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Supplementary Note 1: Pipette Detection System

Introduction
The pipette detection pipeline consists of three steps. First, when the pipette is visible
in the image, an image stack is acquired. Ideally, the pipette should cover most of the
image and should be nearly in focus. Moreover, the tip should be near the sample so
that light conditions during detection are similar to those during the movement of the
pipette in the sample. Then a fast initialization algorithm is run on the acquired stack.
The initialization is based on a moving line profile in the image and is detailed in Section
. Finally, the result of the initialization is refined using the main tip detection algorithm
referred to as Pipette Hunter 3D (PH3D). The algorithm is the 3-dimensional extension
of the base Pipette Hunter model [1] and the derivations are detailed in Section . The
energy function is minimized using the variational method and gradient descent. Section
describes the performed quality measurement and comparison of the algorithms.

Line profile estimation
An initialization is advantageous to the main detection algorithm as variational frame-
works are known to be robust but require many iterations and the result is sensitive to
the starting point. The developed initialization algorithm operates on minimum intensity
projected (MIP) images of the stack containing the pipette. Two independent runs are
required on different projection images (usually Z and X projections) to get a 3D point
estimation.

The initialization algorithm estimates the tip position by analyzing a line profile in
the MIP image. First, it is assumed that the orientation of the pipette is known either by
setting this value manually or using the value set by the pipette calibration step. Then a
line is placed in front of the pipette on the edge of the image and rotated such that it is
perpendicular to the orientation of the pipette. Then the line profile is analyzed in those
positions where it covers the image. Since the image is often noisy we compute the 90th
percentile of the pixel values from the line profile which will be a reference value. If the
profile includes at least one value that is relevantly smaller than the reference value it is
considered to be caused by the edge of the pipette. The relevantly smaller value is defined
as a 40% intensity drop but it can be set as a parameter to the algorithm. If more than
one relevant values are present the smallest is chosen. Subsequent to this the position in
the image of the chosen relevant small value is computed from the parameters of the line,
the algorithm terminates and outputs this value as the position of the pipette tip. If no
such value is present in the profile then the line is pushed towards the pipette tip by one
pixel distance and the algorithm repeats from analyzing the line’s profile. The different
steps of the algorithm are presented in Supplementary Fig. 1. The quality measurement
of this initialization step is described in Section .

Pipette Hunter 3D
The notations used throughout this section are listed below:
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a b c

Supplementary Figure 1: Initialization using line profile estimation. a: A line
aligned perpendicularly to the orientation of the pipette is pushed against the
pipette from the edge of the image. b: The line profile of the image where the
first relevant intensity drop was found. c: The position of the intensity drop
in the line profile is converted back to a position in the image.

Supplementary Figure 2: The 8 DOF pipette detection mechanism.

• tensors (including vectors) are distinguished from scalars or coordinates using bold
letters

• we use different notations for tensors and their representations: representation [A]
or coordinate matrix (w.r.t. some coordinate system) encased in brackets is associ-
ated with tensor A

• for dot (scalar) and cross products between vectors, we use operators “·” and “×”
respectively

• dot operation is used in a broader “contraction” sense: (single-) dot product reduces
the order of the respective tensor product by two; examples a) let v, w be arbitrary
vectors (tensors of 1st order), their tensor (dyadic) product is a second order tensor,
then v · w is scalar (tensor of 0-th order) b) w = A · v where A is second order
tensor and v is vector, then w is also a vector c) C = A · B all tensors of order
two; between the representations, these operations are performed using the usual
matrix-vector and matrix-matrix multiplications (e.g. [w] = [A] [v], [C] = [A] [B])
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• to denote the gradient of a scalar field I (r) (where r is a position vector w.r.t. some
coordinate system) we use either ∂I

∂r
or the “right gradient” notation I∇.

Here, we define the energy and derive its gradient for the two-wand mechanism designed
to detect the pipette (see Supplementary Fig.2). The assumptions are as follows:

• original configuration: the moving local frame (e1, e2,n) with coordinates ξ1, ξ2, ξ3
is aligned with the standard basis (i, j,k) with coordinates denoted by x1, x2, x3

• the axes of the wands are situated on the plane spanned by e2,n, satisfying the
equation ξ2 = ±η1 ± ξ3 tanα1

• the symmetrical arrangement of the wands is retained during the iterative approach-
ing of the energy minimum

• ζ is the distance along the wand axes measured from the plane spanned by e1, e2,
ρ is the distance to the wand axes and φ is the angle around it, measured from e1
in the plane e1, e2.

The wand positions are completely determined by (together with the symmetry condition
above)

• the position vector r (x1, x2, x3) = x1i + x2j + x3k that designates the origin (or
pivot point) of the local frame (e1, e2,n)

• the rotation of the local frame about its pivot point (we parameterize the space of
rotations with proper Euler angles ϕ1, ϕ2, ϕ3, using extrinsic z − y − z scheme)

• the coordinates η1, α1 which are given relative to the moving local frame

• the (fixed parameter) values ζ1, ζ2 representing the start and the endpoints of the
wands along their axes.

The system has therefore 8 degrees of freedom (DOF) given by the variables having upper
indices in the list above: x1, x2, x3, ϕ1, ϕ2, ϕ3, η1, α1.

The local coordinates of a point w.r.t. the local frame (e1, e2,n) inside the cylinder-
shaped wands, using cylindrical coordinates ρ, φ, ζ are given by:

ξ1 (ρ, φ, ζ) = ρ cosφ

ξ2 (ρ, φ, ζ) = ±
(
η1 + ζ sinα1

)
+ (ρ sinφ) cosα1 (1)

ξ3 (ρ, φ, ζ) = ζ cosα1 ∓ (ρ sinφ) sinα1,

ρ ∈ [0,4ρ], ζ ∈ [ζ1, ζ2], φ ∈ [0, 2π) , then the internal point of wandsP
(
xi, ϕk, η1, α1

)
= r+

ξ1e1 + ξ2e2 + ξ3n, where i, k = 1, 2, 3 is identified by the formula:

P± = r
(
xi
)
± η1e2

(
ϕk
)
+ ζ

(
cosα1n

(
ϕk
)
± sinα1e2

(
ϕk
))

+ ρ
[
sinφ

(
cosα1e2

(
ϕk
)
∓ sinα1n

(
ϕk
))

+ cosφe1
(
ϕk
)]
. (2)
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Note that in the expression (2), the second line identifies the points of the wand axes.
Now we are ready to define the energy of the system as the integral of the voxel-intensity
over the volume occupied with the wands:

E
(
xi, ϕk, η1, α1

) .
=

ˆ
V

[I (P+) + I (P+)] dV

=

ˆ ζ2

ζ1

ˆ 2π

0

ˆ 4ρ
0

[I (P+) + I (P+)] ρdρdφdζ. (3)

The local coordinates as the functions of the variables of the integration ρ, φ, ζ are given
by (1). Energy (3) has its minimal value wherever its derivatives w.r.t. the variables
defining the system DOF are all zero. The list of the required derivatives is:

∂E

∂r
=

ˆ
V

[I∇ (P+) + I∇ (P−)] dV

∂E

∂ϕk
=

ˆ
V

[
I∇ (P+) ·

∂P+

∂ϕk
+ I∇ (P−) ·

∂P−
∂ϕk

]
dV

∂E

∂η1
=

ˆ
V

[
I∇ (P+) ·

∂P+

∂η1
+ I∇ (P−) ·

∂P−
∂η1

]
dV (4)

∂E

∂α1
=

ˆ
V

[
I∇ (P+) ·

∂P+

∂α1
+ I∇ (P−) ·

∂P−
∂α1

]
dV .

Below we examine the integrands of (4) line by line.
1st line: The components of ∂E

∂r
are the derivatives w.r.t. the coordinates of the

origin of the local frame in the world coordinate system: ∂E
∂xi

= ∂E
∂r
· l, l ∈ {i, j,k}. I∇

is the ’right’ gradient (represented by row vector) of the image function I (x1, x2, x3), “·”
stands for the dot (scalar) product of vectors.

2nd line: Since the local coordinates (1) are known for all values of integration
variables ρ ∈ [0,4ρ], ζ ∈ [ζ1, ζ2], φ ∈ [0, 2π) , we wish to express the quantities that
occur in the list of derivatives (4) with these local coordinates. According to (2), only the
derivatives of the rotated local frame basis vectors w.r.t. the Euler angles are required.
The columns of the representing matrix of the rotation R = Rϕ1 ·Rϕ2 ·Rϕ3 is calculated
as the multiplication of the matrices of the elementary rotations (applied from the left to
column vectors)

[R] =

 c1c2c3 − s1s3 −c3s1 − c1c2s3 c1s2
c1s3 + c2c3s1 c1c3 − c2s1s3 s1s2
−c3s2 s2s3 c2

 =
[
e1 e2 n

]
, (5)

its columns contain the coordinates of the basis vectors of the local system (e1, e2,n)
expressed in the standard basis (the first two angles ϕ1 and ϕ2 designate the azimuthal
and polar coordinates of n respectively whilst ϕ3 represents the spin of the plane spanned
by e1, e2). Here we use the usual abbreviations si ≡ sinϕi, ck ≡ cosϕk, i, k = 1, 2, 3 for
concise writing. The derivatives are determined by direct calculation, the results can be
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expressed by the angles and the local basis vectors as:

∂e1
∂ϕ1 = c2e2 − s2s3n ∂e1

∂ϕ2 = −c3n ∂e1
∂ϕ3 = e2

∂e2
∂ϕ1 = −c2e1 − s2c3n ∂e2

∂ϕ2 = s3n
∂e2
∂ϕ3 = −e1

∂n
∂ϕ1 = s2 (s3e1 + c3e2)

∂n
∂ϕ2 = c3e1 − s3e2 ∂n

∂ϕ3 = 0.

(6)

Note that these derivatives are of constant length vectors - the unit-length local basis
vectors - hence lying in their perpendicular plane (e.g. ∂e1

∂ϕk ∈ span {e2, n}). From (6),
for the point P = r+ ξ1e1+ ξ

2e2+ ξ
3n, P ∈ {P+,P−} the partial derivative expressions:

I∇ (P) · ∂P
∂ϕk (the integrands) w.r.t. the Euler angles ϕ1, ϕ2, ϕ3 are calculated such that

I∇ (P) · ∂P
∂ϕ1

=
(
ξ3s2s3 − ξ2c2

)
(I∇ · e1)

+
(
ξ3s2c3 + ξ1c2

)
(I∇ · e2)−

(
ξ1s2s3 + ξ2s2c3

)
(I∇ · n)

I∇ (P) · ∂P
∂ϕ2

= ξ3c3 (I∇ · e1)− ξ3s3 (I∇ · e2) +
(
ξ2s3 − ξ1c3

)
(I∇ · n) (7)

I∇ (P) · ∂P
∂ϕ3

= −ξ2 (I∇ · e1) + ξ1 (I∇ · e2) ,

where the image gradient is decomposed in the local system as

I∇ = (I∇ · e1) e1 + (I∇ · e2) e2 + (I∇ · n)n (8)

and the wand points are identified with equations (1). To gain deeper insight it is worth
introducing the pseudovector M .

= (P− r) × I∇ - the “torque” - w.r.t. the pivot point
of the Euler angles, that is the origin of the local basis (e1, e2,n):

M =
(
ξ1e1 + ξ2e2 + ξ3n

)
× [(I∇ · e1) e1 + (I∇ · e2) e2 + (I∇ · n)n]

=
[
ξ2 (I∇ · n)− ξ3 (I∇ · e2)

]
e1

+
[
ξ3 (I∇ · e1)− ξ1 (I∇ · n)

]
e2 (9)

+
[
ξ1 (I∇ · e2)− ξ2 (I∇ · e1)

]
n .

With this pseudovector, the constituents of the energy derivatives w.r.t. the Euler angles
(7) can be expressed as:

I∇ (P) · ∂P
∂ϕ1

= M · [s2 (−c3e1 + s3e2) + c2n] = M · k

I∇ (P) · ∂P
∂ϕ2

= M · (s3e1 + c3e2) = M · (Rϕ1 · j) (10)

I∇ (P) · ∂P
∂ϕ3

= M · n = M · (Rϕ1 ·Rϕ2 · k) .

Formulae (10) are easier to understand if the rotations are interpreted intrinsically. The
rate of change of the Euler angles are proportional to the decomposition of torque M
w.r.t. the orientation of the instantaneous reference frame moving/rotating together
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with the mechanism: a) first the whole mechanism - with its reference frame attached
- spins around axis k then b) around the rotated axis Rϕ1 · j and finally c) around the
twice-rotated axis Rϕ1 ·Rϕ2 · k = n.

For the calculation of ∂E
∂ϕk , k = 1, 2, 3 either equations (7) or the equations (10)

with torque values (9) integrated over the coordinates ξ1, ξ2, ξ3 identified as wand point
coordinates by (1) can be used.

3rd line: From (2) ∂P±
∂η1

= ±e2 hence we have:

I∇ (P±) ·
∂P±
∂η1

= ±I∇ · e2 . (11)

4th line: With direct calculation, the integrands are given by:

I∇ (P±) ·
∂P±
∂α1

=
(
±ζ cosα1 − ρ sinα1 sinφ

)
[I∇ (P±) · e2]

−
(
ζ sinα1 ± ρ cosα1 sinφ

)
[I∇ (P±) · n] . (12)

Result (12) can also be viewed as the action of the pseudovectors

m± =
[(
ξ2 ∓ η1

)
e2 + ξ3n

]
× I∇ (P±) (13)

w.r.t. their momentary rotational axes: −e1 at local coordinates (0, η1, ξ3) and e1 at
local coordinates (0,−η1, ξ3) respectively (in the former case, a minus sign is required to
satisfy the right-hand rule). Substituting (1) to torque expressions (13) we have

−m+ · e1 = [I∇ (P+) · e2] ξ3 − [I∇ (P+) · n]
(
ξ2 − η1

)
=
(
ζ cosα1 − ρ sinα1 sinφ

)
(I∇ · e2)

−
(
ζ sinα1 + ρ cosα1 sinφ

)
(I∇ · n)

m− · e1 = − [I∇ (P+) · e2] ξ3 + [I∇ (P+) · n]
(
ξ2 − η1

)
(14)

= −
(
ζ cosα1 + ρ sinα1 sinφ

)
(I∇ · e2)

+
(
−ζ sinα1 + ρ cosα1 sinφ

)
(I∇ · n)

which is equivalent to (12).

Comparison
The performance of the algorithms was evaluated on 5 acquired image stacks of different
pipettes. The pipettes were lowered around the working distance to have similar light
conditions to those during the experiments with samples. The pipette tip is moved over
at least half of the image and it is assured that the stack always contains it. The voxel
position of the tip was manually selected in the stacks. Then the initialization algorithm
was run on the stacks and its results were the starting point of PH3D. The results of both
the initialization algorithm and PH3D were saved and compared to the manually picked
positions. The mean difference between the line profile estimation and the ground truth
data is 14.64 ± 4.23 voxels, while for PH3D the error is 8.63 ± 4.80 voxels. The pixel
size is 115 nm and the distance between the slices in the stack was 1 µm, thus the error
expressed in micrometers is 0.99 ± 0.55 µm. This error value is fairly low to reliably hit
a cell if the pipette is oriented to its center, since the diameter of cells is usually in the
range of 5-20 µm. Furthermore, this error value is smaller than the reported 3.53 ± 2.47
µm or 32.97 ± 23.10 pixels in the case of the original 2D model.
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Supplementary Note 2: 
Deep Learning Model Comparison for Cell Detection 

DetectNet 
The first model in the comparison was DetectNet 2. DetectNet can be split into training and                
validation sections. The training part (Supplementary Fig. 3) contains the data augmentation,            
the fully connected network (GoogLeNet 3), and the loss functions, while the bounding box              
clustering and the mean average precision (mAP) statistics are the elements of the validation              
part. The training was performed in NVIDIA’s Deep Learning GPU Training System            
(DIGITS 4) architecture, which is an extension of caffe 5. Adaptive Moment Estimation             
(ADAM) 6 was used as the solver for the training process. The number of epochs was 500,                 
while the learning rate was 1e-5 with a fixed learning rate policy. The pre-trained weights of                
the ImageNet dataset were used for the initialization of GoogLeNet to speed up the training               
process. The input image size was downscaled to 704×512, and the mini-batch size was set to                
10. The training was performed using an NVIDIA Titan Xp graphics card. 

 

 
Supplementary Figure 3: DetectNet structure for training and validation. (Source: 

https://developer.nvidia.com/blog/) 

 

https://paperpile.com/c/TNmvun/mr5ic
https://paperpile.com/c/TNmvun/EchBc
https://paperpile.com/c/TNmvun/hRp7u
https://paperpile.com/c/TNmvun/ZLg5j
https://paperpile.com/c/TNmvun/dLirj
https://developer.nvidia.com/blog/


Faster R-CNN 
Faster R-CNN (FRCNN) 7 (Supplementary Fig. 4) with ResNet50 8 backbone           
(Supplementary Fig. 8) pretrained on ImageNet was trained in Matlab R2019b. The            
Stochastic Gradient Descent with Momentum (SGDM) 9 was used as the optimizer with             
cross-entropy loss function. The number of epochs was 6. The initial learning rate was 1e-3,               
which was dropped every 15 epochs by a factor of 0.2. The training method was set to                 
‘end-to-end’, that simultaneously trains the region proposal and region classification          
subnetworks. The input image size was downscaled to 696×520, and the mini-batch size was              
limited to 1 by the framework. Box pyramid scale value of 2 was set, with 0-0.4 positive and                  
0.6-1 negative overlapping ranges. The number of box pyramidal levels were determined            
automatically by the framework. The training was performed using NVIDIA GeForce RTX            
2080 Ti with 11 GB memory. 

 

 

Supplementary Figure 4: Faster RCNN architecture. (Source: 7.) 

Darknet with YOLOv3-SPP backbone 
With the Python-based PyTorch 10 package we trained two separate Darknet 11 models with              
different backbones. The first model had YOLOv3-SPP 12 backbone, that we used in the same               
setup as it was described in the original paper. To evaluate the feature extraction in YOLOv3,                
a hybrid approach between YOLOv2 and a residual network has been created. The new              
network uses 3×3 and 1×1 convolutional layers combined with shortcut connections. It is             
called Darknet-53 (Supplementary Fig. 5), because of the 53 convolutional layers it has in              
total.  
During training, the sum of squared error losses are used. As for the classification,              
independent logistic classifiers are used to classify the containing of each bounding box, and              
logistic regression is used to predict an objectness score. Boxes are predicted at 3 different               

https://paperpile.com/c/TNmvun/rYRmb
https://paperpile.com/c/TNmvun/FTBaG
https://paperpile.com/c/TNmvun/9DCNf
https://paperpile.com/c/TNmvun/rYRmb
https://paperpile.com/c/TNmvun/pQlbu
https://paperpile.com/c/TNmvun/kSRWq
https://paperpile.com/c/TNmvun/0njp5


scales. Similarly to FPN 13 the features are extracted from them. The last convolutional layer               
predicts a 3D tensor encoding bounding boxes, objectness, and class prediction. In our             
experiments, we predict 3 boxes at each scale, so as the result we get N×N×[3∗(4+1)] for the                 
4 bounding box offsets and 1 objectness prediction. In this case, we applied ADAM as the                
optimizer, with 1e-3 learning rate. We used step decay as a learning rate scheduler, where the                
drop was 5e-4 after every 30 epochs. The total number of epochs we used was 100. The size                  
of the input images was converted to 1024×1024. We set the IOU threshold between the               
predicted bounding boxes and ground truth data to 0.4. Random affine transformations were             
added to the training data. The training was performed using an NVIDIA Titan Xp card. 

 

Supplementary Figure 5: Darknet-53/YOLOv3 architecture. (Source: 12.) 

 

Darknet with custom ResNeXt-50 backbone 
The second Darknet model we trained was using a custom ResNeXt-50 (ResNeXt) 14             
backbone. In this case, the environment is the same as in the YOLOv3 instance, but the                
network has a different type and number of layers. Within ResNeXt a modularized design of               
ResNet was adopted. This network consists of a stack of residual blocks. As in ResNets these                
blocks have the same topology (Supplementary Fig. 6), and they are subject to two simple               
rules: when spatial maps of the same size are produced, the blocks will share the same                
hyper-parameters, and when a spatial map is downsampled by a factor of 2, the width of the                 
blocks is multiplied by a factor of 2. These 2 rules are indicating the only need to design a                   
template module, and all of the modules in a network can be determined accordingly              
(Supplementary Fig. 8). 
It can be shown that the module of Supplementary Fig. 7a is equivalent to Supplementary               

https://paperpile.com/c/TNmvun/a1m0z
https://paperpile.com/c/TNmvun/0njp5
https://paperpile.com/c/TNmvun/IAyTl


Fig. 7b. The same topology is shared among multiple paths. Using the notation of grouped               
convolution, these modules become more succinct. This reformulation can be seen in            
Supplementary Fig. 7c.  

 

Supplementary Figure 6: residual block of ResNet (left) and residual block of 
ResNeXt (right). (Source: 14.) 

 
 

 

 

Supplementary Figure 7: a: Aggregated residual transformations. b: A block 
equivalent to (a) implemented as early concatenation. c: A block equivalent to (a, 

b), implemented as grouped convolutions. (Source: 14) 
 

Except for the differences in these blocks, we applied the same network as it is set up in                  
ResNet-50 (Supplementary Fig. 6). 

The initial learning rate was 5e-4. We applied a step decay learning rate scheduler, where the                
drop was 1e-4 after every 30 epochs. We used ADAM as the optimizer. The total number of                 
epochs was 100. The size of the input images was converted to 1024×1024. We set the IOU                 
threshold between the predicted bounding boxes and ground truth data to 0.4. Random affine              
transformations were added to the training data here as well. The training was performed              
using an NVIDIA Titan Xp card. 

 

https://paperpile.com/c/TNmvun/IAyTl
https://paperpile.com/c/TNmvun/IAyTl


 

Supplementary Figure 8: ResNet-50 and ResNeXt-50 architectures. 
Inside the brackets are the shape of a residual block, and outside the brackets is 
the number of stacked blocks on a stage. “C=32” suggests grouped convolutions 

with 32 groups. 
(Source: 14) 

 

Evaluation 
Even though the detections are performed in 2D images, the results are extended to 3D in the                 
image stacks the same way as in the software as described in the main text. Then the                 
centroids of both the ground truth and detected bounding boxes are calculated and used for               
matching them. If the distance between a detected and ground truth bounding box is less than                
or equal to 5 micrometers (43.48 pixels) in the axial plane, and less than or equal to 3                  
micrometers / 3 slices in the Z axis, then they are matched and counted as a true positive (TP)                   
detection. These distances are determined empirically such that even in the case of small              
neurons if the detection centroid falls in the soma, it will be matched to a ground truth. Then                  
precision (P), recall (R), and F1-score (F1) were calculated. The models were evaluated on 3               
image stacks (305 images in total). The best result was achieved by using FRCNN, while the                
rest performed very similarly to each other (Supplementary Table 1). Supplementary Figs.            
9-12 contain the precision-recall and ROC (receiver operating characteristic) curves of the            
models. Example images with detection bounding boxes (yellow rectangles) and ground truth            
data (red boxes) are shown in Supplementary Figs. 14-19. 

https://paperpile.com/c/TNmvun/IAyTl


 

Supplementary Table 1: Evaluation results of the models. 

 

 

Supplementary Figure 9: precision-recall and ROC curve of the DetectNet model. 

 

 

Model F1-score Precision Recall 

DetectNet 56.88% 53.04% 61.33% 

Faster RCNN 65.83% 60.73% 71.88% 

Darknet (custom ResNeXt) 55.70% 60.55% 51.56% 

Darknet (YOLOv3-SPP) 57.31% 57.20% 57.42% 



Supplementary Figure 10: precision-recall and ROC curve of the FRCNN model. 

 

 

Supplementary Figure 11: precision-recall and ROC curve of the 
Darknet-ResNeXt model. 

 

 

Supplementary Figure 12: precision-recall and ROC curve of the YOLO model. 

Results obtained using FRCNN 

In the comparison described above the FRCNN architecture provided the best results. To             
make sure that the model is generalizable we have performed further tests on a subset of                
images. This representative subset consisted of 35 image stacks of human samples that were              
imaged in the later stages.  

First, we tested how the number of epochs affect the quality. We have run the method for 6                  
epochs with 0.2 decay every 2 epochs, then 20 epochs with 0.2 decay in every 7 epochs, and                  



finally 100 epochs with 0.2 decay every 15 epochs. The quality metrics were F1 = 60.13% (P                 
= 58.10%, R = 67.39%), F1 = 63.68% (P = 61.96%, R = 69.27%), and F1=63.06%                
(P=67.18%, R=61.56%), respectively. This shows that 20 epochs provide somewhat better           
results compared to Supplementary Table 1, and are a good balance between training time              
and quality. 

Next, we have performed 5-fold cross-validation with 20 epochs. The cross-validation           
resulted in mean F1 = 65.33%, P = 58.33%, and R = 76.23%, which values are similar to the                   
corresponding ones in Supplementary Table 1. 

Finally, we have compared the FRCNN-ResNet50 model to FRCNN-MobileNetV2 15.          
MobileNetV2 is a smaller network that has a great balance between complexity and accuracy              
16. Here, we used 100 epochs for the training. The result quality metrics are F1=60.93%, P =                 
55.13%, R = 71.47% (Supplementary Fig. 13) . This shows that smaller backbones can be               
used for the cell detection problem in case of hardware limitations and that FRCNN              
architecture is a good choice for the task. 

 
Supplementary Figure 13: precision-recall and ROC curve of the 

FRCNN-MobileNetV2 model. 

 

Discussion 
FasterRCNN highly outperformed other models we tested. In case of all the necessary             
hardware and software components are available we highly recommend its usage (Matlab            
2018 or later, high performance GPU with a minimum of 8GB RAM, we tested the provided                
model with the following GPU cards: NVidia GeForce 1070, 1080, 1080Ti, 2070, 2080,             
2080Ti, Titan Xp). All so often high capacity computers are not available for bench              
calculations, therefore we also implemented and recommend the use of DetectNet model that             
is a viable choice when a GPU with more than 4GB RAM is not available. 

 

  

https://paperpile.com/c/TNmvun/lZtrX
https://paperpile.com/c/TNmvun/nghkI


 
Supplementary Figure 14: Example result images. 



 

Supplementary Figure 15: Example result images. 



 

Supplementary Figure 16: Example result images. 



 

Supplementary Figure 17: Example result images. 



 

Supplementary Figure 18: Example result images. 



 

Supplementary Figure 19: Example result images. 

 
 



Supplementary Note 3: Cell Tracking System 

Introduction 
The target cell during the patch clamping process can shift as the pipette is being pushed                
towards it. The shift can occur in any direction in the tissue and based on our experiments it                  
is usually between 3 and 10 μm (6.98 ± 3.91 μm, n=19). Tracking the cell under the                 
microscope is a challenging task because a 3-dimensional tracking is required with a             
2-dimensional label-free modality. The developed online tracking system has two parts. One            
part performs lateral tracking in the XY plane while the other part tracks the cell in the Z                  
dimension. Both parts require a template image of the target cell which is acquired before               
starting the patch clamp process and when the cell is in focus in the image. The lateral                 
tracking is always performed in the image of the latest focus level. The Z tracking algorithm                
operates on a small image stack. Acquiring an image stack is time-consuming as the objective               
has to be moved physically to different focus levels. Therefore, when Z tracking is being               
performed, the pipette movement is paused to ensure that the cell is not pushed meanwhile. 

Lateral cell tracking 
The lateral tracker is the Kanade-Lucas-Tomasi (KLT) feature tracker algorithm. Feature           
points are detected by the minimum eigenvalue algorithm in a window in the template image               
17,18. The algorithm is computationally inexpensive and it is performed often (usually per             
second) except when Z tracking is in progress. Supplementary Movie 4 shows the             
performance of the lateral tracker. The white ‘+’ markers at the beginning of the examples in                
the video show the detected feature points on which the tracker is based. Our experimental               
verification shows that in 95% of the cases the algorithm was able to track single cells for                 
more than 100 frames, even in case of extreme motion (>3 μm/frame). 

The default window size for the tracker was 241x241 pixels which is enough to cover almost                
every cell (except rarely large human cells). The feature points are detected using a 5x5 filter.                
If the number of valid feature points significantly drops, for example, due to a sudden               
movement of the cell in the Z direction, the points are reinitialized. A significant drop of                
feature points is detected when the number of valid points is less than 10% of their original                 
number or less than or equal to 10. 

Tracking in Z dimension 
Tracking in the Z dimension is based on focus detection algorithms. As a major principle, we                
assume that an object which is in focus has sharp edges, that cause large differences in pixel                 
intensities. In the beginning, a small image stack is acquired around the last known position               
of the target cell. The template image is compared to every slice of the stack by calculating                 
the absolute value of the difference of the standard deviations of the images in a small                
window. The position of the window is determined by the lateral tracker. The value for the                
middle slice, which corresponds to the last known focus position, is compensated for noise by               
a multiplier (0.95 in our case). Then the index of the minimum value determines the direction                
of the shift of the cell. If the lowest value is of the middle slice, the cell has not moved. If the                      
cell has moved below its previous position then the minimum value will be that of the                
elements below the middle slice. Similarly, we can determine if the cell has moved up.               

https://paperpile.com/c/TNmvun/MHajl+jybiP
https://youtu.be/bQCVgF5DyME


Although this approach does not specify the displacement value only the direction of it, the               
tracking is reliable because the cells do not move rapidly. The stack size used for the                
tracking, based on empirical tests, consists of 7 slices by default, thus the middle element is                
the 4th.  

Supplementary Fig. 20 shows examples of the computed values and the related images based              
on which the decisions are made. The data shown are calculated from bigger image stacks,               
consisting of 60-100 slices. The cells shown were selected from the results of the cell               
detection system. This allowed showing more values than just 7 for demonstration in the              
figure. 

 

 

Supplementary Figure 20: Examples of the Z tracking system. The plots in the             
first column show the calculated values used for determining the direction of the             
shift. The X-axis shows the index difference from the middle slice. The            
corresponding image regions of the markers in the plots are shown in the next              
three columns. The final decision whether the cell has shifted is based on these              
values and images. The lines at ±3 in the X-axis indicate the region which is used                
in the calculations, while the values outside this interval are for demonstration            
purposes. 

We have performed a control test to show how the algorithm performs when it is guaranteed                
that the cell does not move. We have acquired 10 image stacks with 7 slices of the same                  
scene where a cell was in focus in the center of the image in the middle slice. The stacks were                    
manually acquired right after each other without any movement in the stage or the pipette.               
We have repeated the above 10 times, so we have 10 image stack series of 10 different                 
scenes. We have identified 40 different cells in the scenes, not just the ones that were in the                  
center. Afterward, we have tested our algorithm on this data to check how many times it                
detects that the target cell has not moved (Supplementary Table 2). The middle slice from the                
first stack was always used as the reference image and the algorithm was run on the following                 
9 stacks. The algorithm was able to correctly detect that the cell remained in place in most of                  
the cases. As the pipette is not adjusted immediately (only if the distance from the trajectory                
is at least 5 micrometers), rare errors do not affect negatively the patch clamping process.               
Furthermore, the rate of false detections of upward and downward movement is very close to               
each other and in practice, one compensates the other. 



 

Supplementary Table 2: Results of the control test. 

  

 Accuracy (%) Error: below (%) Error: above (%) 

Avg 89.17 5.56 5.28 

Stdev 9.90 7.96 8.34 



Supplementary Note 4: Pressure Regulator Setup 
We built a custom pneumatic pressure regulator to apply air pressure on the pipette. The               
pressure system is equipped with a 50 ml tank in which the requested pressure is set before                 
opening a solenoid valve to the pipette. Two analog pressure sensors (Honeywell, NJ, USA)              
were used in the system for the closed-loop pressure regulation. One is connected to the tank,                
the other measures the pressure subsequent to the valve that connects the tank and the pipette.                
The sensors and the valves are connected to a data acquisition device (DAQ, National              
Instruments USB-6009, Texas, USA) which controls the valves to set the desired pressure.             
The pneumatic parts are connected by silicone tubes. Supplementary Fig. 21 shows the             
wiring diagram of the system. The electrophysiological signal is also forwarded to the same              
data acquisition device for real-time detection of the impedance change of the pipette tip. 

 
 

Supplementary Figure 21: Wiring diagram of the custom made pneumatic 
pressure regulator. A: USB digitizer board (National Instruments, USB-6009), B: 
220 Ohm resistors, C: IRFZ44N field effect transistors, D: 12V DC solenoid 
valves, E: 12V DC pneumatic pumps, F: analog pressure sensors (Honeywell, 
NJ). Colored lines: pneumatic tubes. red: positive pressure, blue: vacuum, green: 
atmospheric pressure, orange: desired pressure to the electrode tip, grey: tank 
pressure. The valves were controlled with TTL signals via the USB board digital 
outputs. The output voltages of the pressure sensors were measured with the 
analog input channels of the USB digitizer. 

 
 

The controller of the pressure system is included in the software. The accuracy of the               
regulator which is 10 mBar by default can be set from the software. Note that the time it takes                   
to set the pressure can increase if the accuracy is set too high compared to the volume of the                   
installed tank and the silicon tubes. The authors help in providing a kit or an assembled                
version of the controller on request. 

 



Supplementary Note 5:  
Electrophysiology Stimuli for DIGAP 
 

Stimulation waveform to test 
electrode resistance: 

 

 

 

 

Stimulation waveform to analyze the physiological properties of patched neurons: 

 

 

 

 

 

 

 

 

 

Batch commands for controlling the HEKA EPC amplifiers: 

Name & Description Length Amplitude Repeat interval 
Shortpulse - Short negative pulse 5 ms -5 mV 100 ms 

Name & Description Length Amplitude Repeat interval 
IVCC - Incremented long pulse 800 ms -100 pA  

increment: 20 pA 

0 s 



 

PROTOCOL  "RESET"  

 

## This protocol is used for resetting the oscilloscope window in 

PatchMaster and switch the amplifier to voltage clamp mode. 

 

Command   ( 0.000s): "  O  DispTrace       0; Trace 1" 

Command   ( 0.000s): "  O  ResetY" 

Command   ( 0.000s): "  O  ResetX" 

Command   ( 0.000s): "  O  YScaleInc" 

Command   ( 0.000s): "  O  YScaleInc" 

Command   ( 0.000s): "  O  YScaleInc" 

Command   ( 0.000s): "  O  DispTrace       1; Trace 2" 

Command   ( 0.000s): "  O  ResetY" 

Command   ( 0.000s): "  O  ResetX" 

Command   ( 0.000s): "  O  YScaleInc" 

Command   ( 0.000s): "  O  YScaleInc" 

Command   ( 0.000s): "  O  YScaleInc" 

Command   ( 0.000s): "  O  DispTrace       0; Trace 1" 

Command   ( 0.000s): "  E  Ampl3           TRUE" 

Wait      ( 0.000s): abs  100.0ms 

Command   ( 0.000s): "  E  Ampl1           FALSE" 

Wait      ( 0.000s): abs  100.0ms 

Command   ( 0.000s): "  E  Mode            3; Whole Cell" 

Wait      ( 0.000s): abs  100.0ms 

Switch    ( 0.000s): "Oscilloscope" 

Switch    ( 0.000s): "Amplifier" 

Wait      ( 0.000s): abs  100.0ms 

 

PROTOCOL  "bHunt" 

 

## This protocol is used for creating a new group in the file 

structure in PatchMaster, set the test pulse, set the gain of the 

amplifier, calculate the offset potential of the electrode, set 

the filter, and call the “shortpulse” protocol. This protocol is 

used when the pipette is in the bath. The “shortpulse” protocol is 

running during the cell hunting phase, and the recorded current 

signals measured with the NI board to calculate the pipette tip 

resistance. 

 

Command   ( 0.000s): "  @  File          "New Group"" 

Chain     ( 0.000s): "RESET", return 

Command   ( 0.000s): "  E  Reset" 

Command   ( 0.000s): "  E  Mode              3; Whole Cell" 

Command   ( 0.000s): "  E  PulseAmp                 -5.0mV" 

Command   ( 0.000s): "  E  PulseDur                 5.0ms" 

Command   ( 0.000s): "  E  CSlow                  100.00pF" 

Command   ( 0.000s): "  E  RSeries                 20.0MOhm" 

Command   ( 0.000s): "  E  Gain             7;  0.5 mV/pA -> 

medium range" 

Command   ( 0.000s): "  E  AutoZero" 



Command   ( 0.000s): "  E  Filter2     7.4kHz" 

Command   ( 0.000s): "  E  PulseOn           TRUE" 

Command   ( 0.000s): "  E  SaveRpip" 

Series    ( 0.000s): "shortpulse","","" 

Wait      ( 0.000s): abs  100.0ms 

Command   ( 0.000s): "  E  Gain             10;  1.0 mV/pA -> 

medium range" 

Command   ( 0.000s): "  E  Ampl2           TRUE" 

Wait      ( 0.000s): abs  100.0ms 

Command   ( 0.000s): "  E  Ampl1           TRUE" 

Wait      ( 0.000s): abs  100.0ms 

Switch    ( 0.000s): "Oscilloscope" 

Switch    ( 0.000s): "Amplifier" 

Wait      ( 0.000s): abs  100.0ms 

Command   ( 0.000s): "  N  Store           TRUE" 

 

PROTOCOL  "bBreakin" 

 

## This protocol is used for compensating the fast capacitive 

transient of the pipette. The protocol is called if the pipette 

tip resistance higher than 1 GOhm ie. When the gigaseal is formed. 

 

Chain     ( 0.000s): "RESET", return 

Command   ( 0.000s): "  E  Mode              3; Whole Cell" 

Command   ( 0.000s): "  E  Gain             10; 5 mV/pA" 

Command   ( 0.000s): "  E  AutoCFast" 

Command   ( 0.000s): "  E  AutoCFast" 

Switch    ( 0.000s): "Amplifier" 

 

PROTOCOL  "aBreakin" 

 

##This protocol is used for the cell capacitance compensation and 

for Rs compensation. It is called when the whole cell 

configuration is achieved.  

 

Chain     ( 0.000s): "RESET", return 

Command   ( 0.000s): "  E  Mode              3; Whole Cell" 

Command   ( 0.000s): "  E  Gain             11; 5 mV/pA" 

Command   ( 0.000s): "  E  CSlow                  10.00pF" 

Command   ( 0.000s): "  E  RSeries                 20.0MOhm" 

Command   ( 0.000s): "  E  AutoCSlow" 

Command   ( 0.000s): "  E  AutoCSlow" 

Command   ( 0.000s): "  E  Gain             11; 10 mV/pA" 

Switch    ( 0.000s): "Amplifier" 

Chain     ( 0.000s): "IVCC" 

 

PROTOCOL  "IVCC" 

 

## This protocol is used for switching the amplifier to current 

clamp mode and start the recording. From this point, all the 

electrophysiological recordings are automatized in PatchMaster.  



 

Command   ( 0.000s): "  N  Store           TRUE" 

Command   ( 0.000s): "  E  Ampl1           FALSE" 

IF        ( 0.000s): AD-7 > -100.00p 

   Command   ( 0.000s): "  E  Mode            4; C-Clamp" 

   Command   ( 0.000s): "  E  IHold                  0.0pA" 

END_IF 

Command   ( 0.000s): "E  Mode            4; C-Clamp" 

Command   ( 0.000s): "  O  DispTrace       0; Trace 1" 

Command   ( 0.000s): "  O  ResetY" 

Command   ( 0.000s): "  O  ResetX" 

Command   ( 0.000s): "  O  YScaleInc" 

Command   ( 0.000s): "  O  YScaleInc" 

Command   ( 0.000s): "  O  YScaleInc" 

Wait      ( 0.000s): abs  150.0ms 

Value     ( 0.000s): Value-4 =  0.0000 

Value     ( 0.000s): Value-3 =  0.0000 

SetPgf    ( 0.000s): PgfParam-1 =  0.0000 

REPEAT    ( 0.000s): sweeps 0.000s 

   Sweep     ( 0.000s): "Long square","","" 

   IF        ( 0.000s): Value-3 =  0.0000 

      IF        ( 0.000s): Value-1 >  1.0000 

         Value     ( 0.000s): Value-4 =  Value-2 

         Value     ( 0.000s): Value-3 =  1.0000 

      END_IF 

   END_IF 

   IF        ( 0.000s): Value-1 >  16.000 

      BREAK     ( 0.000s): repeat 

   END_IF 

END_REPEAT 

Value     ( 0.000s): Value-4 MUL  1.0000G 

SetPgf    ( 0.000s): PgfParam-1 = Value-4 

Chain     ( 0.000s): "RHEOBASE" 

Command   ( 0.000s): "  E  Mode            3; Whole Cell" 

Command   ( 0.000s): "  E  VHold                -70.0mV" 

Switch    ( 0.000s): "Amplifier" 

 

 

 

See more: https://www.heka.com/support/tutorials/tutorials_down/pm_tutorial.pdf (Chapter 
14). 

  

https://www.heka.com/support/tutorials/tutorials_down/pm_tutorial.pdf


Supplementary Note 6: Software Usage and Parameters 

Introduction 
This document introduces the autopatcher software to the user and explains the most             
important parameters which can be set from the graphical user interface. The Installation             
section describes how to set up the system and install the necessary submodules. Then the               
subsequent sections demonstrate how to use the different functionalities.  

Installation 
The software is written in Matlab, thus having an installed Matlab R2019b or later is               
recommended with Image Processing and Computer Vision System toolboxes. Simulator          
mode works with these licenses, but depending on the hardware setup additional toolboxes or              
support packages might be required. A webcam needs the support package for USB             
Webcams, while a FireWire camera requires the Image Acquisition Toolbox and the support             
package for DCAM 1394 cameras. Our pressure controller system and electrophysiological           
signal processor uses a National Instruments USB-6009 board which requires Data           
Acquisition Toolbox and the support package for NI-DAQmx Devices. Initially, the software            
is configured to run in simulator mode. We provide solutions for the mentioned devices and               
others can also be applied. If the user has access to some different hardware then developing                
controllers by inheriting abstract classes makes them available for use with the software.             
Modification of the existing code is not needed. 

The configuration of the software is managed by XML files. The tag values are processed as                
Matlab code. The configuration supports classes, constructor parameters, most often used           
data types, and method calls. The main configuration file is vistool_config.xml, but some             
functionality requires the blindpatcher_config.xml, trainer.xml and prediction_config.xml       
files. The hardware controllers have to be set up in <element> tags before starting the               
software. Those parameters defined inside the <properties> tag are tracked and their            
most recent values are updated in the file when closing the software. 

The autopatcher software requires no other installation than extracting the files to a folder. At               
this point, the software is ready to be used, however, DIC reconstruction requires an OpenCV               
and OpenCL installation. Cell detection is a computationally expensive task and a dedicated             
PC might be required besides the microscope controller if there is no sufficient GPU              
available in it. To run the detection on a dedicated computer, the predictor <element> in               
the config file has to be changed to PredictorRemote. The detection system can be started on                
the remote machine by startPredictionServer.m to accept tasks. This script can be configured             
in prediction_config.xml. If the computer that controls the microscope is equipped with a             
GPU, then remote prediction is not necessary. In this case, again the predictor <element>,              
but now in the main configuration file should be set. This value can be any class that                 
implements the Predictor abstract class. Currently, there are two models implemented that            
can be used. PredictorCaffe uses Caffe-Detectnet, while PredictorFrcnn uses         
FRCNN-Resnet50. The former one is a good choice when the GPU memory is rather small               
(4GB), otherwise, the latter one performs better. 



Starting the software: Main window 
The software can be started after changing the Matlab working directory to the location of the                
extracted files. If the startup.m file has not run automatically it has to be run manually. The                 
main window can be started by running the startVisualizationTool.m script which loads the             
configuration from vistool_config.xml. The logging system might create a log folder and files             
with .log extension. 

Supplementary Fig. 22 shows the main window in live view mode. The live camera or the                
loaded image is shown on the left. Around the bottom right area of the image, the z level of                   
the microscope is shown in live mode. On the right side, the most often used buttons can be                  
found. The Live View push-button activates or deactivates the camera. If the Live prediction              
push button is on the cells are detected in the live camera image. The other buttons are used                  
for visual patch clamping and discussed in the Visual patch clamping section. The menu bar               
at the top of the window is the starting point for other functions and is discussed                
element-by-element in the rest of this section. 

 

Supplementary Figure 22: The main window of the autopatcher software with live 
view started. 

 

View menu: 

- Blind Patcher: Opens the Blind Patcher window or brings it in focus if already              
opened. 



- Visual Patcher: Opens the Visual Patcher and the Patch Clamp Diary windows, if not              
opened. 

- Cleaner: Opens the Pipette Cleaner window or brings it in focus if already opened. 
- Trainer: Opens the Manual3DTrainer window or brings it in focus if already opened             

and enables its functionality in the main window. 

 

Tools menu: 

- Capture and Save image: Saves the current image visible in Live View to a file. 
- Reset DCAM: Resets the DCAM driver. Useful if the driver crashes. 

 

Pipette menu: 

- Set focus at click: Update the position of the pipette tip by clicking on it in the live                  
camera image. 

- Detect focus: Update the tip position of the pipette automatically by a line profile              
estimation and improve it with the Pipette Hunter 3D 2 wands model. 

- Configure: Calibrate the pipette axes for visual patch clamping. This feature should be             
run after the first startup and before using any visual patch clamping related             
functionality. A coordinate system transformation has to be determined so that the            
pipette can be moved based on the microscope’s stage coordinate system, or in other              
words based on the image that we see. This function asks the operator in a               
step-by-step fashion to move the pipette in every axes at least 100 micrometers (the              
longer the movements are the more precise the calibration will be) and click on the               
pipette tip after every movement. 

- Ignore sample top: Ignores the sample top position when using the ‘Move pipette             
here’ feature in the image and moves the pipette using the ‘fast’ speed. If the item is                 
unset then the pipette is moved slowly in the tissue and the final step is a forward                 
movement in the x-axis. 

 

Stack menu: 

- Load: Loads and shos an image stack. 
- Acquire: Acquires and shows an image stack. The number of elements in the stack              

can be set in the config file under GeneralParameters.stackSize. The current focus            
level is going to be the topmost image and the step size will be 1 micrometer between                 
the slices. 

- Predict: Detects cells in the currently loaded image stack. 
- Patch predicted: Offers cells for patch clamping from the recent detection results. 
- Show original (default): Shows the original loaded stack (with image normalization). 
- Show reconstructed: Performs DIC reconstruction and shows the reconstructed stack. 
- Show bg corrected: Performs background correction in the stack and shows the result. 

 



Options menu: 

- General options: A window for general options (Supplementary Fig. 23) 
- Camera timer period: The period in seconds to update the live view screen 
- Acquired stack size: The number of images to acquire in an image stack 
- Save Find&Patch stack: Saves the image stack as a file that is acquired by              

using the Find&Patch button 
- DIC reconstruction group: 

- Iterations: The number of iterations for the algorithm 
- Direction (degrees): Shear direction in degrees 
- Step size weight: The update step size for the gradient descent method 
- Smoothness weight: Multiplier of the smoothness term 
- Cores in a thread: The number of CUDA threads in a thread group 

 

 

Supplementary Figure 23: General options window. 

 

- Prediction options: Options window for cell detection (Supplementary Fig. 24)  
- Threshold to detect: The detection result is a probability map that is            

thresholded with this value to get bounding boxes.  
- Prediction timer: The time interval in seconds to run the detection in live view.  
- Minimum/Maximum object width/height: Detected cells with smaller/bigger       

bounding boxes are not considered as valid results.  
- Minimum overlap to unite: A ratio, if two detections overlap at least this much              

in different z slices then they are united. 
- Maximum z distance to unite: If the slices, based on their indices, are further              

from each other than this value they will not be united. 



 

 

Supplementary Figure 24: Prediction options window. 

 

Blind patch clamping 
Blind patch clamping can be initiated from the Blind Patcher window, which is shown in               
Supplementary Fig. 25. The window contains a Pressure panel to check or manually control              
the pressure system. Before starting any patch clamping it is recommended to check if the               
pressure and vacuum sources can provide the preset low/high +/- strengths using the related              
buttons. It is possible that the sensor does not detect perfectly 0 mBar pressure even if it is                  
physically guaranteed. To compensate for this offset (usually between -10 and +10 mBar) run              
the Calibrate feature which lasts a few seconds, opens the valves to atmosphere, measures,              
and saves this offset for later calculations. The Off button disables the pressure controller,              
which is useful if the operator wants to take over control. Beyond the preset pressure values,                
the operator can request any reasonable strength by entering the number in the Requested              
pressure field and pressing enter. The pressure measured on the pipette is visible at all times                
in the Actual pressure field. The status of the pressure controller can be Regulating (normal               
operation), Calibration, CalibrationComplete, Disabled, BreakIn and BreakInComplete. 

 



 

Supplementary Figure 25: Blind Patcher window. 

 

The Electrophysiology panel contains information about the actual resistance and current           
values and shows the resistance history on a logarithmic scale. Measuring the resistance             
requires a square command signal which can be activated by the Electrode in bath button in                
this window. 

The Blind Patcher window can be opened in two ways. In both ways it reads the                
blindpatcher_config.xml file. If it is opened from the Main Window then only the window              
related properties are used and the control objects are passed to it. It is also possible to                 
perform blind patch clamp recording by starting the startBlindPatcher.m script which opens            
the window without visual patch clamping capabilities. In this case, the config file has to               
define the necessary control objects as well. 

Performing a blind patch clamp recording starts by clicking on the Electrode in bath button.               
When pressing this button the pipette should be in the recording solution. This function sets               
up the pipette by starting a square signal as the command signal for measuring the resistance                
and applies a small pressure. If the operator finds the resistance value of the pulled glass                
pipette appropriate, the dura should be crossed by manually moving the pipette and applying              
higher pressure value. When the pipette is ready for a patch clamp attempt and is near cells                 
the operator has to click the Start Blind Patch button. The current phase of the blind patch                 
clamp process is always visible in the Autopatcher status field in the GUI and can take one of                  
the following three values: Starting, Hunting, Sealing, BreakIn, Success, and Failed. The            
Message field shows informative details about the current status of the process. In the hunting               



phase, the pipette is regularly pushed forward while applying a small pressure until the              
measured resistance value increases. If a relevant resistance increase is detected then the             
pipette movement is stopped, the pressure is dropped to atmosphere and the phase is changed               
to Sealing. In the sealing phase, low negative pressure is applied to form the gigaseal state                
between the cell and the pipette. If the phase lasts long, the pressure is set to atmosphere for a                   
few short time intervals, the vacuum strength is increased and the pipette is moved a bit in                 
every direction. When the gigaseal state is achieved the phase is changed to BreakIn. In the                
break-in phase short high negative pressure pulses are applied to break the cell membrane              
and achieve whole-cell configuration. If the break-in was successful the phase is changed to              
Success and the recording is automatically started. If any of the phases fail, eg. the pipette is                 
moved too much without hitting a cell in the hunting phase, gigaseal could not be formed in                 
the sealing phase, or the cell died during break-in, then the phase is changed to Failed. If the                  
operator finds a problem at any point in the process which was not detected by the system the                  
attempt can be stopped by clicking on the Stop button. If the problem could be fixed the                 
operator can restart the process from any phase with the Start from sealing or the Start from                 
break-in buttons. 

The RS Improver panel contains the Start/Stop button and the Desired RS field and tries to                
improve the series resistance after a patch clamp attempt by alternating between small             
pressure and low vacuum. 

The Options button opens the Blind Patcher Options window shown in Supplementary Fig.             
26. The parameters which can be set here are the following: 

- Low positive pressure: Low pressure value used in the patch clamping process. 
- High positive pressure: A preset high pressure value (not used in the process but              

useful for cleaning the pipette tip). 
- Low negative pressure: Low vacuum used in the patch clamping process. 
- High negative pressure: High vacuum used in the break-in phase. 
- ‘Forward’ axis: The axis on which steps are made in the hunting phase 
- Hunting group: 

- Min. RS change to seal: Minimum increase in resistance value to switch from             
hunting to sealing phase 

- Step size: The step size with which the pipette is pushed along its forward axis               
every second. 

- Maximum distance: The maximum distance the pipette can take in the hunting            
phase. 0 means no limit. 

- Check hit reproducibility: If checked, pulls back the pipette after a hit; this             
might increase hit robustness 

- Pull back steps for reproducibility: Number of steps to pull back 
- Clog warning R increase: Warns the user if the R increases by this amount but               

no hit was detected 
- Sealing group: 

- Check R increase on atmosphere: Checks if R increases on atmosphere           
without applying vacuum, stops otherwise. The amount of increase should be           
at least as much as ‘Min. RS change to seal’. 

- Break-in group: 
- Initial break-in delay: The desired length of first vacuum pulse in the break-in             

phase. 



- Break-in delay increase: The desired increase of the duration of the vacuum            
pulse  after every break-in attempt. 

- Gigaseal resistance value: Minimum resistance value which is considered a          
gigaseal. Measuring higher resistances has higher error rates, thus setting this           
value higher than the theoretical 1 GOhm is reasonable. 

- Successful break-in resistance value: Maximum resistance value which is         
considered a successful break-in attempt / whole-cell patch. 

- Minimum delay before first break-in: Delay between a formed gigaseal state           
and the first break-in pulse attempt. 

- Break-in phase total length: The total length of the break-in phase to allow             
break-in attempts. 

- Pull back after attempts: Pulls back the pipette after this number of break-in             
attempts. It helps if the nucleus is at the pipette tip and it prevents the               
formation of a gigaseal. 

- Pull back distance: The desired extent the pipette should be pulled back after             
a few break-in attempts. 

 



 

Supplementary Figure 26: The Blind Patcher options window. 

Visual patch clamping 
Visual patch clamping is the process of visually selecting a cell and performing recording on               
it. The system automatically tracks the shift of the cell in the tissue due to the deformation                 
caused by pushing the pipette deeper, and avoids obstacles, like blood vessels and other cells,               
with the pipette on its way to the target. 

The most often used way to start visual patch clamp recording is through the buttons on the                 
Main window. It is assumed that the operator has already configured the pipette and moved it                
in the recording solution close to but above the sample. First, the operator has to click on the                  
Setup Electrode button which applies pressure and starts the square signal. In practice, it has               
the same functionality as the Electrode in bath button in the Blind Patcher window. Then the                
pipette tip position has to be updated (especially if a new pipette has been inserted). The more                 
consistent way of updating the tip position is running the Pipette Hunter algorithm from the               
Pipette menu - Detect focus item. However, depending on the host machine, for an              



experienced operator it might be a few seconds faster to click on the Set Focus at Click                 
button and then click on the tip in the camera image. Then the focus level should be set to the                    
sample’s top and the Set Sample Top Here button should be clicked to save this position.                
Finally, the Find and Patch button has to be pushed to run the cell detection and offer cells for                   
recording. The detected cells are offered in descending order of the detection certainty.             
Supplementary Fig. 27 shows the Main window when the Find and Patch button is pushed               
and the system offers cells for recording for the operator. The selected cell is highlighted with                
a dashed bounding box. 

 

 

Supplementary Figure 27: Using the Find and Patch feature. 

 

The other way of starting visual patch clamping is to right-click on a cell in the camera image                  
and select the ‘Do patch-clamp here’ item from the context menu as shown in Supplementary               
Fig. 28. This approach does not detect cells and the operator should aim to the centroid of the                  
cell to maximize the chance of the pipette hitting the cell. 

 



 

Supplementary Figure 28: Starting visual patch clamp recording without cell 
detection. 

After the visual patch clamping is launched, multiple subsystems are started. The selected             
cell is centered in the camera image, the pipette is oriented so that only a forward movement                 
in its X axis is needed to approach the cell. The cell tracking system draws a red square                  
around the cell to note which area around the cell is tracked. A middle pressure is applied and                  
the pipette is regularly moved closer to the cell. Meanwhile, the obstacle avoidance system              
helps to dodge objects on the way to the target cell. The Visual Patcher Control and Blind                 
Patcher windows are opened or brought into focus for the operator to supervise the process.               
The Visual Patcher Control window shown in Supplementary Fig. 29 contains information            
related to the mentioned subsystems. When the pipette is just a few micrometers from the               
target, the Visual Patcher stops and starts the Blind Patcher which performs patch clamp              
recording. We found that the cell often shifts if the blind patch clamping is performed on the                 
X axis of the pipette. Therefore the system is configured so that the approach places the                
pipette above the cell and the blind patch clamping is performed by pushing the pipette on the                 
cell from above on the Z axis. However, this behavior can be configured in the configuration                
file. 

 

Supplementary Figure 29: The Visual Patcher Control window. 

 

The Options button in the control window opens the Visual Patcher Options window which is               
shown in Supplementary Fig. 30. The adjustable parameters are detailed below. 



 

Supplementary Figure 30: The Visual Patcher Options window. 

Main control parameters: 

- Cell offset: An offset value can be set on all three axes where the pipette will be                 
oriented, relative to the actual position of the cell. This parameter is useful when the               
forward axis during blind patch clamping is ‘z’ thus a ‘z’ offset should be set a few                 
micrometers above the cell. 

- Frame rate: The rate per second when the control function should make a step by               
pushing the pipette forward, look for obstacles and check the remaining distance to             
the target. 

- Approaching pressure: The pressure value used when approaching the cell. Usually, it            
is higher than the low positive pressure used for blind patch clamping, since the target               
can be approached faster. 

- Pipette step size: The distance the pipette should be pushed forward when the control              
callback function is called. 

- Start Autopatcher at distance: The distance between the pipette tip and the target cell              
when blind patch clamping should be started. The control function stops pushing the             
pipette at this distance. Usually, the value is set in combination with Cell offset. If the                
blind patcher’s forward axis is ‘z’ and the Autopatcher is started at 0 distance, a cell                
offset in Z axis of 5-7 micrometers should be used. 



- Autopatcher pass distance: The maximum distance the Autopatcher is allowed to take            
once it is started and before it is stopped by the controller function. 0 means no limit. 

- Stop tracking at distance: The distance between the pipette and the target when             
tracking should be stopped. If the pipette is close to the cell it usually affects the                
image around it which has negative effects on the tracking system. Usually, this value              
is set to the same as the Tracking box radius value in the Tracking parameters. 

- Resistance history length: The length of the resistance value history, in seconds, that             
should be kept. This vector is used, for example, to detect obstacles. 

Tracking parameters: 

- Frame rate: The rate per second the tracking system should make a step at. The               
tracking steps alternate between xy (lateral) tracking, taking a small image stack, and             
z tracking in the stack. 

- Adjust distance threshold: The tracking system does not correct every little shift of the              
tracked object but saves this information. The system only moves the pipette when the              
shift of the target from its original position to the actual one, in micrometers, is more                
than this value. 

- Correction Z step: The tracking system in the Z axis can only indicate whether the               
target shifted up or down. The correction step of the pipette will be this value if a shift                  
in the Z axis is detected. 

- Tracking box radius (half size): Half size of the box in pixels which should be used                
for tracking in the image. It should be about as big as most cells in the image (thus the                   
box will be twice as big). Depending on the Pipette step size parameter the value can                
be increased or decreased. 

- Z stack size: The number of slices in the z stack which is acquired for tracking in the                  
Z axis. 

- Z correlation multiplier: The tracking system uses correlation to determine the shift in             
the Z axis. However, if the image is noisy the correlation value will also be affected.                
This multiplier is applied to the correlation value of image slices other than the middle               
and shift is only detected if they are still higher than the correlation of the middle and                 
the reference images. 

Obstacle avoidance parameters: 

- Pull back distance: If an obstacle is detected the pipette is pulled back to the extent of                 
this value in micrometers. 

- Pass obstacle by distance: An obstacle avoidance attempt is finished when the pipette             
passes the previously detected obstacle by the distance given in this parameter. Note             
that this value is not related to the Pull back distance parameter; after the pipette is                
pulled back it will be pushed forward by both the pull back and pass distances               
together. 

- Delta R: A distance factor used in the formula described with Delta Phi for lateral               
movement along the axis where the pipette moves during obstacle avoidance19. 

- Delta Phi: A rotation factor used for the formula below for lateral movement along the               
axis where the pipette moves during obstacle avoidance: 

m(n) = n𝛥r cos(n𝛥𝛷-𝜋/4) i  + n𝛥r sin(n𝛥𝛷-𝜋/4)j 

https://paperpile.com/c/TNmvun/7OnR


Patch Clamp Diary 
The Patch Clamp Diary subsystem automatically collects information during the use of the             
software for patch clamping and is able to visually show the attempt positions and generate               
statistics files. The system intends to replace a paper-based laboratory notebook. Besides the             
positions, the system saves the outcome and timestamps of the phases of the attempts. The               
system can be used with or without the visual patch clamping functionalities.  

The Patch Clamp Diary window can be opened along with the Visual Patcher window from               
the main window using the View - Visual Patcher item. The window has three tabs: Slice                
info, JEM slice info, and Patch-Seq Pipette. Supplementary Fig. 31 shows the window with              
the Slice info tab activated which enables the marking of the sample’s side and holder               
positions and displays them along with the positions of patch clamp attempts. 

 

 

Supplementary Figure 31: Patch Clamp Diary window when the Slice info tab is 
active. 

 



The Slice info drawing shows the saved positions and has a figure legend. The Status field                
shows useful information about the function being used. For example, when a holder position              
is added the Status field outputs the saved position or shows an error message if the position                 
could not be queried but does not interrupt the work of the operator. The role of the buttons                  
and elements in the Slice info tab is detailed here: 

- New Diary File: Generates statistics and saves it to a CSV file. It also makes a backup                 
file of the raw log data with the same name but a different extension than the statistics                 
file. Note that this button should be used at the end of a patch clamping session, when                 
finished with a sample or replacing it with a new one, to generate statistics of the last                 
used. 

- Mark last attempt as Success/Failure: The outcome of an attempt can be set manually              
using these buttons. This is useful if the system did not detect an early break-in or if                 
the operator performed patch clamping manually. 

- Mark manual approach: If the operator does not use the system’s visual patch             
clamping functionality (blind patcher only or manual) the position of the new attempt             
can be set using this button. The saved positions are always in the stage coordinate               
system and the target cell should be approximately in the center of the image. 

- Add holder position here: Saves the current stage position as a holder position. It is a                
good practice to place the holder approximately in the center of the image before              
clicking on this button. 

- Add sample side position here: Saves the current stage position as a sample side              
position. It is a good practice to place the side of the sample approximately in the                
center of the image before clicking on this button. 

- Refresh: Generates statistics, saves it to the default file name and updates the Slice              
info drawing. 

 

The generated CSV file contains column names, most of which are self-explanatory but some              
of them are explained here. The TargetDepth value is measured from the manually set sample               
top position, while the TargetDistance expresses the distance the pipette should move on its              
X axis to reach the target. The abbreviation ‘AP’ in multiple columns stands for Autopatcher               
which is the blind patcher subsystem. The DetectionSelectedIndex shows the index of the             
selected cell when using the Find and Patch function. The timestamps are in the host system’s                
timezone. Positions and distances are expressed in micrometers, resistance values are in            
megaohms. 

The JEM Slice info and Patch-Seq pipette tabs are used together to document nucleus              
harvesting attempts. Supplementary Fig. 32 shows these tabs. Most values should be filled             
manually but there are some which are filled automatically, e.g. timestamps and resistance             
values. 

 



 

Supplementary Figure 32: The JEM slice info and Patch-Seq Pipette tabs. 

 



Pipette Cleaner 
The pipette cleaning functionality20 can be configured and used from the Pipette Cleaner             
window which can be opened from the main window’s View - Cleaner item and is shown in                 
Supplementary Fig. 33. 

 

 

Supplementary Figure 33: The Pipette Cleaner window. 

 

Before cleaning a pipette with the functionality the cleaning detergents have to be installed              
around the sample. Two detergents are required: standard recording solution (aCSF) and            
Alconox. We have designed and 3D printed an object, shown in Supplementary Fig. 34, that               
can hold two 250 µl PCR tubes containing the detergents and can be attached to the objective.                 
Other tube holders or even Petri dishes can be used.  

 

 

Supplementary Figure 34: Schematic of the 3D printed object that holds the 
cleaning detergents. 

 

https://paperpile.com/c/TNmvun/GphO


When the detergents are installed and the objective is lowered to the position where a sample                
would be visible, the operator should make sure that the pipette can reach the tubes and make                 
adjustments if necessary. Then the pipette has to be calibrated for the dish positions using the                
GUI which are saved and loaded the next time the software starts. The Drawback position               
button saves the X position of the pipette which should be set such that the objective or other                  
objects are not hit around the tubes when moving the pipette in the other axes. Then the                 
pipette should be manually moved to the tube containing Alconox such that the tip is               
immersed with the detergent. The Alconox dish position button saves the position of the              
pipette. This has to be repeated for the other liquid before clicking on the aCSF dish button.                 
Then the pipette can be cleaned after patch clamp recording attempts by the Clean pipette               
button. This button starts the process by pulling back the pipette to the drawback position,               
adjusting it laterally before pushing it in the dishes and alternates between blowing and              
suction pulses to clean the pipette. When the cleaning is finished the pipette is moved back                
safely to the position where the process was initiated. 

Image stack labeling tool 
We developed a tool for image stack labeling in the main window of the software. The tool                 
allows the user to put 2D bounding boxes around the cells in the images over multiple stacks.                 
We used the labels generated with this tool to teach a convolutional neural network for DIC                
cell detection. The tool can be started from the main window’s View - Trainer item and                
Supplementary Fig. 35 shows it while a labeling is in progress. 

 

 

Supplementary Figure 35: The image stack labeling tool. 

 



The tool can only be opened if an image stack is loaded (or acquired) in the main window.                  
When the tool is opened, the labeling functionalities are enabled. Double-clicking in the             
image adds a new label with a default box size. The dashed lines always indicate the selected                 
box. The edges of the boxes can be adjusted by dragging them with the mouse while the                 
control key is pushed. The extent of the boxes in the Z dimension can be changed globally                 
but not individually. Thus the boxes should be added in the slice where the cell is in focus.                  
However, the Z position of the boxes can be adjusted later. The boxes can have different                
labels: a positive for cells, a negative for dead cells, and another negative possibly for other                
objects like red blood cells. A label can also be removed while the box is not deleted which is                   
useful if the user wants to keep it until a later decision. The data can be saved and loaded and                    
if the cell detection system which uses a previous network is installed it can be used to help                  
the user and automatically put bounding boxes on the detected cells. The default new box size                
and the global size in Z dimension can be set and the values are saved in the trainer.xml file                   
in the config folder. 

Below are the description of the buttons in the window: 

- Find cells: Uses the cell detection system and puts bounding boxes on the detection              
results. 

- Load data: Loads a previously saved data of bounding boxes. 
- Save data: Saves the bounding boxes from the current session to file. 
- Options: Opens a dialog where the default box sizes can be set. 
- Arrow buttons: Select the next/previous bounding box (dashed line shows the one            

selected). Arrow keys also switch the selection. 
- Z+/Z-: Adjusts the Z position of the selected box. 
- Positive - cell: Labels the selected box as positive. 
- Negative - dead cell: Labels the selected box as a dead cell. 
- Negative - other: Labels the selected box as other negative example. 
- Remove label: Removes the label from the selected box but keeps the box itself. 
- Delete: Deletes the selected box and its label. The delete key also has this              

functionality. 

  



Supplementary Note 7: Representative Examples 
This note contains plots of pipette trajectory, pressure, and resistance values. 

Successful examples 
 
Successful #1 

  



Successful #2 

 

 



Successful #3 

 

 



Successful #4 

 

 



Successful #5 

 

 



Successful #6 

 



Successful #7 

 

 



Successful #8: Blind patch clamp attempt, movement only in Z direction. 

 



Successful #9: Manually moved the pipette next to the cell, DIGAP started from break-in. 

 

 
 
 
 
 
 
 
 
 



Failed examples 
 
Failed #1 

 

 



Failed #2: Problems arose in resistance measurement, but suction pulses continue when fixed. 

 

 



Failed #3: Started from break-in phase. 

 

 



Failed #4 

 

 



Failed #5 

 
 

 



Failed #6 

 

 
 
 
 
 

  



Supplementary Note 8: 
Anatomical Reconstruction Examples 
 

Example #1 

 



Example #2 

  



Example #3 

 



Example #4 

 

  



Example #5 

 

  



Example #6 

 

  



Example #7 

  



Example #8 
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