%				<0.000			
		198 (10.1%)	543 (32.2%)	1	79 (29.8%)	430 (32.6%)	0.37
NEWS 2 Score, median (IQR)		2 (1, 4)	6 (3, 8)	<0.000			
		(n=1951)	(n=1666)	1	6 (4, 7) (n=264)	6 (3, 8) (n=1299)	0.73
NEWS 2 Score ≥5				<0.000			
		477 (24.4%)	1084 (65.1%)	1	176 (66.7%)	840 (64.7%)	0.53
				<0.000			
Supplementary oxygen		169 (8.8%)	529 (33.1%)	1	96 (37.9%)	404 (32.4%)	0.091
PO ₂ <8 mmHg		127 (35.4%)	251 (36.2%)	0.79	34 (27.9%)	205 (38.7%)	0.025
PCO₂ >6 mmHg				<0.000			
		124 (34.5%)	75 (10.8%)	1	12 (9.8%)	59 (11.1%)	0.68

Neutrophils >10 x10^9/L		361 (17.8%)	250 (15.6%)	0.083	52 (19.0%)	183 (14.7%)	0.078
Lymphocytes <1 x10^9/L				<0.000			
		509 (25.1%)	736 (46.1%)	1	107 (39.1%)	594 (47.8%)	0.009
Platelet count x10^9/L, median		246.0 (193.0,	231.0 (177.0,				
(IQR)		317.0)	306.0)	<0.000	263.0 (206.0,	226.0 (172.0, 297.0)	<0.000
· · ·		(n=2025)	(n=1597)	1	343.0) (n=274)	(n=1242)	1
Creatinine >120 mmol/L		507 (25.2%)	426 (26.9%)	0.24	64 (23.8%)	338 (27.4%)	0.23
CRP µg/mL, median (IQR)			98.7 (46.0,				
		16.1 (3.4,	175.3)	<0.000	86.2 (41.7, 170.1)	101.5 (48.3, 180.2)	
		66.9) (n=1928)	(n=1590)	1	(n=272)	(n=1237)	0.15
Influenza RT-PCR	Influenza A	11 (2.3%)	1 (0.2%)	<0.000	0 (n=72)	1 (0.2%) (n=445)	0.31
		(n=490)	(n=528)	1			
	Influenza B	9 (1.9%)	2 (0.4%)		1 (1.4%)	1 (0.2%)	
Admitted to ICU		21 (1.0%)	227 (12.7%)	<0.000	22 (7.8%)	192 (13.8%)	0.006
				1			
Died during hospital admission		142 (6.4%)	482 (26.9%)	<0.000	47 (16.6%)	408 (29.3%)	<0.000
		(n=2,202)	(n=1,789)	1		(n=1,387)	1

Table 1. Baseline characteristics and outcomes for patients, including demographics, co-morbidities, admission vital signs and laboratory blood tests, stratified by diagnosis and SARS- CoV-2 RT-PCR status. Data on co-morbidities represents number with each condition. Where data are missing, total numbers in each category are presented in brackets. P-values are calculated using chi-squared for proportions, t-tests for means and Wilcoxon rank sum for medians. CRP C-reactive Protein, IQR inter quartile range. NEWS National Early Warning Score. PO2 partial pressure of oxygen, PCO2 partial pressure of carbon dioxide.

For beer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	
3 4 5	
5 6 7	
8 9	
10 11	
12 13 14	
15 16	
17 18	
19 20	
21 22 23	
24 25	
26 27	
28 29	
30 31 32	
33 34	
35 36	
37 38 30	
39 40 41	
42 43	
44 45	
46	

			Univariable Regres	Multivariable regression		
<u>Variable</u>		N	Odds Ratio (95%	Ð	Odds Ratio (95%	Ð
			<u>CI)</u>		<u>CI)</u>	
Age	increase 10 years	4,00		0.015		
		8	1.05 (1 - 1.08)			
	50-70	4,00		<0.000		<0.000
		8	1.62 (1.4 - 1.86)	1	1.7 (1.4 - 2.08)	1
Sex	Male	4,00		<0.000		<0.000
		8	1.5 (1.3 - 1.71)	1	1.26 (1.1 - 1.52)	1
IMD Decile		3,84		0.013		
		8	0.97 (0.9 - 1)			
Diabetes		3,97		<0.000	Or	
		1	1.46 (1.3 - 1.68)	1		
Hypertension		3,97		0.007		
		1	1.17 (1 - 1.33)			
Ethnicity		4,00				
		8				
	White	1,34		<0.000		<0.000
		8	1	1	1	1

 BMJ Open

	Asian	1,31			
		8	1.94 (1.7 - 2.26)		1.82 (1.5 - 2.27)
	Black	436	2.05 (1.6 - 2.56)		1.85 (1.4 - 2.53)
	Mixed/ Other	258	2.13 (1.6 - 2.79)		2.25 (1.5 - 3.33)
	Unknown	648	1.87 (1.5 - 2.27)		1.77 (1.3 - 2.34)
Symptoms		3,97			
		1			
	Cough			<0.000	
			5.13 (4.5 - 5.88)	1	
	Shortness of		Co.	<0.000	
	breath		4.19 (3.7 - 4.79)	1	
	Fever			<0.000	
			5.04 (4.4 - 5.78)	1	
Respiratory rate	Any of above	4,00		<0.000	<0.00
		8	6.29 (5.4 - 7.36)	1	3.11 (2.5 - 3.85) 1
Oxygen		3,65		<0.000	
saturations		4	1.14 (1.1 - 1.15)	1	
NEWS Score	Continuous	3,64		<0.000	
	(linear)	7	0.89 (0.9 - 0.9)	1	
	Continuous	3,61		<0.000	
	(linear)	7	1.39 (1.3 - 1.42)	1	
CRP	>5			<0.000	<0.00
			5.76 (5 - 6.65)	1	2.39 (2 - 2.87) 1

	every 10 increase	3,51		<0.000		
		8	1.01 (1 - 1.01)	1		
Lymphocytes	>50			<0.000		<0.000
			5.99 (5.2 - 6.93)	1	3.11 (2.6 - 3.75)	1
	Continuous	3,62		<0.000		
	(linear)	4	0.66 (0.6 - 0.72)	1		
Chest x-ray	<1			<0.000		<0.000
			2.54 (2.2 - 2.93)	1	1.72 (1.4 - 2.08)	
		3,58				
		1				
	Normal	718		<0.000		<0.000
			1	1	1	1
	lung infiltrates	2,26				
		2	7.79 (6.3 - 9.65)		3.75 (2.9 - 4.91)	
	other abnormality	601	3.56 (2.8 - 4.6)		1.94 (1.4 - 2.68)	
	CVCX0	424		<0.000		
			1	1		
	CVCX1	1,04	25.85 (18.7 -			
		0	35.66)			
	CVCX2	435	2.98 (2.3 - 3.93)			
	CVCX3	129	1.64 (1.1 - 2.44)			

 BMJ Open

Table 2. Univariable and multivariable logistic regression analysis for risk of COVID-19 diagnosis. P-values calculated using likelihood ratiotests. There was no evidence of interaction between variables in the final multivariable model. N=2,490 for multivariable model. CVCXrepresents British Society of Thoracic Imaging (BSTI) classification of chest x-ray. CRP C-reactive Protein

For beer review only

2
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
∠ I วว
21 22 23 24
23
24
25
26
27
28
29
30
31
32
33
34
35 36
36
37
38
39
40
41
41
42 43
43 44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

<u>Variable</u>		Coefficient	Standard	Diagnsoti
			error	c score
				points
Age	50-70	0.53 (0 - 0.41)	0.09	1
Sex	Male	0.23 (0.3 - 0.73)	0.10	1
Ethnicity	Asian	0.6 (0.4 - 0.82)	0.11	1
	Black	0.62 (0.3 - 0.93)	0.16	1
	Mixed/Other	0.81 (0.4 - 1.2)	0.20	1
	Unknown	0.57 (0.3 - 0.85)	0.14	1
Cough, fever		1.13 (0.9 - 1.35)	0.11	2
or shortness				
of breath				
NEWS2	>5	0.87 (0.7 - 1.05)	0.09	2
Score				
CRP	>50	1.13 (1 - 1.32)	0.09	2
Lymphocytes	<1	0.54 (0.4 - 0.73)	0.10	1
Chest x-ray	lung infiltrates	1.32 (1.1 - 1.59)	0.14	2
	other abnormality	0.66 (0.3 - 0.98)	0.16	1

Table 3. Multivariable logistic regression diagnostic model for COVID-19, with regression (β) co-efficients and diagnostic score points. The constant (intercept) was -4.0 (95% cl -4.4 to - 3.6). N= 2,940.

			F	Prevalenc	e	
Low-risk diagnostic score	Study	0.5	0.2	0.1	0.05	0.01
threshold (<4)	population					
Sensitivity	26.6%	-	-	-	-	-
Specificity	96.6%	-	-	-	-	-
PPV	89.0%	88.7%	66.2%	46.6%	29.2%	7.3%
NPV	56.0%	56.8%	84.0%	92.2%	96.2%	99.2%

High-risk diagnostic score						
threshold (>9)						
Sensitivity	37.0%	-	-	-	-	-
Specificity	96.1%	-	-	-	-	-
PPV	90.1%	90.4%	70.1%	51.0%	33.0%	8.6%
NPV	61.2%	60.4%	85.9%	93.2%	96.7%	99.3%

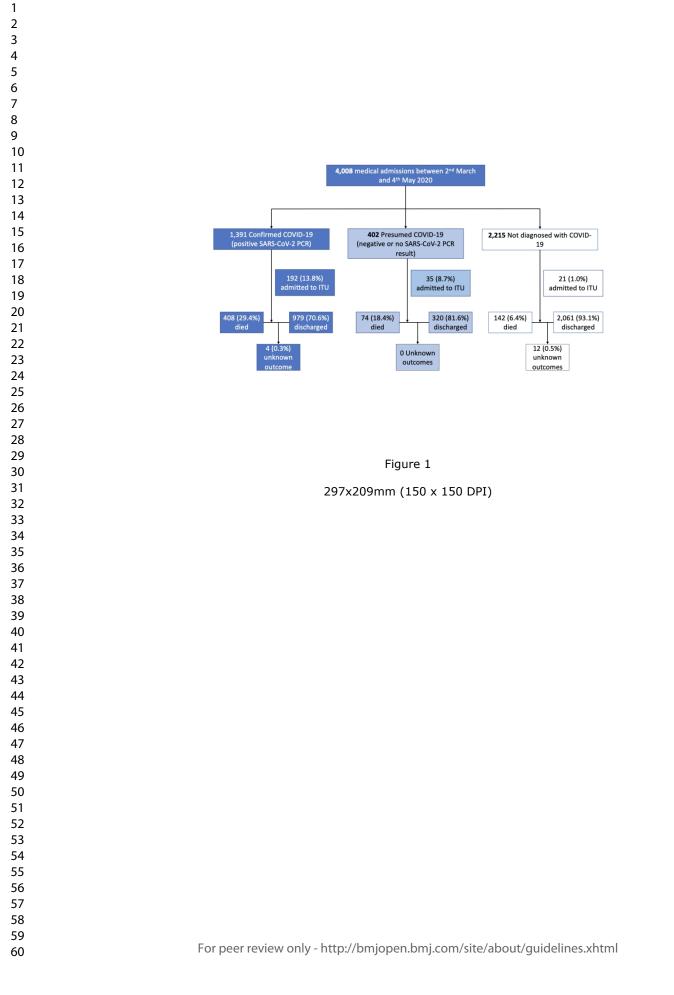
Table 4. Diagnostic performance of a low COVID-19 risk threshold (less than 4 points on the diagnostic score) and high-risk threshold (greater than 9 points). Low-risk threshold diagnostic accuracy is for identifying patients <u>without</u> COVID-19, whereas high-risk threshold is for identifying patients <u>with</u> COVID-19

Figure 1. Patient flow diagram by final diagnosis and SARS-CoV-2 RT-PCR status with outcomes. Note 'presumed COVID' includes patients who were RT-PCR negative (n=293) and those who did not have a valid RT-PCR results (n=109)

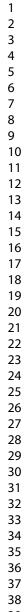
Figure 2. (A) Receiver operating characteristic curve for the full diagnostic predictive model. Area under the curve (AUC) 0.839 (95%Cl 0.824-0.853), N=2,940. (B) Calibration plot showing observed compared to predicted risk of COVID-19 diagnosis as deciles, with 95% confidence interval. The dashed green line shows perfect calibration. (C) Decision curve analysis showing standardised net benefit at different threshold probabilities for diagnosing patients with COVID-19, comparing diagnosing all patients as COVID-19 (blue solid line), diagnosing no patients with COVID-19 (solid red line), and various diagnostic risk models, including the COVID diagnostic score (full model and simplified risk score), C-reactive protein over 50, and National Early Warning Score of 5 or more. CRP C-reactive Protein, NEWS National Early Warning Score

Figure 3. (A) Overlaid histogram of COVID diagnostic risk score and number of patients with COVID-19 (white) and alternative (not COVID-19) diagnoses. (B) Proportion (%) of patients with COVID-19 (orange) or alternative (not COVID-19, blue) diagnoses by COVID diagnostic risk score. N=2,940

<u>References</u>


- 1 Long C, Xu H, Shen Q, *et al.* Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? *Eur J Radiol* 2020; **126**. DOI:10.1016/j.ejrad.2020.108961.
- 2 Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, *et al.* False-Negative Results of Initial Rt-Pcr Assays for Covid-19: a Systematic Review. 2020; : 1–26.
- 3 Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2 Infection -Challenges and Implications. *N Engl J Med* 2020; **383**: e38.
- 4 Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. *Radiology* 2020; : 200343.
- Brogna B, Bignardi E, Brogna C, *et al.* Typical CT findings of COVID-19 pneumonia in patients presenting with repetitive negative RT-PCR. *Radiography* 2020.
 DOI:10.1016/j.radi.2020.09.012.
- 6 Watson J, Whiting PF, Brush JE. Interpreting a covid-19 test result. *BMJ* 2020; **369**: 1–7.
- Jang S, Rhee J-Y, Wi YM, Jung BK. Viral Kinetics of SARS-CoV-2 over the preclinical, clinical, and postclinical period. *Int J Infect Dis* 2020; published online Nov. DOI:10.1016/j.ijid.2020.10.099.
- 8 Guan W, Ni Z, Hu Y, *et al.* Clinical characteristics of coronavirus disease 2019 in China. *N Engl J Med* 2020; **382**: 1708–20.
- 9 Docherty AB, Harrison EM, Green CA, *et al.* Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. *BMJ* 2020; **369**. DOI:10.1136/bmj.m1985.
- Richardson S, Hirsch JS, Narasimhan M, *et al.* Presenting Characteristics,
 Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the
 New York City Area. *Jama* 2020; **10022**: 1–8.
- Wynants L, Van Calster B, Collins GS, *et al.* Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. *BMJ* 2020; 369. DOI:10.1136/bmj.m1328.
- 12 British Society of Thoracic Imaging. COVID-19 CXR Report Proforma. .
- 13 Knight SR, Ho A, Pius R, *et al.* Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. *BMJ* 2020; **370**: 1–13.
- 14 Baik Y, Rickman HM, Hanrahan CF, *et al.* A clinical score for identifying active tuberculosis while awaiting microbiological results: Development and validation of a multivariable prediction model in sub-Saharan Africa. *PLOS Med* 2020; **17**: e1003420.
- 15 Altman DG, Vergouwe Y, Royston P, Moons KGM. Prognosis and prognostic research:

BMJ Open


1 2		
3		Validating a prognostic model. <i>BMJ</i> 2009; 338 : 1432–5.
4 5	16	Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a
6	10	multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The
7 8		
9	. –	TRIPOD Statement. <i>BMC Med</i> 2015; 13 : 1.
10 11	17	De Angelis G, Posteraro B, Biscetti F, <i>et al.</i> Confirmed or unconfirmed cases of 2019
12		novel coronavirus pneumonia in Italian patients: a retrospective analysis of clinical
13 14		features. <i>BMC Infect Dis</i> 2020; 20 . DOI:10.1186/s12879-020-05504-7.
15	18	Tang Y-W, Schmitz JE, Persing DH, Stratton CW. Laboratory Diagnosis of COVID-19:
16 17		Current Issues and Challenges. 2020
18		www.chinamerlin.com/en/index.php?pproducts_show&id166&s_id&c_id68& (accessed
19 20		Oct 15, 2020).
21	19	Gibani MM, Toumazou C, Sohbati M, et al. Assessing a novel, lab-free, point-of-care
22 23		test for SARS-CoV-2 (CovidNudge): a diagnostic accuracy study. The Lancet Microbe
24		2020; 0 . DOI:10.1016/s2666-5247(20)30121-x.
25 26	20	Salameh JP, Leeflang MMG, Hooft L, <i>et al.</i> Thoracic imaging tests for the diagnosis of
27		COVID-19. <i>Cochrane Database Syst Rev</i> 2020; 2020 .
28 29		DOI:10.1002/14651858.CD013639.pub2.
30	21	Wake RM, Morgan M, Choi J, Winn S. Reducing nosocomial transmission of COVID-19:
31 32	21	implementation of a COVID-19 triage system. <i>Clin Med</i> 2020; 20 : e141–5.
33	22	
34 35	22	Patterson B, Marks M, Martinez-Garcia G, <i>et al.</i> A novel cohorting and isolation strategy
36		for suspected COVID-19 cases during a pandemic. <i>J Hosp Infect</i> 2020; 105 : 632–7.
37 38	23	Pormohammad A, Ghorbani S, Khatami A, et al. Comparison of influenza type A and B
39		with COVID-19: A global systematic review and meta-analysis on clinical, laboratory and
40 41		radiographic findings. <i>Rev Med Virol</i> 2020; published online Oct 9.
42		DOI:10.1002/rmv.2179.
43 44	24	Zheng S, Fan J, Yu F, <i>et al.</i> Viral load dynamics and disease severity in patients
45		infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020:
46 47		Retrospective cohort study. BMJ 2020; 369. DOI:10.1136/bmj.m1443.
48	25	To KKW, Tsang OTY, Leung WS, <i>et al.</i> Temporal profiles of viral load in posterior
49 50		oropharyngeal saliva samples and serum antibody responses during infection by SARS-
51		CoV-2: an observational cohort study. <i>Lancet Infect Dis</i> 2020; 20 : 565–74.
52 53	26	Xiao AT, Tong YX, Gao C, Zhu L, Zhang YJ, Zhang S. Dynamic profile of RT-PCR
54		findings from 301 COVID-19 patients in Wuhan, China: A descriptive study. <i>J Clin Virol</i>
55 56		2020; 127 : 104346.
57	27	NHS Digital. Summary Hospital-level Mortality Indicator (SHMI) - Deaths associated with
58 59	۲۱	
60		hospitalisation, England, March 2019 - February 2020. 2020. https://digital.nhs.uk/data-

and-information/publications/statistical/shmi/2020-07/shmi-march-2019---february-2020 (accessed Oct 14, 2020).

- 28 Lynn RM, Avis JL, Lenton S, Amin-Chowdhury Z, Ladhani SN. Delayed access to care and late presentations in children during the COVID-19 pandemic: A snapshot survey of 4075 paediatricians in the UK and Ireland. Arch. Dis. Child. 2020; 0. DOI:10.1136/archdischild-2020-319848.
- 29 Pessoa-Amorim G, Camm CF, Gajendragadkar P, *et al.* Admission of patients with STEMI since the outbreak of the COVID-19 pandemic: a survey by the European Society of Cardiology. *Eur Hear journal Qual care Clin outcomes* 2020; **6**: 210–6.

BMJ Open

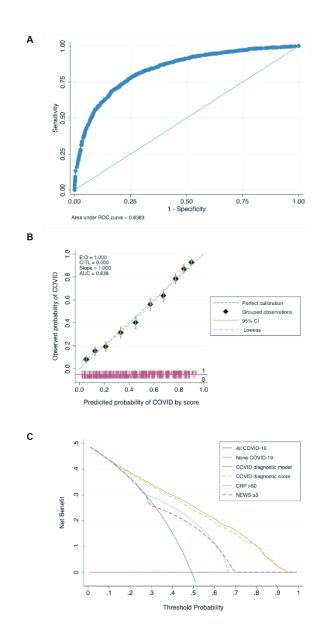
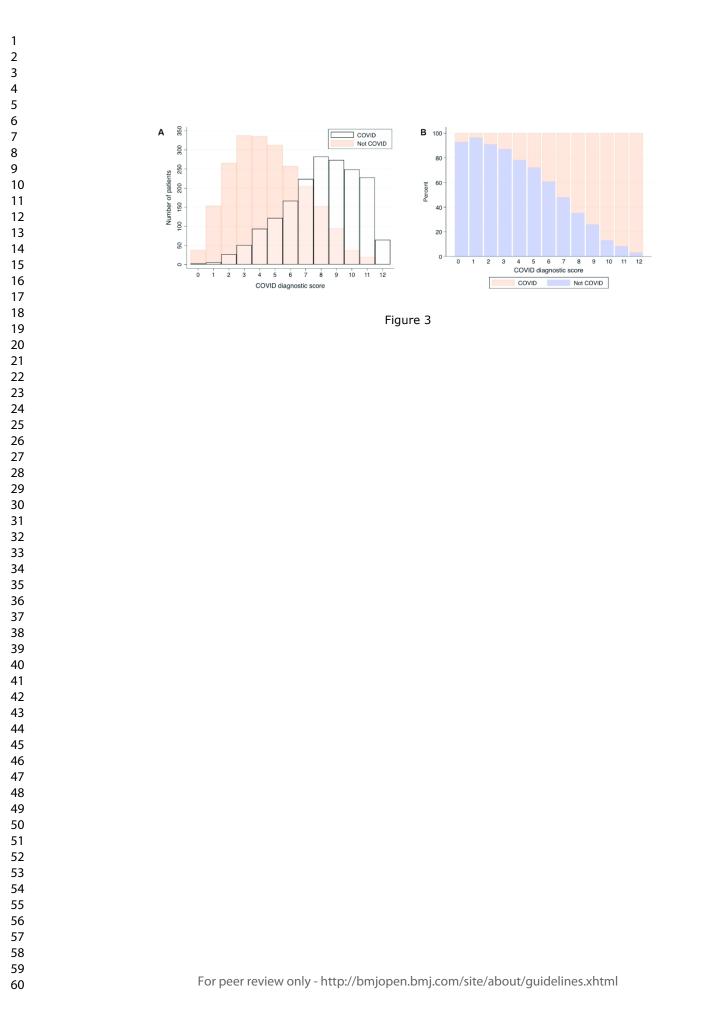



Figure 2

Supplementary Appendix- False-negative RT-PCR for COVID-19 and a diagnostic risk score: a retrospective cohort study among patients admitted to hospital

For peer terier only

		Not diagnosed with COVID	All COVID diagnoses	p-value	COVID negative PCR	COVID diagnosis PCR positive	p- valu
		n=2215	n=1793		n=283	n=1391	
Symptoms							
Cough		537 (24.5%)	1114 (62.5%)	<0.001	177 (63.2%)	865 (62.4%)	0.80
Chest pain		335 (15.3%)	109 (6.1%)	<0.001	23 (8.2%)	80 (5.8%)	0.12
Diarrhoea		152 (6.9%)	131 (7.4%)	0.62	25 (8.9%)	96 (6.9%)	0.24
Fall		277 (12.7%)	166 (9.3%)	<0.001	24 (8.6%)	129 (9.3%)	0.70
Symptom duration (days), median (IQR)		4 (2, 12) (n=592)	7 (3, 10) (n=1083)	0.010	7 (3, 12) (n=163)	6 (3, 10) (n=844)	0.02
Observations							
Pulse, median (IQR)		89 (75, 106) (n=1964)	96 (83, 110) (n=1689)	<0.001	98 (85, 110) (n=266)	96 (83, 110) (n=1319)	0.05
Pulse >120 bpm		203 (10.3%)	241 (14.3%)	<0.001	41 (15.4%)	177 (13.4%)	0.39
Respiratory rate per minute, median (IQR)		20 (18, 23) (n=1966)	26 (21, 32) (n=1688)	<0.001	26 (22, 32) (n=266)	26 (20, 32) (n=1318)	0.59
Respiratory rate >30 per minute		175 (8.9%)	568 (33.6%)	<0.001	90 (33.8%)	439 (33.3%)	0.87
Temperature °C, median (IQR)		36.7 (36.4, 37.1) (n=1961)	37.5 (36.8, 38.4) (n=1684)	<0.001	37.3 (36.7, 38) (n=267)	37.5 (36.8, 38.4) (n=1313)	0.00
Temperature >38°C		180 (9.2%)	605 (35.9%)	<0.001	72 (27.0%)	495 (37.7%)	<0.0
Systolic Blood Pressure mmHg, median (IQR)		136 (119, 154) (n=1948)	132 (117, 147) (n=1666)	<0.001	131 (118, 146.5) (n=264)	132 (117, 148) (n=1299)	0.88
Systolic Blood Pressure mmHg <100		108 (5.5%)	101 (6.1%)	0.51	16 (6.1%)	78 (6.0%)	0.97
O ₂ saturations %, median (IQR)		97 (96, 99) (n=1961)	96 (92, 97) (n=1686)	<0.001	95 (93, 98) (n=265)	96 (92, 97) (n=1317)	0.55
O ₂ saturations <94%		198 (10.1%)	543 (32.2%)	<0.001	79 (29.8%)	430 (32.6%)	0.37
NEWS 2 Score, median (IQR)		2 (1, 4) (n=1951)	6 (3, 8) (n=1666)	<0.001	6 (4, 7) (n=264)	6 (3, 8) (n=1299)	0.73
NEWS 2 Score ≥5		477 (24.4%)	1084 (65.1%)	<0.001	176 (66.7%)	840 (64.7%)	0.53
Supplementary oxygen	Yes	169 (8.8%)	529 (33.1%)	<0.001	96 (37.9%)	404 (32.4%)	0.09

Blood gas and pathology						
PO ₂ (KPa), median (IQR)	8.8 (7.3, 11.1) (n=359)	8.7 (7.4, 10.7) (n=693)	0.51	9.1 (7.7, 10.6) (n=122)	8.5 (7.3, 10.7) (n=530)	0.18
PO ₂ <8 v	127 (35.4%)	251 (36.2%)	0.79	34 (27.9%)	205 (38.7%)	0.025
pCO ₂ (KPa), median (IQR)	5.2 (4.4, 6.7) (n=359)	4.6 (4.1, 5.2) (n=693)	<0.001	4.6 (4.1, 5.2) (n=122)	4.6 (4.1, 5.2) (n=530)	0.83
pCO ₂ >6	124 (34.5%)	75 (10.8%)	<0.001	12 (9.8%)	59 (11.1%)	0.68
Haemoglobin (g/L), mean (SD)	121.7 (23.2) (n=2026)	124.4 (21.1) (n=1598)	<0.001	122.2 (21.0) (n=274)	124.6 (20.9) (n=1243)	0.085
Neutrophil count (x10^9/L), median (IQR)	5.9 (4.1, 8.6) (n=2026)	5.8 (4.0, 8.3) (n=1598)	0.20	6.7 (4.5, 9.1) (n=274)	5.6 (3.9, 8.0) (n=1243)	<0.00
Neutrophils >10 x10^9/L	361 (17.8%)	250 (15.6%)	0.083	52 (19.0%)	183 (14.7%)	0.078
Lymphocyte count (x10^9/L), median (IQR)	1.4 (0.9, 2.0) (n=2026)	1.0 (0.7, 1.4) (n=1598)	<0.001	1.1 (0.8, 1.4) (n=274)	1.0 (0.7, 1.4) (n=1243)	0.013
Lymphocytes <1 x10^9/L	509 (25.1%)	736 (46.1%)	<0.001	107 (39.1%)	594 (47.8%)	0.009
Platelet count (x10^9/L), median (IQR)	246.0 (193.0, 317.0) (n=2025)	231.0 (177.0, 306.0) (n=1597)	<0.001	263.0 (206.0, 343.0) (n=274)	226.0 (172.0, 297.0) (n=1242)	<0.00
Platelets <100 x10^9/L	80 (4.0%)	62 (3.9%)	0.92	11 (4.0%)	50 (4.0%)	0.99
ALT, median (IQR)	22.0 (15.0, 36.0) (n=1755)	31.0 (18.0, 51.0) (n=1412)	<0.001	31.0 (18.0, 55.0) (n=245)	30.0 (19.0, 51.0) (n=1096)	0.71
Creatinine (mmol/L), median (IQR)	84.0 (65.0, 121.0) (n=2011)	86.0 (67.0, 124.0) (n=1582)	0.057	80.0 (65.0, 117.0) (n=269)	87.0 (68.0, 127.0) (n=1235)	0.012
Creatinine >120 mmol/L	507 (25.2%)	426 (26.9%)	0.24	64 (23.8%)	338 (27.4%)	0.23
Urea (mmol/L), median (IQR)	6.0 (4.0, 9.8) (n=2025)	6.1 (4.0, 10.6) (n=1584)	0.58	5.5 (3.8, 8.9) (n=270)	6.4 (4.1, 11.0) (n=1236)	0.007
CRP μg/mL, median (IQR)	16.1 (3.4, 66.9) (n=1928)	98.7 (46.0, 175.3) (n=1590)	<0.001	86.2 (41.7, 170.1) (n=272)	101.5 (48.3, 180.2) (n=1237)	0.15
CRP >50 μg/mL	599 (31.1%)	1160 (73.0%)	<0.001	191 (70.2%)	917 (74.1%)	0.19
Glucose (mmol/L), median (IQR)	6.6 (5.6, 8.5) (n=1182)	7.1 (5.9, 9.3) (n=910)	<0.001	6.7 (5.9, 9.1) (n=147)	7.1 (5.9, 9.3) (n=710)	0.49
Lactate >2 mmol/L	41 (3.5%)	30 (3.3%)	0.83	5 (3.4%)	21 (3.0%)	0.78

 BMJ Open

Supplementary Table 1. Baseline characteristics for patients, including co-morbidities, admission vital signs and laboratory blood tests, stratified by diagnosis and SARS- CoV-2 RT-PCR status. Data on com-morbidities represents number with each condition. Where data are missing, numbers in each category are presented. P-values are calculated using chi-squared for proportions, t-tests for means and Wilcoxon rank sum for medians. CRP C-reactive Protein, IQR inter quartile range. NEWS National Early Warning Score. PO2 partial pressure of oxygen, PCO2 partial pressure of carbon dioxide.

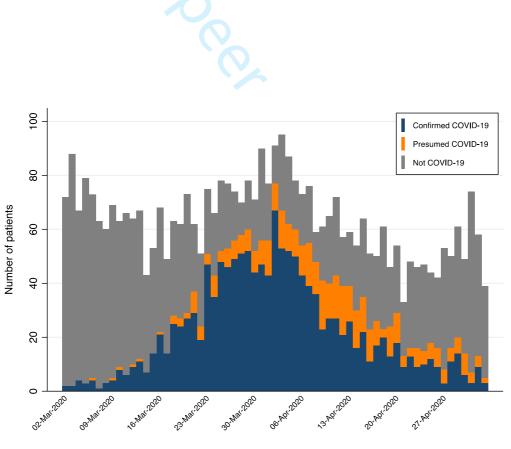
, cori, , ortions, t-tests for n. . partial pressure of oxygen, .

3
5
5
4 5 7 8 9 10
/
8
9
10
11
12 13
14
15
16
17
17
18
19
20
21
22
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
33 34 35 36 37 38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
74
55
56
57
58
59
<u> </u>

1 2

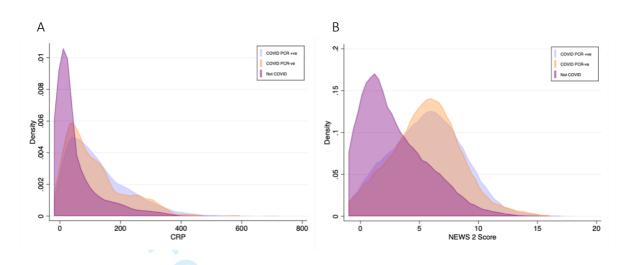
<u>Variable</u>		Odds ratio (95% CI)	P-value
COVID-19 RT-PCR negative		0.41 (0.3 - 0.6)	<0.0001
Age, years		1.06 (1.0 - 1.1)	<0.0001
Sex	Female	0.90 (0.7 - 1.2)	0.446
Co-morbidities	1	1.13 (0.8 - 1.7)	0.552
	2 or more	1.45 (1.0 - 2.1)	0.042
CRP		1.00 (1.0 – 1.0)	<0.0001
Oxygen Saturations			
<94%		1.41 (1.1 - 1.9)	0.016
Urea		1.04 (1 - 1.1)	<0.0001

Supplementary Table 2. Multivariable logistic regression model assessing association between COVID-19 PCR-status and mortality, adjusting for other variables known to be risk-factors for mortality in COVID-19. Continuous variables modelled as linear. No interactions in the final model. P-vales calculated by likelihood ratio tests. N= 1,414.


<u>Variable</u>		ß- Coefficient	Odds ratio (95% CI)	Diagnostic score points
Age	50-70	0.4 (0.2 - 0.6)	1.5 (1.2-1.8)	1
Sex	Male	0.2 (0.0 - 0.3)	1.2 (1.0-1.4)	1
Ethnicity	Asian	0.6 (0.4 - 0.8)	1.8 (1.4-2.1)	1
	Black	0.6 (0.4 - 0.9)	1.9 (1.4-2.5)	1
	Mixed/Other	0.8 (0.4 - 1.1)	2.2 (1.5-3.1)	1
	Unknown	0.5 (0.3 - 0.8)	1.7 (1.3-2.2)	1
Cough, fever or shortness		1.3 (1.2 - 1.5)		2
of breath NEWS2 Score	>5	0.9 (0.7 - 1.1)	3.8 (3.2-4.5) 2.4 (2.0-2.9)	2
CRP	>50	1.1 (1.0 - 1.3)	3.0 (2.6-3.7)	2
Lymphocytes	<1	0.6 (0.4 - 0.8)	1.8 (1.5 – 2.2)	1
Chest x-ray	lung infiltrates	1.3 (1.0 - 1.5)	3.6 (2.8 -4.5)	2
	other abnormality	0.7 (0.4 - 0.9)	1.9 (1.4-2.6)	1

Supplementary Table 3. Logistic regression multivariable model for COVID-19 diagnosis using multivariate multiple imputation using chained equations for missing data in candidate predictor variables, with odds ratio and ß co-efficients. N=3,968. Area under the receiver operator curve (ROC) = 0.86 (95% CI 0.84 - 0.87).

3	
4	
5	
6	
7	
8	
9	
10	
11	
12 13	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
25 26	
20	
28	
29	
30	
31	
32	
33	
34 35	
35 36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52 53	
53 54	
54 55	
56	
57	
58	
59	
60	


COVID status based on diagnostic risk score (proportion of patients expected during 'peak')	Management
Low risk, COVID-19 diagnostic risk score <4	 Alternative diagnosis most likely Rapid RT-PCR or antigen test, if negative send to 'COVID-negative' area
Medium risk, COVID-19 diagnostic score 4-9	 Uncertain if COVID-19 is cause for presentation Will need further testing to determine COVID-19 diagnosis Either test with Rapid RT-PCR or antigen test, or consider CT imaging, or standard COVID-19 RT-PCR testing and move to isolation in
High risk, COVID-19 diagnostic score >9	 COVID-19 most likely Isolate patient in COVID-19 area or isolation room and standard COVID-19 RT-PCR testing

Supplementary Table 4. Potential application of COVID-19 diagnostic risk score

Date of admission

Supplementary Figure 1. Number of patients admitted and final diagnosis by date of admission. Confirmed COVID-19 is patients with a positive SARS-CoV-2 PCR from nasopharyngeal swab, presumed COVID-19 is patients without a positive SARS-CoV-2 PCR but a discharge diagnosis of COVID-19. Not COVID-19 are patients without a positive SARS-CoV-2 PCR and an alternative diagnosis. N=4008.

Supplementary Figure 2. Distribution of (A) C-reactive protein (N=3518) and (B) National Early Warning Score (NEWS) (N=3889) by diagnosis at the time of hospital admission.

<u>False-negative RT-PCR for COVID-19 and diagnostic risk score: a retrospective cohort study among patients admitted to hospital</u> STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cohort studies*

Section/Topic	ltem #	Recommendation	Reported on page #		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1		
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2		
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3		
Objectives	3	State specific objectives, including any prespecified hypotheses	3		
Methods					
Study design	4	Present key elements of study design early in the paper	4		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection			
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	4-5		
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5		
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4-5		
Bias	9	Describe any efforts to address potential sources of bias	5-6		
Study size	10	Explain how the study size was arrived at	5		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5-6		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	5-6		
		(b) Describe any methods used to examine subgroups and interactions	6		
		(c) Explain how missing data were addressed	6		
		(d) If applicable, explain how loss to follow-up was addressed	NA		
		(e) Describe any sensitivity analyses	5-6		

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	Figure 1/page 7
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1, page 7
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
		(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	7, figure S2
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	7-8
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	7-8
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7-8
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	10-11
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	12
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

False-negative RT-PCR for COVID-19 and diagnostic risk score: a retrospective cohort study among patients admitted to hospital

TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic Title and abstract	Item		Checklist Item	Page
Title and abstract			Identify the study as developing and/or validating a multivariable prediction model, the	
Title	1	D;V	target population, and the outcome to be predicted.	1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	2
Introduction				
			Explain the medical context (including whether diagnostic or prognostic) and rationale	
Background and objectives	3a	D;V	for developing or validating the multivariable prediction model, including references to	3
			existing models.	
· · · · , · · · · ·	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both.	3
Methods				
	4-	Div	Describe the study design or source of data (e.g., randomized trial, cohort, or registry	
Source of data	4a	D;V	data), separately for the development and validation data sets, if applicable.	4
	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable,	4
			end of follow-up.	
Participants	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	4
	5b	D;V	Describe eligibility criteria for participants.	4
	5c	D;V	Give details of treatments received, if relevant.	NA
Outcome	60	,	Clearly define the outcome that is predicted by the prediction model, including how and	C
	6a	D;V	when assessed.	6
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	NA
	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction	6
Predictors			model, including how and when they were measured. Report any actions to blind assessment of predictors for the outcome and other	
	7b	D;V	predictors.	NA
Sample size	8	D;V	Explain how the study size was arrived at.	6
		,	Describe how missing data were handled (e.g., complete-case analysis, single	
Missing data	9	D;V	imputation, multiple imputation) with details of any imputation method.	6-7
	10a	D	Describe how predictors were handled in the analyses.	6
	10b	D	Specify type of model, all model-building procedures (including any predictor selection),	6
Statistical		V	and method for internal validation.	
analysis methods	10c		For validation, describe how the predictions were calculated. Specify all measures used to assess model performance and, if relevant, to compare	6-7
methods	10d	D;V	multiple models.	6
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	NA
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	6-7
Development	12	v	For validation, identify any differences from the development data in setting, eligibility	NA
vs. validation			criteria, outcome, and predictors.	
Results				Figur
			Describe the flow of participants through the study, including the number of participants	1,
	13a	D;V	with and without the outcome and, if applicable, a summary of the follow-up time. A	page
			diagram may be helpful.	7
				T = 1-1
Participants	 		Describe the characteristics of the participants (basic demographics, clinical features,	1 2016
Participants	13b	D;V	available predictors), including the number of participants with missing data for	1 1
Participants	13b		available predictors), including the number of participants with missing data for predictors and outcome.	
Participants	13b 13c	D;V V	available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of	Table 1 NA
	13c	V	available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	1
Model	13c 14a	V	available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of	1 NA 7
	13c	V	available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome.	1 NA 7
Model development	13c 14a 14b	V D D	available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression	1 NA 7 Tabl 2 Tabl
Model	13c 14a 14b 15a	V D D	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). 	1 NA 7 Tabl 2 Tabl 3
Model development Model	13c 14a 14b	V D D	available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression	1 NA 7 Tabl 2 Tabl 3 9
Model development Model specification Model	13c 14a 14b 15a 15b	V D D D	available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model.	1 NA 7 Tabl 2 Tabl 3 9 9 9,
Model development Model specification	13c 14a 14b 15a	V D D	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). 	1 NA 7 Tabl 2 Tabl 3 9 9, suppl
Model development Model specification Model performance	13c 14a 14b 15a 15b 16	V D D D D D;V	available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model.	1 NA 7 Tabl 2 Tabl 3 9 9, suppl men
Model development Model specification Model performance Model-updating	13c 14a 14b 15a 15b	V D D D	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. Report performance measures (with CIs) for the prediction model. 	1 NA 7 Tabl 2 Tabl 3 9 9, suppl men
Model development Model specification Model performance Model-updating	13c 14a 14b 15a 15b 16	V D D D D D;V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). 	1 NA 7 Tabl 2 Tabl 3 9 9, suppl men
Model development Model specification Model performance Model-updating	13c 14a 14b 15a 15b 16	V D D D D D;V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). Discuss any limitations of the study (such as nonrepresentative sample, few events per 	1 NA 7 Tabl- 2 Tabl- 3 9 9, suppl men NA
Model development Model specification Model performance Model-updating Discussion	13c 14a 14b 15a 15b 16 17 18	V D D D D D;V V V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. Report performance measures (with CIs) for the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). 	1 NA 7 Tabli 2 Tabli 3 9 9, suppl men NA
Model development Model specification Model performance Model-updating Discussion Limitations	13c 14a 14b 15a 15b 16 17	V D D D D;V V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. Report performance measures (with CIs) for the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). For validation, discuss the results with reference to performance in the development 	1 NA 7 Tabl- 2 Tabl- 3 9 9, suppl men NA
Model development Model specification Model performance Model-updating Discussion	13c 14a 14b 15a 15b 16 17 17 18 19a	V D D D D;V V V V V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. Report performance measures (with CIs) for the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). 	1 NA 7 Tabl 2 Tabl 3 9 9, suppl men NA 10-1
Model development Model specification Model performance Model-updating Discussion Limitations	13c 14a 14b 15a 15b 16 17 18	V D D D D D;V V V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. Report performance measures (with CIs) for the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). For validation, discuss the results with reference to performance in the development data, and any other validation data. 	1 NA 7 Tabl 2 Tabl 3 9 9, suppl men NA 10-1 10-1
Model development Model specification Model performance Model-updating Discussion Limitations Interpretation	13c 14a 14b 15a 15b 16 17 18 19a 19b	V D D D D;V V D;V V D;V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. Report performance measures (with CIs) for the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). For validation, discuss the results with reference to performance in the development data, and any other validation data. Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 	1 NA 7 Tabl- 2 Tabl- 3 9 9, suppl men NA 10-1 ⁻¹ 10-1 ⁻¹ 10-11
Model development Model specification Model performance Model-updating Discussion Limitations	13c 14a 14b 15a 15b 16 17 17 18 19a	V D D D D;V V V V V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. Report performance measures (with Cls) for the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). For validation, discuss the results with reference to performance in the development data, and any other validation data. Give an overall interpretation of the results, considering objectives, limitations, results 	1 NA 7 Tabl 2 Tabl 3 9 9, suppl men NA 10-1 10-1 10-1 10-1 10-1
Model development Model specification Model performance Model-updating Discussion Limitations Interpretation Implications	13c 14a 14b 15a 15b 16 17 18 19a 19b	V D D D D;V V D;V V D;V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. Report performance measures (with CIs) for the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). For validation, discuss the results with reference to performance in the development data, and any other validation data. Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 	1 NA 7 Tabl 2 Tabl 3 9 9, suppl men NA 10-1 10-1 10-1
Model development Model specification Model performance Model-updating Discussion Limitations Interpretation	13c 14a 14b 15a 15b 16 17 18 19a 19b 20	V D D D D;V V D;V V D;V	 available predictors), including the number of participants with missing data for predictors and outcome. For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis. If done, report the unadjusted association between each candidate predictor and outcome. Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). Explain how to the use the prediction model. Report performance measures (with CIs) for the prediction model. If done, report the results from any model updating (i.e., model specification, model performance). Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). For validation, discuss the results with reference to performance in the development data, and any other validation data. Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence. 	1 NA 7 Tabl 2 Tabl 3 9 9, suppl men NA 10-1 10-1 10-1 10-1 10-1

BMJ Open

False-negative RT-PCR for COVID-19 and diagnostic risk score: a retrospective cohort study among patients admitted to hospital

TRAPO

TRIPOD Checklist: Prediction Model Development and Validation

				ary appen dix
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	12

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

<text>