
S1 Appendix. Local stability of Î̂ÎI

Recall the recursion (11):

It+1 = I2
t

(
b0α

N
It−∆ − b0ĉ

)
+ Ît(Nb0c+ 1− γ − b0αIt−∆). (A1)

In the neighborhood of the equilibrium Î, write It = Î + εt and It−∆ = Î + εt−∆, where
εt and εt−∆ are small enough that quadratic terms in them can be neglected in the
expression for It+1 = Î + εt+1. The linear approximation to (A1) is then

εt+1 = εt

[
2b0α

N
Î2 − Î(2b0ĉ+ b0α) +Nb0ĉ+ 1− γ

]
+ εt−∆

(
b0α

N
Î2 − b0αÎ

)
,

(A2)

and in the case ∆ = 0, this reduces to

εt+1 = εt

[
Nb0ĉ+ 1− γ − 2b0Î(ĉ+ α) +

3b0α

N
Î2

]
. (A3)

We focus first on ∆ = 0 and write (A3) as εt+1 = εtL(Î). Recall that Î satisfies Eq.
(17), and substituting γ from (17) into L(Î), we obtain

L(Î) = 1− b0Î

(
α+ ĉ− 2αÎ

N

)
= 1− b0H(Î), (A4)

where

H(Î) = Î

(
α+ ĉ− 2α

N
Î

)
. (A5)

Clearly N ≥ Î, and since c∗ must be positive, ĉ > αÎ/N . Hence H(Î) > 0 and, for local
stability of Î, the remaining condition for |L(Î)| < 1 is b0H(Î) < 2. Direct substitution
of Î gives b0H(Î) < 2 if

b0Î

√
(α− ĉ)2 +

4αγ

b0N
< 2. (A6)

Now we turn to the general case ∆ 6= 0 and Eq. (A2), which we write as

εt+1 = Aεt +Bεt−∆, (A7)

where A and B are the corresponding terms on the right side of (A2). Eq. (A7) is a
homogeneous linear recursion, since, given Î and all the parameters, A and B are
constants with respect to time. Local stability of Î is then determined by the properties
of recursion (A7), whose solution first involves solving its characteristic equation

λ∆+1 = Aλ∆ +B. (A8)

In principle there are ∆ + 1 real or complex roots of (A8), which we represent as
λ1, λ2, . . . , λ∆+1, and the solution of (A7) can be written as

εt = c1λ
t
1 + c2λ

t
2 + · · ·+ c∆+1λ

t
∆+1, (A9)

where ci are found from the initial conditions. Convergence to, and hence local stability
of Î, is determined by the magnitude of the absolute value (if real) or modulus (if
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complex) of the roots λ1, λ2, . . . , λ∆+1: Î is locally stable if the largest among the ∆ + 1
of these is less than unity.

In Table 2, results of numerically iterating the complete recursion (11) are listed for
the delay ∆ varying from ∆ = 0 to ∆ = 4, all starting from I0 = 1, with N = 10, 000
and the stated parameters. Figure 3 illustrates the discrete- and continuous-time
dynamics summarized in Table 2. With these values, Î = 35.7180 and we obtain
A = 0.9997 and B = −0.6673. Then, for ∆ = 0, Eq. (A7) gives εt = 0.3324εt−1, which
entails that convergence to Î is locally monotone. With ∆ = 1, the characteristic
polynomial is a quadratic,

λ2 = 0.9997λ− 0.6673, (A10)

with complex roots 0.4999± 0.6461i whose modulus is 0.8169, which is less than 1. The
complexity implies cyclic behavior, and since the modulus is less than one, we see
locally damped oscillatory convergence to Î.

For ∆ = 2, the characteristic equation is the cubic

λ3 = 0.9997λ2 − 0.6673, (A12)

which has one real root 0.6383 and complex roots 0.8190± 0.6122i. Here the modulus of
the complex roots is 1.0225, which is greater than unity so that Î is not locally stable.
In this case the dynamics depend on the initial value I0. If I0 < 72, It oscillates but not
in a stable cycle. If I0 > 73, the oscillation becomes unbounded.

When ∆ = 3, the four roots of the characteristic polynomial

λ4 = 0.9997λ3 − 0.6673 (A13)

are all complex: −0.4566± 0.5966i and 0.9564± 0.5173i. The modulus of the second
pair of complex roots is greater than 1. For ∆ = 4, the five roots of

λ5 = 0.9997λ4 − 0.6673 (A14)

are −0.7823, −0.1301± 0.8212i, and 1.0211± 0.4376i. Here again the largest modulus is
1.1109, greater than 1. Thus for both ∆ = 3 and 4, Î cannot be locally stable, and for
these delay times the recursion can oscillate wildly becoming negatively and positively
unbounded for some starting values I0.
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