
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

There have been substantial advances in automated patch-clamp technology for intact tissue 

preparations in recent years. This paper describes a successful attempt to produce a near-fully 

automated in vitro patch clamp system, with an aim of increasing the throughput of 

electrophysiological characterisation in label-free tissue slices. The near-full automation could be a 

great advantage in this regard, allowing one operator to control multiple rigs, or allowing an 

operator to perform patch-clamp recordings without the extensive periods of training currently 

required. However, it is not quite the first such system, and there do not appear to be substantive 

advances over the work by Ilya Kolb (2019 J Neural Engineering). 

 

Although the paper describes an impressive body of work, I have many minor issues with it: 

 

- Line numbering in the manuscript provided would have aided the provision of reviewer feedback 

- In several points in the manuscript, it is mentioned that “the nucleus or cytoplasm can be 

harvested” (step 10 in introduction). It is not clear if this is a part of the operation of the 

automated system, and how this is performed is not described in the paper. (if it is, this could 

have been emphasized, as I am not aware of another automated system with this capability). This 

must be clarified – if the user has an option at this stage to do this manually, this is fine, but the 

paper should be clear on the point. If it is automated, it must be described. 

- Some details of the deep learning algorithm used should be given in the Methods section in the 

main paper, not just left to the supplementary information. The paper must stand on its own, and 

adequate methodological information is not present without at least a brief summary of this. The 

methodological information provided n the supplementary information is also inadequate. 

Essentially, it seems as if the authors used the Caffe framework as a black box. Much more 

information on the 

- Proper formatting of the supplemental material (such as paragraph indenting) should be carried 

out. (This also applies to the main text, however that at least will get the benefit of journal 

typesetting). What precisely was the model architecture, what hyperparameters were chosen, and 

why? What are the characteristics of the training data (pixels, dimensions etc). How long did the 

algorithm take to train, and to classify? 

- The system works on the basis of a training dataset collected by 4 experts who labelled “healthy 

cells”. However, the “inter-expert” accuracy seems to be low, suggesting that the quality of the 

training dataset may not be high. The claim that the deep learning model is outperforming the 

annotators is unjustified – without ground truth data, all that can be said is that each annotator 

and the algorithm had different performance. I would recommend applying the system to labelled 

data (in addition to label-free) in order to use fluorescence measurements to obtain performance 

measures. 

- No information is given on the DIC optics used to acquire the data processed. What objective 

lens is used, what is the field of view? 

- What proportion of data is from human and what from rodent data? Does this bias the results in 

any way? If the system is trained on just the rodent, does it generalise to the human data? Is the 

rodent data from mouse or rat? 

- In Fig. 2, why are only 2 of the 4 experts shown? 

- The performance analysis needs to be spelled out in more detail. To obtain true positives, false 

positives etc, the ground truth needs to be known. What *exactly* was the “ground truth” used for 

the precision and recall calculations? Is it the superset of the expert annotations? Did no experts 

cover the same dataset in the initial dataset? I am still unclear on this, despite reading the 

extended description in the Supp Material. 

- Fig. 2f-g: The purpose of this panel is to apparently show the drift in the cell as the pipette is 

lowered into the tissue. However, the figure needs a lot more clarification. What is the reasoning 

behind the template not being taken at the 0th image position and what is the numbering exactly 

if not an image position with respect to the template? Is it with respect to just the middle image? 



Then the standard deviation is taken for the entire difference image, which then can be used to 

show the drift in z-axis. The plots don’t clearly indicate that it is showing the standard deviation 

which should be shown. There are no error bars on this either. In the right-hand plot, the standard 

deviation for the position of the template image is comparable to the -2 and -1 positions on the 

left plot. Would be nice to show a control plot where there is not pipette movement and image 

stacks are taken repeatedly and compared to the same template image. This would show if the 

standard deviation of the difference images really show anything at all. 

- “A central part of the method is the detection of single neurons in label-free 3D images using 

deep convolutional neural networks reaching super-human precision.”. This is a bold claim, 

considering that the precision of experts 1 and 2 in Figure 2d are higher than the precision of the 

detection algorithm. No evidence of super-human precision is demonstrated, and to do so would 

require eg a fluorescent label for ground truth, ie. It is not something that even could be 

demonstrated using the approach that has been taken – leaving aside that the claim seems to be 

false according to the authors’ own presentation. 

- Regarding the trajectory, what angle is taken relative to the horizontal? This is an important 

piece of data. 

- Why is recording quality measured only by R_s, rather than using R_in, which is more common? 

Are the 4 cells with R_in above 200 MOhms really acceptable? 

- Fig 4b should also have scale bars (not just depending upon looking down to 4e) 

- Fig 4 panels c and d are swapped relative to the caption 

- Penultimate paragraph, “integrated into” would work better than “portable to”. 

- Please use either indentation or paragraph spacing to separate paragraphs, it is vey difficult to 

read otherwise. 

- The final paragraph begins with a rather ambitious aspiration. I do not believe that there is 

sufficient information in the DIC image to do this. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

 

 

General Remarks 

 

The study by Koos et al. (Automatic deep learning driven label-free image guided patch clamp 

system for human and rodent in vitro slice physiology) presents a hardware and software toolbox 

for automated patch-clamp recordings in in vitro acute slice preparations from rodent and human 

brain. The authors use deep learning for cell detection and a subsequent pipeline for pipette 

localization, tracking and ultimate accessing the neuron through whole-cell configuration. This 

manuscript, is part of a series of efforts in the neuroscience field for automating the laborious 

process of recording the electrophysiological properties of cells, intrinsic and synaptic, as well as 

obtaining the morphological characteristics of the recorded neuron after filling it with a dye 

(typically biocytin or neurobiotin). In this case the authors also added mRNA profiling by aspirating 

the cell nucleus and cytoplasm after recording to detect the expression of key genes using digital 

PCR. Overall, the efforts presented in the manuscript are timely and aim at optimizing and 

streamlining a series of processes to present an end-end solution for performing high-throughput 

electrophysiological and molecular analysis of single cells in unstained tissue samples. 

Unfortunately, despite the great lengths that the researchers have gone to for this work, the study 

has the drawback that both the usage of deep learning for cell detection and the automation of 

patch-clamping have been implemented before independently, also in publications some of which 

the authors are citing (for ex. Kodandaramaiah et al Nat. Protocols 2016; Wu Q et al. J. 

Neurophysiology 2016; Suk SJ et al. Neuron 2017 for automated patching and Ounkomol C et al. 

Nature methods 2018; YoungJu Jo et al. arxiv 2018 for label-free cell and intracellular organelle 

detection). Nevertheless, the combination of methods that the authors have put together, from the 

usage of AI to detect unlabeled cells on brain slices and subsequently, not only 



electrophysiologically record these cells, but also reveal their morphology and some of their 

genetic makeup has not been shown before. 

 

Major issues: 

 

Regarding the Machine Learning part: 

 

- Although a big focus of the study (as indicated in the title as well) is targeted in using deep 

learning for cell detection, the study unfortunately lacks a survey of existing cell detection 

techniques developed through deep learning-based methods. A quantitative comparison should be 

provided with other deep learning-based methods to show that the algorithm the authors have 

used performs better than other cell detection techniques (e.g. Iqbal et. al. Sci Reports. 2019, 

Zhou, Zhi, et al. Brain informatics 2018, Falk, Thorsten, et al. Nature Methods 2019), if trained on 

the same dataset. 

 

- Also, it would help the reader if a detailed explanation of the deep neural network architecture is 

included, and the same goes for an explanation of why DetectNet would perform well on unlabeled 

bright field images of neurons, as compared to other deep learning and non-deep learning-based 

cell detection tools (e.g. Iqbal et. al. Sci Reports. 2019, Zhou, Zhi, et al. Brain Informatics 2018, 

Falk, Thorsten, et al. Nature Methods 2019). 

 

- Even though based on the accuracy score presented in Figure 2d, the algorithm seems to 

outperform human experts, the reviewer is of the opinion that neuron detection/localization 

(bounding box) is not optimal to get a 3D representation of the cell body for patching; if the 

neuron was segmented in 3D (also possible in 2D then digitally turned into 3D) a higher accuracy 

would probably be achieved (e.g. Januszewski, Michał, et al. Nature Methods 2018). 

 

 

- It is not clear from the manuscript how much (what is the ratio) of the human annotated dataset 

was used for training and validation? Was there any cross-validation performed? A precision-recall 

curve is missing, as is a quantitative plot that shows the error rate of the network while training. It 

is not clear what kind of neuron images were used for training and testing, potentially the majority 

of the training and testing data is drawn from the same set hence the F1 score seems higher, 

which could simply be the result of overfitting. 

 

- According to the authors, pre-trained weights of ImageNet were used, so I suppose transfer 

learning was applied. How many layers in the network were frozen during training? It would be 

good if the authors provided an explaination why GoogLeNet weights trained on ImageNet would 

work well for detecting neurons, given that ImageNet only contains natural images. Do images of 

unlabeled neurons in a slice have same features (statistics) as natural images (e.g. person)? 

 

 

Regarding the electrophysiology/anatomy/mRNA part: 

 

- When the nucleus is harvested, the morphology of the cell usually cannot be maintained. What 

was the success rate for obtaining both? 

 

- An access resistance of 30MOhm is high for whole-cell patch-clamp recordings. It may be that 

the intrinsic electrophysiological properties of the cells are not that affected by this high Rs, but 

the synaptic events would. Have the authors tried to record synaptic events using their system? 

Can the system change between current and voltage clamp automatically? 

 

- How stable were the recordings? The authors have a log system which registers all the values at 

any given point. How much did the access resistance change over time and how much time could 

the authors keep the cells stable and healthy? 



 

- In figure 5: 

It would be good if the authors showed more examples of the reconstructed morphology of the 

recorded cells or at least images of z-projections in the supplementary figures. In this reviewer's 

experience a success rate of 80% in the recovery of morphology is very high indeed. This is even 

more surprising given that the authors also suck up the nucleus of the cell for RNA analysis. 

 

In the Farago N et al. paper that the authors reference, the digital PCR method was used to 

quantify many genes that have specific biological functions, such as the delta subunit of GABAa 

receptors, slc2a4 and microRNAs. Here the authors show the expression level of only two genes, 

which encode for proteins that are quite generic. It may be that these genes would have also been 

detected if aspiration of the extracellular debris was occurring instead of the cell nucleus. Have the 

authors performed a control experiment where they purposefully aspirate extracellular material to 

compare with the results they get in Figure 5b? The inclusion some more specific genes would be 

help assess how well this automated part works. 

 

- Finally, it would be nice if the authors presented a zoomed out video clip that would showcase 

how this system looks like, including the microscope, amplifier, automated manipulator etc, as well 

how it works once a slice is put down the chamber. 

 

Minor Issues: 

 

There is no line numbering provided so as to include it herein, but the text where changes may be 

needed is provided below in italics. 

 

- Please consider rephrasing the sentence: The quantitative and qualitative efficiency of single-cell 

patch clamp procedure is highly determinant for every follow up measurements including 

anatomical reconstruction and molecular analyses. 

 

- Please change: Recently, patch clamp technique has to Recently, the patch clamp technique has 

 

- Regarding the sentence: Blind patch clamping’ moves the pipette forward in vivo 

Blind patch clamping was first done in vitro and only later performed in vivo 

 

- Please delete “of” in the sentence: electrophysiological measurements strongly correlates to that 

of made by a trained 

 

- It is stated that the arrows in Figure 2e are yellow, but they are white in color 

 

- Please change the word “were” to “was” and “vacuum” to “suction” in the following sentence: 

intracellular content of the patched cells were aspirated into the recording pipette with gentle 

vacuum applied by the pressure regulator unit (-40 mBar for 1 min, then -60 mBar for 2-3min, 

and finally -40 mBar for 1 min). 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The article is focused on using deep learning for recognition of DIC images of label-free neurons in 

brain slices for further automatic patch-clamp. Patch-clamp is the main electrophysiological 

technique for single-cell recordings. It is the primary methodology for the analysis of electrical 

properties of neurons and other electrically excitable cells. Several recent publications from 

different laboratories have described automated patch clamp systems, both blind and image-

guided in slices and in vivo. These different systems are able to use computer vision libraries to 

detect pipette tips, fluorescently labeled cells, adjust their patch path, wash and reuse the 



pipettes, patch multiple cells at the same time. 

The key innovation of the authors’ paper is the use of deep learning first to train their neural 

network and then recognize the images of neurons in brain slices acquired using DIC optics. This 

cell recognition is then combined with an automatic patch-clamp. The software is written in Matlab 

with external deep learning library calls. Overall, the use of deep learning to recognize cells in DIC 

optics is important for the field, even though all other parts of the process have been published 

previously. However, there are several problems that need to be addressed, including a poor 

description of the deep learning part of the paper. I am enthusiastic about this paper, provided the 

issues below are addressed, and the manuscript is revised. 

There are several issues that need to be addressed: 

1) First, it is not clear if the patching process is fully automatic or if the interference of a human 

may be required, and if it is, how often. The corresponding statistics are not sufficiently extensive; 

only the success examples vs. failures are mentioned. What is the percentage of fully automatic 

vs. attempts with human interruption vs failures to patch? 

2) The hardware configuration in Figure 1 doesn’t actually show any meaningful hardware, for 

example, which patch-clamp amplifier, how it’s connected to the National Instruments board. What 

kind of signals the NI board receives, and what commands does it send and where? 

3) How do the authors control the amplifier and send/receive information? Is the output 

impedance then received by the NI board? 

4) The detailed information and which commands are used by the authors to switch between 

voltage/current clamp modes, measure impedance, inject voltage command needs to be 

documented in a supplementary file in addition to the bitbucket or github or another online open-

source repository. 

5) How the z-focus is changed is not clear. This information is also important, especially in 

consideration of wider adoption in the neuroscience community. Different slice rigs may have 

different methods to change the z-focus. How do the authors control the z-focus from the 

software, and how does it integrate with both pipette detection, cell detection, z-stack 

acquisitions? A more detailed description should be both in the main and supplementary figures. 

6) The graphical user interface(GUI) of the software is shown only in the supplemental file. There 

should be at least a separate main figure showing the main elements of GUI with the detailed 

annotation. This figure should also include the GUI for initiating the cell recognition process. 

7) In the video shown, one can see the patching process, but not the deep learning-based 

recognition of the cells with further successful targeting. It would be useful to include a video of 

the cell recognition process. 

8) In the video of the patching process, one can see the changes in resistance, but not the 

pressure. It is consequently not clear when the negative pressure was applied to break-in. How 

much suction was applied, etc. Is this how the process usually works? Or is there a separate 

pressure window which was not shown in the video? Probably a better video could be used, 

showing the average patching process. 

9) There is no diagram of the cell recognition->automatic patching algorithm. Consequently, it’s 

not clear what happens after what. At least, I was not able to easily find the algorithm diagram. 

10) The Figure 1a panel represents a series of confusing icons that can hardly be seen and are not 

an informative algorithm diagram. 

11) The paragraph describing cell recognition and specifically deep learning, including training, is 

very brief and needs to be vastly expanded. There should be more information, more details about 

how the cells are recognized, what happens to the recognized cells in each z-stack cross-section, 

how they are then combined, etc. This is probably the biggest innovation of the paper, yet there is 

almost no information about how this is done. 

12) Figure 2 describing the algorithms, and the cell detection module is incomplete. Specifically, 

Figure 2b has the model mentioned, but which model? Is it a convolutional network or maybe 

LSTM? This is not clear, yet this information is critical and needs to be obvious from arguably the 

most important figure in the paper. 

13) The information about calling Caffe libraries from Matlab is only available in the supplemental 

information, with only a brief mention of the requirement of a separate computer with GPUs for 

training vs. recognition. This kind of information about the core innovation of the paper needs to 



be in the main text. 

14) A lot of other information about the setup is very hard to find. For example, the authors use 

the 40x water immersion lens. This needs to be in the first figure describing the hardware setup. 

What happens if one uses a 63x lens, will it work with the software? 

15) How does the system operate when you switch between a lower magnification lens (10x?) 

used for the initial targeting of the brain slice. Do the authors even use one? It is not clear from 

the article. Is the initial calibration of the pipette and the derivation of the slice->pipette 

transformation function necessary at the low magnification? Is it done manually or fully 

automatically? 

16) There are several questions related to pipette detection. First, the authors cite only their own 

previous conference paper [21] while ignoring previous earlier work from other groups 

demonstrating successful automatic pipette tip detection. 

17) Another confusion is related to the pipette tip detection. It is mentioned that the mouse 

clicking on the tip of the pipette is required for calibration. If this is correct, this may not represent 

the fully automatic detection of the pipette tip. 

18) Figure 3a is also confusing. The path of the pipette seems very strange for an algorithm. I 

assume the idea here is to demonstrate a patch attempt with an obstacle hit. There is no 

annotation of the stages 1,2,3 in Fig. 3a. I assume 3 represents a complicated avoidance path, but 

this is is a very complicated path. Is this performed by a human to re-position the pipette? It looks 

from the schematic as if some of the path includes lateral movements within the slice? Not sure. 

19) Fig. 3b. There are several non-regular changes in the pipette pressure during the approach, 

which are strange? Were there any commands performed by the algorithm to apply 

positive/neutral pressure? Also, after the start fo the sealing process, again, several step-like 

changes in the negative pressure. Again, without the algorithm or a description of their state-

system, it is not clear what is going on here. 

20) There need to be more representative examples of successful and unsuccessful patches (both 

path and diary files with resistance and pressure measurements). 

 

Minor issues: 

1) Some of the citations are not precise. For example, “ … Object detection of neurons in label-free 

tissue images is challenging [24]…” 24 represents a paper by the authors, which performs image 

recognition on the astrocytes stained using immunohistochemistry (IHC). It would probably be 

more appropriate to say something like: … we have previously demonstrated the identification of 

labeled cells using deep learning following immunohistochemistry. 

2) There needs to be more extensive discussion how different hardware can be used with the 

authors’ DIGAP system. Also, there needs to be more discussion of how different deep learning 

frameworks can be potentially used with the software. 

 

 

 



Review Answers 
 
Our response to the comments from the reviewers 
 
Below, we provide a detailed summary of the comments made by the reviewers. Each              
comment is followed by our response (denoted in italic font). We have responded to every               
comment [Rx.y] from the reviewers and made a genuine effort to address all concerns [Ax.y].               
In order to clearly denote where changes have been made to the manuscript, we have               
highlighted changes from the previous version of the manuscript in red. 
 
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
[R1.1] There have been substantial advances in automated patch-clamp technology for           
intact tissue preparations in recent years. This paper describes a successful attempt to             
produce a near-fully automated in vitro patch clamp system, with an aim of increasing the               
throughput of electrophysiological characterisation in label-free tissue slices. The near-full          
automation could be a great advantage in this regard, allowing one operator to control              
multiple rigs, or allowing an operator to perform patch-clamp recordings without the            
extensive periods of training currently required. However, it is not quite the first such system,               
and there do not appear to be substantive advances over the work by Ilya Kolb (2019 J                 
Neural Engineering). 
 
[A1.1] We are grateful to this Reviewer for the detailed and constructive review of our work                
and acknowledging it. We hope that our detailed discussions below and changes in the              
manuscript will answer all issues raised. 
 
Although the paper describes an impressive body of work, I have many minor issues with it: 
[R1.2] Line numbering in the manuscript provided would have aided the provision of reviewer              
feedback 
 
[A1.2] We have included line numbering in the updated manuscript to assist the further              
review process. 
 
 
[R1.3] In several points in the manuscript, it is mentioned that “the nucleus or cytoplasm can                
be harvested” (step 10 in introduction). It is not clear if this is a part of the operation of the                    
automated system, and how this is performed is not described in the paper. (if it is, this could                  
have been emphasized, as I am not aware of another automated system with this capability).               
This must be clarified – if the user has an option at this stage to do this manually, this is fine,                     
but the paper should be clear on the point. If it is automated, it must be described. 
 

 



[A1.3] We thank the reviewer for pointing out the lack of these details. The harvesting and                
anatomical reconstruction steps are manual. We have started developing a module for            
automated harvesting but we did not find it reliable and did not include it in the manuscript.                 
We have clarified the text in Introduction. 
 
 
[R1.4] Some details of the deep learning algorithm used should be given in the Methods               
section in the main paper, not just left to the supplementary information. The paper must               
stand on its own, and adequate methodological information is not present without at least a               
brief summary of this. The methodological information provided n the supplementary           
information is also inadequate. Essentially, it seems as if the authors used the Caffe              
framework as a black box. Much more information on the 
 
[A1.4] We agree with the reviewer that important information should be present in the main               
text and now we have included a more detailed description of the deep learning algorithms in                
the main text. In addition, now we present further networks and we provide details of the                
settings in the supplementary document “Deep Learning Model Comparison for Cell           
Detection”. 
 
 
[R1.5] Proper formatting of the supplemental material (such as paragraph indenting) should            
be carried out. (This also applies to the main text, however that at least will get the benefit of                   
journal typesetting).  
 
[A1.5] We applied formatting on the main text and the supplementaries for better readability. 
 
 
[R1.6] What precisely was the model architecture, what hyperparameters were chosen, and            
why? What are the characteristics of the training data (pixels, dimensions etc). How long did               
the algorithm take to train, and to classify? 
 
[A1.6] We have extended the description of the architecture, hyperparameters, time           
consumption, and the data characteristics that were previously in the supplementary, and            
moved a significant part of it to the main next. Now all the requested information can be                 
found in the Results, Cell detection system section. Currently, the supplementary contains a             
comparison of 4 different cell detection approaches trained on the dataset. 
 
 
[R1.7] The system works on the basis of a training dataset collected by 4 experts who                
labelled “healthy cells”. However, the “inter-expert” accuracy seems to be low, suggesting            
that the quality of the training dataset may not be high. The claim that the deep learning                 
model is outperforming the annotators is unjustified – without ground truth data, all that can               
be said is that each annotator and the algorithm had different performance. I would              
recommend applying the system to labelled data (in addition to label-free) in order to use               
fluorescence measurements to obtain performance measures. 
 

 



[A1.7] We thank the reviewer for pointing out this issue with the dataset and our claim. We                 
are unsure what the Reviewer meant by labelled data here. If he/she refers to applying the                
system in a fluorescent environment, it is very straightforward doing so - from an image               
analysis point of view - on the other hand there have been several papers published in that                 
topic and it is out of the scope of our research interest. 
 
If this Reviewer meant using labelling in combination with DIC. We started the annotation              
procedure combining DIC images with live fluorescent markers, with little success. Post            
labeling was possible but the structural changes of the soft tissue resulted in a highly               
non-linear registration problem that we were unable to resolve, therefore we have decided to              
annotate DIC stacks. We completely agree that the quality of the training dataset might not               
be perfect, however, by annotating the dataset with experts we tried our best to do so.                
Despite this, the annotations are subjective, DIC images are difficult and cells that are              
dimmed and don’t have sharp contours may be missed sometimes.  
 
The deep learning model having higher performance than the annotators made us also             
realize that it could be an issue with the validation set we used earlier. We have therefore                 
extended the validation dataset with further images, inspired by this comment we validated             
this set by a patch clamp expert, (re)evaluated the models and updated the conclusions in               
the text. The claim that the machine outperformed human experts was invalidated and             
removed from the text.  
 
 
[R1.8] No information is given on the DIC optics used to acquire the data processed. What                
objective lens is used, what is the field of view? 
 
[A1.8] A 40x water immersion objective (0.8 NA; Olympus, Japan) was used with a 0.6625               
mm theoretical field of view. With this objective, our system created a 160.08 x 119x6 um                
field of view on the screen. We have updated the Methods, Hardware setup section with this                
information. 
 
 
[R1.9] What proportion of data is from human and what from rodent data? Does this bias the                 
results in any way? If the system is trained on just the rodent, does it generalise to the                  
human data? Is the rodent data from mouse or rat? 
 
[A1.9] We have created annotations for 184 rodent and 81 human image stacks (60-100              
slices per each, depending on quality), which resulted in 3481 and 2542 annotated objects,              
respectively, on 7282 and 4928 2D images. The human data was generated later and by               
that time we were already experimenting on human images with the model trained on rodent               
data. We were satisfied with the detection quality in general, however, we noticed that some               
human-specific, large neurons were not detected. The model trained on the combined            
dataset helped with this issue. The rodent dataset contains rat images only. Occasionally,             
we used the system on mouse samples but these recordings were not included in the               
results. 
 

 



 
[R1.10] In Fig. 2, why are only 2 of the 4 experts shown? 
 
[A1.10] The validation was performed on the annotations of 2 experts out of 4, indeed. For                
the training set generation the annotators were asked not to annotate the same images.              
However, for the validation set it is needed that the same images are annotated by multiple                
annotators (for the inter-expert accuracy) or by the same annotator multiple times (for the              
intra-expert accuracy). As the validation set was generated later in time and due to personal               
changes in the laboratories, we could not include annotations from all 4 people in this set. 
 
 
[R1.11] The performance analysis needs to be spelled out in more detail. To obtain true               
positives, false positives etc, the ground truth needs to be known. What *exactly* was the               
“ground truth” used for the precision and recall calculations? Is it the superset of the expert                
annotations? Did no experts cover the same dataset in the initial dataset? I am still unclear                
on this, despite reading the extended description in the Supp Material. 
 
[A1.11] Thank you for pointing out the lack of this important data. The validation dataset               
contained expert annotations that were not used for the training process and was annotated              
by one person. In the training dataset, no experts annotated the same images. However, for               
the intra- and inter-expert accuracies, two experts annotated the same selected image stack             
again after three months. Furthermore, for the performance analysis of the model, we have              
extended the validation dataset with more images and repeated the measurement due to             
concerns raised by the reviewer later in R1.13. We have modified the main text to contain                
this information and now it can be found in Results, Cell detection subsection. The table               
below shows the experts and their annotations on the validation set (0-not annotated,             
1-annotated, V-part of the validation set, A-part of the intra-expert set, R-part of the              
inter-expert set). 
 

 Stack 1 Stack 2 Stack 3 

Annotator 1 1VAR 1V 1V 

1A 

Annotator 2 1AR 0 0 

1A 

 
 
 
[R1.12] Fig. 2f-g: The purpose of this panel is to apparently show the drift in the cell as the                   
pipette is lowered into the tissue. However, the figure needs a lot more clarification. What is                
the reasoning behind the template not being taken at the 0th image position and what is the                 
numbering exactly if not an image position with respect to the template? Is it with respect to                 
just the middle image? Then the standard deviation is taken for the entire difference image,               
which then can be used to show the drift in z-axis. The plots don’t clearly indicate that it is                   

 



showing the standard deviation which should be shown. There are no error bars on this               
either. In the right-hand plot, the standard deviation for the position of the template image is                
comparable to the -2 and -1 positions on the left plot. Would be nice to show a control plot                   
where there is not pipette movement and image stacks are taken repeatedly and compared              
to the same template image. This would show if the standard deviation of the difference               
images really show anything at all. 
 
[A1.12] We thank the reviewer for the careful examination of the plot. There are several               
points mentioned which we address separately. 

- Figure clarification: We have made adjustments in the figure and its caption to clarify              
how the stacks are taken. Before the tracking is started, the template image is taken.               
Then, from time to time, small image stacks are taken of the cell such that the most                 
recent focus position will be the 0th position, and the stack will contain a few more                
slices below and above it. For the first few stacks it is usually true, that the 0th slice is                   
the most similar to the template image. In other words, the template image is taken at                
the 0th image position, but it is more correct to say that initially the image stack is                 
created around the 0th position (where the template image was taken). Afterward, as             
the cell moves due to tissue deformation, the focus position can change and the              
previous statement will not stand anymore. It is important here that the template             
image is not updated throughout the process. Fig 3f (previously Fig 2f) shows a case               
where the stack is taken around the most recent focus position (indexed as 0th) and               
the algorithm detects that the cell has moved down. This results in lower metric              
values (shown in the plot) and the new focus position will be updated to 1 micrometer                
less than the previous value. 

- Standard deviation plots: We have added axis titles to the plots (Fig 3f-g). 
- Error bars: The two panels show individual examples, where the plots contain the             

exact metric values of the similarity of the images, thus error bars are not applicable. 
- Control plot: We thank the reviewer for the idea of the control plot. We have               

performed the test and added the results to Supplementary Information: Cell tracking            
system. The conclusion is that the algorithm successfully detects in 89.17% of the             
cases when the cell is stationary, and that false detection of upward and downward              
movements are the same. 

 
 
[R1.13] “A central part of the method is the detection of single neurons in label-free 3D                
images using deep convolutional neural networks reaching super-human precision.”. This is           
a bold claim, considering that the precision of experts 1 and 2 in Figure 2d are higher than                  
the precision of the detection algorithm. No evidence of super-human precision is            
demonstrated, and to do so would require eg a fluorescent label for ground truth, ie. It is not                  
something that even could be demonstrated using the approach that has been taken –              
leaving aside that the claim seems to be false according to the authors’ own presentation. 
 
[A1.13] We agree with the reviewer that our claim is not well-grounded and removed it from                
the text. Although the F1-score was higher for the algorithm than for the intra- and               
inter-expert tests, we now agree that this is not enough to make such a statement. We have                 
analyzed what could lead to such confusing values and concluded that the validation dataset              

 



might not be large enough. We have extended the validation image set (305 images in total)                
to have a better comparison. Furthermore, we have made a comparison of further deep              
learning algorithms. Updated results show that inter-expert F1-score is marginally higher           
than the best achieved by deep learning (FasterRCNN). 
 
 
[R1.14] Regarding the trajectory, what angle is taken relative to the horizontal? This is an               
important piece of data. 
 
[A1.14] In most of our measurements the mentioned angle was -33.14 degrees. We have              
updated the main text with this value. In the early development phase, sometimes we have               
adjusted the pipette and used our system with up to +/- 10 degrees difference. The               
calibration protocol automatically determines this value along with many others that are            
necessary for coordinate system transformation between the stage and pipette spaces. The            
complete list includes; 

- 6 rotational angles, e.g. from the horizontal plane or the rotation from the X axis of                
the stage coordinate system in the horizontal plane. 

- 3 variables that indicate if the “forward” direction on a given pipette axis is a positive                
or negative movement in the stepper motor controller software. 

- 2 position vectors that store the stage and pipette positions at the time when the               
calibration was initiated. 

When the calibration protocol is executed, these values are written to the configuration file              
under config/vistool_config.xml. The actual values can be found in the XML under the             
<id>pip</id> identifier. However, the operator does not need to be aware of these values or               
remember them. 
 
 
[R1.15] Why is recording quality measured only by R_s, rather than using R_in, which is               
more common? Are the 4 cells with R_in above 200 MOhms really acceptable? 
 
[A1.15] R_s is an abbreviation for „series” or „access resistance” are synonymous and equal              
with the electrode resistance. Input resistance (R_in), however, describes the total           
resistance observed by the amplifier; it is therefore equal to the sum of the membrane               
resistance (R_m) and the electrode resistance (R_s), with the former generally dominating            
the sum. R_m is measured by the amplitude of the voltage change caused by injected               
steady current which is proportional to the number of open ion channels within the neuronal               
membrane. R_m above 200 MOhms is common especially among interneurons (Gouwens,           
Sorensen, Berg et al, 2019, Nat Neurosci.) and it can be relatively high (above 150 MOhm)                
in human superficial pyramidal cells (Kalmbach et al., 2018, Neuron). Note, that in the              
manuscript we use membrane resistance values instead of input resistance values therefore            
we amended abbreviation ‘R_in’ to ‘R_m’. 
 
 
[R1.16] Fig 4b should also have scale bars (not just depending upon looking down to 4e) 
 
[A1.16] We have updated the figure to contain scale bars in both panels. 

 



 
 
[R1.17] Fig 4 panels c and d are swapped relative to the caption 
 
[A1.17] We are grateful to the reviewer for pointing out this mistake, we have adjusted the                
caption. 
 
 
[R1.18] Penultimate paragraph, “integrated into” would work better than “portable to”. 
 
[A1.18] We have changed the text accordingly. 
 
 
[R1.19] Please use either indentation or paragraph spacing to separate paragraphs, it is vey              
difficult to read otherwise. 
 
[A1.19] We have added paragraph spacing to the main text and the supplementary materials              
as well for better readability. 
 
 
[R1.20] The final paragraph begins with a rather ambitious aspiration. I do not believe that               
there is sufficient information in the DIC image to do this. 
 
[A1.20] We agree with the reviewer that this sentence is ambitious and that it would not be                 
possible to determine the phenotype. However, we see a chance that some groups could be               
detected, e.g. interneurons and pyramidal cells could be distinguished, which would have            
been our first step. We admit not being specific enough here and decided to remove this                
sentence. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
 
 
General Remarks 
 
[R2.1] The study by Koos et al. (Automatic deep learning driven label-free image guided              
patch clamp system for human and rodent in vitro slice physiology) presents a hardware and               
software toolbox for automated patch-clamp recordings in in vitro acute slice preparations            
from rodent and human brain. The authors use deep learning for cell detection and a               
subsequent pipeline for pipette localization, tracking and ultimate accessing the neuron           
through whole-cell configuration. This manuscript, is part of a series of efforts in the              
neuroscience field for automating the laborious process of recording the electrophysiological           
properties of cells, intrinsic and synaptic, as well as obtaining the morphological            

 



characteristics of the recorded neuron after filling it with a dye (typically biocytin or              
neurobiotin). In this case the authors also added mRNA profiling by aspirating the cell              
nucleus and cytoplasm after recording to detect the expression of key genes using digital              
PCR. Overall, the 
efforts presented in the manuscript are timely and aim at optimizing and streamlining a              
series of processes to present an end-end solution for performing high-throughput           
electrophysiological and molecular analysis of single cells in unstained tissue samples. 
Unfortunately, despite the great lengths that the researchers have gone to for this work, the               
study has the drawback that both the usage of deep learning for cell detection and the                
automation of patch-clamping have been implemented before independently, also in          
publications some of which the authors are citing (for ex. Kodandaramaiah et al Nat.              
Protocols 2016; Wu Q et al. J. Neurophysiology 2016; Suk SJ et al. Neuron 2017 for                
automated patching and Ounkomol C et al. Nature methods 2018; YoungJu Jo et al. arxiv               
2018 for label-free cell and intracellular organelle detection). Nevertheless, the combination           
of methods that the authors have put together, from the usage of AI to detect unlabeled cells                 
on brain slices and subsequently, not only electrophysiologically record these cells, but also             
reveal their morphology and some of their genetic makeup has not been shown before. 
 
[A2.1] We are thankful to this reviewer for the detailed and constructive analysis and review               
of the work we present. We agree with the major point that both patch clamp automation and                 
deep learning were proposed earlier, but as this reviewer pointed out the combination of              
these methodologies resulted in a unique technique.  
 
Major issues: 
 
Regarding the Machine Learning part: 
 
[R2.2] Although a big focus of the study (as indicated in the title as well) is targeted in using                   
deep learning for cell detection, the study unfortunately lacks a survey of existing cell              
detection techniques developed through deep learning-based methods. A quantitative         
comparison should be provided with other deep learning-based methods to show that the             
algorithm the authors have used performs better than other cell detection techniques (e.g.             
Iqbal et. al. Sci Reports. 2019, Zhou, Zhi, et al. Brain informatics 2018, Falk, Thorsten, et al.                 
Nature Methods 2019), if trained on the same dataset. 
 
[A2.2] We agree with the reviewer that our manuscript lacks such a survey and have               
addressed this issue. We have compared our method (Caffe-DetectNet) to other recent            
detection algorithms. Three further architectures were deeply analized, Faster Region-based          
Convolutional Neural Network (FRCNN-Resnet50); Darknet-ResNeXt; and      
Darknet-YOLOv3-SPP models and described them in the updated supplementary on cell           
detection. The FRCNN model (used also in Iqbal et. al. Sci Reports 2019) outperformed the               
other three, which had similar performance to each other. Since the patch clamping             
measurements were performed using the DetectNet model, we left its description in the main              
text, however, we have integrated the FRCNN model into the software. Now it can be               
changed in the configuration file. We remark that Falk, Thorsten et. al. Nature Methods 2019               
describes the well-known U-Net architecture which can be used for segmentation tasks, well             

 



applicable in bioimage problems. However, our approach is based on bounding boxes of the              
cells and not segmentation, thus we could not include a comparison with U-Net and other               
segmentation approaches. 
 
 
[R2.3] Also, it would help the reader if a detailed explanation of the deep neural network                
architecture is included, and the same goes for an explanation of why DetectNet would              
perform well on unlabeled bright field images of neurons, as compared to other deep              
learning and non-deep learning-based cell detection tools (e.g. Iqbal et. al. Sci Reports.             
2019, Zhou, Zhi, et al. Brain Informatics 2018, Falk, Thorsten, et al. Nature Methods 2019). 
 
[A2.3] We have extended the description of the deep learning architecture which now can be               
found in the main text. Furthermore, as we mentioned in A2.1, we have performed a               
comparison to various deep learning models. We also put detailed discussions, figures and             
tables describing all four examined architectures in the “Deep Learning Model Comparison            
for Cell Detection” supplementary document. 
 
 
[R2.4] Even though based on the accuracy score presented in Figure 2d, the algorithm              
seems to outperform human experts, the reviewer is of the opinion that neuron             
detection/localization (bounding box) is not optimal to get a 3D representation of the cell              
body for patching; if the neuron was segmented in 3D (also possible in 2D then digitally                
turned into 3D) a higher accuracy would probably be achieved (e.g. Januszewski, Michał, et              
al. Nature Methods 2018). 
 
[A2.4] We agree with the reviewer that bounding boxes are not optimal representations of              
cells in 3D and believe that a proper segmentation could increase the success rate of the                
system. We have tried the seminal work of Januszewski etal, and other novel 3D deep               
architectures eg. Weigert etal. 2020 (StarDist), etc, however, we found that the segmentation             
quality of neuron cells on our DIC images was not satisfactory, and for automated patch               
clamping, the extent and center of the cell is sufficient. Therefore in this work we concentrate                
on detection networks and segmentation is out of the scope of this paper. 3D segmentation               
in DIC microscopy is our future plan. 
 

 
[R2.5] It is not clear from the manuscript how much (what is the ratio) of the human                 
annotated dataset was used for training and validation? Was there any cross-validation            
performed? A precision-recall curve is missing, as is a quantitative plot that shows the error               
rate of the network while training. It is not clear what kind of neuron images were used for                  
training and testing, potentially the majority of the training and testing data is drawn from the                
same set hence the F1 score seems higher, which could simply be the result of overfitting. 
 
[A2.5] The training was performed on 265 stacks, while the validation was performed on 3.               
The connection between how these stacks were used for evaluating the models and the              
experts (intra and inter) are shown in A1.11. However, the validation not only tested the               
deep learning algorithm but the 3D merging strategy of the bounding boxes as well. We have                

 



updated the main text accordingly. We have paid attention to splitting the dataset so that               
images from the same stack go to the same set. We have analyzed how the F1 score could                  
be higher for the algorithm and concluded that this is an issue with the validation set. Now                 
we have extended the validation set and this value became lower. We do not state anymore                
that the algorithm outperforms human annotators. 
We have included precision-recall and ROC curves in the updated supplementary for each             
model. 
 

 
[R2.6] According to the authors, pre-trained weights of ImageNet were used, so I suppose              
transfer learning was applied. How many layers in the network were frozen during training? It               
would be good if the authors provided an explaination why GoogLeNet weights trained on              
ImageNet would work well for detecting neurons, given that ImageNet only contains natural             
images. Do images of unlabeled neurons in a slice have same features (statistics) as natural               
images (e.g. person)? 
 
[A2.6] We indeed applied transfer learning. Earlier work from other labs (eg. Caicedo 2019              
Nat Meth.) and our lab (Hollandi etal. 2020, Suleymanova etal. 2018, Moshkov etal. 2020)              
successfully apply pre-trained networks on natural images to single-cell detection and           
segmentation. The reasoning here is not trivial, we speculate that basic image feature             
representations (such as edges, simple shapes, color co-occurrences) are well preserved           
across these domains and can be a strong basis to solve more complex bioimaging              
problems. We did not freeze any layers to provide the opportunity to the network for slight                
changes in the early layers. We have also tried training without pre-trained weights (random              
initialization), but it did not give better results. 
 

 
Regarding the electrophysiology/anatomy/mRNA part: 

 
[R2.7] When the nucleus is harvested, the morphology of the cell usually cannot be              
maintained. What was the success rate for obtaining both? 
 
[A2.7] During this project n=28 (n=8 rat and n=20 human) cytoplasm or nucleus were              
harvested from neurons patch-clamped by DIGAP with Rs<100 MOhm. In 8 cases there was              
no anatomical recovery of the recorded cell, 5 cells recovered partially without an axon. In               
most of the cases (n=15) at least the axonal arborizations were observable and 10 of them                
(35.71%) had full anatomical (soma, dendrites and axon) recovery. 
 

 
[R2.8] An access resistance of 30MOhm is high for whole-cell patch-clamp recordings. It             
may be that the intrinsic electrophysiological properties of the cells are not that affected by               
this high Rs, but the synaptic events would. Have the authors tried to record synaptic events                
using their system? Can the system change between current and voltage clamp            
automatically? 
 

 



[A2.8] We did not record evoked synaptic events from neurons with our present system. For               
that we will need two more extensions: i) to develop our system to perform automated patch                
clamp procedure with two or more pipette to do simultaneous recordings from cell pairs and               
ii) improve the number of patch-clamp recordings done with low series resistance. Indeed, to              
measure synaptic currents properly the ideal series resistance would be around 15 MOhm or              
at least <20 MOhm. To reach such quality we will have to refine the membrane seal phase                 
which yet lacks the experimenter’s intuitiveness to establish the ideal case. 

We used HEKA EPC amplifier system with HEKA PatchMaster software. The           
PatchMaster software offers batch communication opportunity to control the amplifier          
externally with other software. Our system uses this type of control for switching between              
current clamp and voltage clamp modes.  
 
 
[R2.9] How stable were the recordings? The authors have a log system which registers all               
the values at any given point. How much did the access resistance change over time and                
how much time could the authors keep the cells stable and healthy? 
 
[A2.9] The cells were usually held in whole cell configuration at most for 15 minutes to                
protect neuron viability for further anatomical or RNA analysis. This time is enough for the               
biocytin to diffuse within the neuronal arborization. During this period the series resistance             
(Rs) was continuously monitored by the user but it was not recorded. The log system is                
recording values only during the hunting and sealing phases.  
Therefore - in order to answer this question - we conducted a separate set of experiment                
with n=9 neurons (n=1 pyramidal an n=8 interneurons) from rat somatosensory cortex in the              
same manner as described in our manuscript, to calculate series resistance from recorded             
membrane currents responded to short subthreshold voltage steps. We were able to keep             
five cells in whole cell mode for up to ~1 hour the other four only for a shorter period. The                    
average time of experiments until the recording configuration could be maintained was            
2729.9±1104.2 s (min: 928 s, max: 3825 s ). Averaged Rs values were at the start of the                  
recording: 30.67±14.98 MOhm (min:21.91 MOhm , max:69.79 MOhm ). Rs values at the end              
of each recording were: 37.24±18.13 MOhm (min:20.46 MOhm , max:74.47 MOhm ). 
 
 
[R2.10] In figure 5: 
It would be good if the authors showed more examples of the reconstructed morphology of               
the recorded cells or at least images of z-projections in the supplementary figures. In this               
reviewer's experience a success rate of 80% in the recovery of morphology is very high               
indeed. This is even more surprising given that the authors also suck up the nucleus of the                 
cell for RNA analysis. 
 
[A2.10] 
We prepared images of cells recorded with DIGAP system and inserted them in a separate               
supplementary document. We thank the reviewers for pointing out the 80% recovery data as              
it was incorrect and left mistakenly from an earlier version of the manuscript. We apologize               
for that. Indeed, the recovery rate was lower 40.9% for full and 27.5% for partial (missing                
either soma, axon or dendrite) for <30 MOhm samples. Among the harvested cells with              

 



Rs<30 MOhm, we found 53.8% and 15.4% full and partial recovery. We corrected the results               
section accordingly.  
  
 

 
[R2.11] In the Farago N et al. paper that the authors reference, the digital PCR method was                 
used to quantify many genes that have specific biological functions, such as the delta              
subunit of GABAa receptors, slc2a4 and microRNAs. Here the authors show the expression             
level of only two genes, which encode for proteins that are quite generic. It may be that                 
these genes would have also been detected if aspiration of the extracellular debris was              
occurring instead of the cell nucleus. Have the authors performed a control experiment             
where they purposefully aspirate extracellular material to compare with the results they get in              
Figure 5b? The inclusion some more specific genes would be help assess how well this               
automated part works. 
 
[A2.11] In the present work we performed mRNA expression analysis of single neurons             
according to the workflow presented in Faragó et al. (2013) and Faragó et al. (2016) to                
assess the efficacy of the automated patch system vs. manual patching in producing             
samples. To assure the best reference to published results, we chose two of the genes of                
intracellular and membrane proteins for mRNA expression analysis. The mRNA copy           
numbers presented in our manuscript are in correspondence with previous results although            
direct comparison can not be made due to dissimilarities in species and neuron subtypes              
therefore we have no clue to assume extracellular contamination. Please note that the             
number of copies rules out extracellular contamination which would mean low copy numbers             
of these genes. 
The reason we showed dPCR results was to show that automation of the patch process               
might be successfully combined with cytoplasm harvesting. Since the step of aspiration of             
cytoplasm is out of the automation - as we clarified this in the answer to reviewer #1 -                  
therefore we feel that including dPCR experiment with extracellular material would           
unreasonably drift our manuscript to a molecular biology study. 

 
[R2.12] Finally, it would be nice if the authors presented a zoomed out video clip that would                 
showcase how this system looks like, including the microscope, amplifier, automated           
manipulator etc, as well how it works once a slice is put down the chamber. 
 
[A2.12] We have included a new annotated video (Supplementary Video 3) that shows the              
hardware setup as well as the screen capture of the patch clamping process. 
 

 
Minor Issues: 

 
[R2.13] There is no line numbering provided so as to include it herein, but the text where                 
changes may be needed is provided below in italics. 
 
[A2.13] We have added line numbering to the new version of the manuscript. 
 

 



 
[R2.14] Please consider rephrasing the sentence: The quantitative and qualitative efficiency           
of single-cell patch clamp procedure is highly determinant for every follow up measurements             
including anatomical reconstruction and molecular analyses. 
 
[A2.14] We have changed the mentioned sentence to: “Obtaining high-quality and numerous            
electrophysiological recordings from individual neurons is crucial for subsequent         
morphological and transcriptome analysis.” 
 

 
[R2.15] Please change: Recently, patch clamp technique has to Recently, the patch clamp             
technique has 
 
[A2.15] We have accepted the reviewers suggestion. 
 

 
[R2.16] Regarding the sentence: Blind patch clamping’ moves the pipette forward in vivo 
Blind patch clamping was first done in vitro and only later performed in vivo 
 
[A2.16] We have utilized the suggested sentence and modified the previous one. 
 

 
[R2.17] Please delete “of” in the sentence: electrophysiological measurements strongly          
correlates to that of made by a trained 
 
[A2.17] We thank the reviewer for pointing out this grammatical error. We have modified the               
text accordingly. 
 
 
[R2.18] It is stated that the arrows in Figure 2e are yellow, but they are white in color 
 
[A2.18] Indeed, we thank the reviewer for noticing. Now we just write “arrows” as the color                
has no relevance. 
 
 
[R2.19] Please change the word “were” to “was” and “vacuum” to “suction” in the following               
sentence: intracellular content of the patched cells were aspirated into the recording pipette             
with gentle vacuum applied by the pressure regulator unit (-40 mBar for 1 min, then -60                
mBar for 2-3min, and finally -40 mBar for 1 min). 
 
[A2.19] We have changed the text accordingly. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 

 



[R3.1] The article is focused on using deep learning for recognition of DIC images of               
label-free neurons in brain slices for further automatic patch-clamp. Patch-clamp is the main             
electrophysiological technique for single-cell recordings. It is the primary methodology for the            
analysis of electrical properties of neurons and other electrically excitable cells. Several            
recent publications from different laboratories have described automated patch clamp          
systems, both blind and image-guided in slices and in vivo. These different systems are able               
to use computer vision libraries to detect pipette tips, fluorescently labeled cells, adjust their              
patch path, wash and reuse the pipettes, patch multiple cells at the same time. 
The key innovation of the authors’ paper is the use of deep learning first to train their neural                  
network and then recognize the images of neurons in brain slices acquired using DIC optics.               
This cell recognition is then combined with an automatic patch-clamp. The software is written              
in Matlab with external deep learning library calls. Overall, the use of deep learning to               
recognize cells in DIC optics is important for the field, even though all other parts of the                 
process have been published previously. However, there are several problems that need to             
be addressed, including a poor description of the deep learning part of the paper. I am                
enthusiastic about this paper, provided the issues below are addressed, and the manuscript             
is revised. 
 
[A3.1]  
We are grateful for the enthusiasm of this reviewer as well as her/his detailed and               
constructive comments. We agree that parts of this process were published earlier, but we              
give here a unique combination of these methodologies as a working pipeline. Below, we              
give a detailed answer to each question/point raised by this reviewer. 
 
There are several issues that need to be addressed: 
[R3.2] First, it is not clear if the patching process is fully automatic or if the interference of a                   
human may be required, and if it is, how often. The corresponding statistics are not               
sufficiently extensive; only the success examples vs. failures are mentioned. What is the             
percentage of fully automatic vs. attempts with human interruption vs failures to patch? 
 
[A3.2]  
Patching process can go fully automated with the possibility for the experimenter to stop the               
ongoing process at any time and choose to restart the phase or jump to the next phase. 
In an earlier phase of the development to detect failures of automatic trials we registered the                
rate of full automatic run and human interaction in n=62 consecutive experiments. 56.4%             
(n=35) of them were conducted fully automated without the experimenters interaction           
including n=16 successful and n=19 unsuccessful electrophysiological records. Fully         
automated runs with unsuccessful electrophysiological record caused by typically a failure in            
membrane suction phase causing improper connection with the cell. Note that the            
suction/sealing step is quite uncontrollable, for example the success of membrane seal            
strongly depends on the nucleus distance from pipette tip during membrane suction. 
In n=27 (43.5%) experiments human intervention was done because of the following            
reasons: 

- The system did not change from sealing phase to breakin phase, although the             
resistance change as trigger was given (n=2). This error was caused by a rare              
incident caused by the delayed send of signal due to occupation of the PatchMaster              

 



program maintaining other processes e.g. calculating holding current. In these cases           
the experimenter switched phase manually. 

- During the break in phase the membrane did not open enough or closed back (n=4).               
In these cases the sucking of membrane was interrupted and proceeded by the             
experimenter. 

- The system did not change from hunting phase to sealing phase although the             
resistance change as trigger was given (n=2). This was caused by the deformation of              
tissue. For example if the advancing pipette is too close to a blood vessel and               
touches it a large portion of the tissue can be pushed forward by the vessel and                
pipette. This is detected as a progress suspension by the system therefore it remains              
in the same phase. In these cases the experimenter switched phase manually. 

- The pipette did not hit the cell (n=17). This problem occurred typically at samples with               
uneven surface, or a large blood vessel sticks to the pipette wall which then as               
advanced forward deformed the tissue in an irregular manner. In these cases the             
experimenter moved the pipette manually to the cell, then started the sealing phase. 

- The system can not detect if the membrane suddenly breaks in without forming             
gigaseal during the sealing phase (n=2). In these cases the experimenter stopped            
the sealing phase and started the e-phys recording manually. 

Furthermore, we have included two new videos, Supplementary video 1 and 2 that show              
screen captures of two successful automatic patch clamping processes. 
 
[R3.3] The hardware configuration in Figure 1 doesn’t actually show any meaningful            
hardware, for example, which patch-clamp amplifier, how it’s connected to the National            
Instruments board. What kind of signals the NI board receives, and what commands does it               
send and where? 
 
[A3.3] We have separated the two parts of previous Fig. 1 and replaced the hardware part                
with photos of the actual devices we used, this can be found in Fig 2. Furthermore, we have                  
updated the Results, Hardware development and control section with information on how we             
measure the resistance and control the amplifier. As the NI board is connected mostly to the                
pressure controller parts we refer to the Supplementary Information: Pressure Regulator           
Setup for a detailed wiring diagram. Finally, we refer also to A3.4 as these questions are                
highly related. 
 
 
[R3.4] How do the authors control the amplifier and send/receive information? Is the output              
impedance then received by the NI board? 
 
[A3.4] We used HEKA EPC amplifier and PatchMaster software (HEKA) for measuring the             
electrophysiological signals. PatchMaster offers a “batch file control” protocol for controlling           
the amplifier from other applications. Our system uses this strategy for switching between             
current clamp and voltage clamp modes, to set the holding potential, to start the recording               
etc. We used this as a one-direction communication in which the amplifier is the receiver.  

The electrophysiological signals were digitized and recorded by PatchMaster and          
were directly monitored with the NI board (the current monitor output of the amplifier was               
connected to an analog input channel of the NI board). From this monitored signals our               

 



system calculated the total resistance of the pipette. If it was reasonable (i.e. the pipette               
resistance increased because the pipette tip hit the target cell) the DIGAP software sent              
batch commands to the amplifier to perform fast capacitance compensation, start the            
recordings and so on. The updated Figure 2. contains the information flow in the system. 
 
 
 
[R3.5] The detailed information and which commands are used by the authors to switch              
between voltage/current clamp modes, measure impedance, inject voltage command needs          
to be documented in a supplementary file in addition to the bitbucket or github or another                
online open-source repository. 
 
[A3.5] Our basic stimulus set and batch communication script is available in a separate              
document uploaded to http://bitbucket.org/biomag/autopatcher/ and as a new supplementary         
information. Briefly, we used short negative current pulses for series resistance monitoring            
during pipette maneuvering and membrane sucking phase and 800 ms long step cycled with              
increment. In some cases we used stimulation waveform set defined by Allen Brain Institute              
Data Portal 'Electrophysiology Overview' technical white paper       
(http://help.brain-map.org/display/celltypes/Documentation) 
 
 
[R3.6] How the z-focus is changed is not clear. This information is also important, especially               
in consideration of wider adoption in the neuroscience community. Different slice rigs may             
have different methods to change the z-focus. How do the authors control the z-focus from               
the software, and how does it integrate with both pipette detection, cell detection, z-stack              
acquisitions? A more detailed description should be both in the main and supplementary             
figures. 
 
[A3.6] The microscope we used was modified by Femtonics Ltd. (Hungary) and includes a              
motorized Z axis, provided with an API to query or set its position. We agree that different                 
setups have different methods to change the z-focus. Although we cannot provide a working              
solution for every microscope, we have implemented our software such that the controller             
classes are inherited from abstract base classes. Thus, if a new device is to be used (a                 
different motorized Z axis in this case), then only a new child class is to be written that                  
implements a few abstract methods and our software remains functional. 
Setting the z-focus is utilized in many parts of the system. Generally, an image stack is                
acquired for every automated step, including the cell detection, pipette detection, or cell             
tracking in the Z axis. Of course, there are a few cases when manual operation is required,                 
for example when looking for the sample top position or finding the tip of a fresh pipette. This                  
is done with the controller wheel also provided by the manufacturer. 
We have updated the Methods, Hardware setup, and Results, Hardware development and            
control sections to clarify this issue. 
 
 
[R3.7] The graphical user interface(GUI) of the software is shown only in the supplemental              
file. There should be at least a separate main figure showing the main elements of GUI with                 

 



the detailed annotation. This figure should also include the GUI for initiating the cell              
recognition process. 
 
[A3.7] We have added a new figure (Fig. 5) in Results, Software section to include               
screenshots of the GUI. It includes four panels, including the built-in labeling tool, the              
monitoring window, the main window when browsing the detected cells, and the automated             
laboratory notebook module. 
 
 
[R3.8] In the video shown, one can see the patching process, but not the deep               
learning-based recognition of the cells with further successful targeting. It would be useful to              
include a video of the cell recognition process. 
 
[A3.8] We have added another video (Supplementary Video 2) that is a screen capture of the                
whole patch clamping process. It includes the part when an image stack is acquired, the               
cells are detected, and the operator browses them. 
 
 
[R3.9] In the video of the patching process, one can see the changes in resistance, but not                 
the pressure. It is consequently not clear when the negative pressure was applied to              
break-in. How much suction was applied, etc. Is this how the process usually works? Or is                
there a separate pressure window which was not shown in the video? Probably a better               
video could be used, showing the average patching process. 
 
[A3.9] Our previous video (Supplementary Video 1) is for a quick demonstration of the              
system’s capabilities. The new Supplementary Video 2 shows a full, successful visual patch             
clamping process. Unlike the resistance value, the pressure value is not shown historically             
for the last few seconds. However, the actual value is always visible in the top right Pressure                 
panel in the Blind patcher window. The pressure values shown in the representative             
examples (Fig. 4 in the main text and the new Supplementary Information: Representative             
examples) were extracted from the log files. 
 
 
[R3.10] There is no diagram of the cell recognition->automatic patching algorithm.           
Consequently, it’s not clear what happens after what. At least, I was not able to easily find                 
the algorithm diagram. 
 
[A3.10] We have updated Fig. 1 with a schematic that shows the time dependence of the                
steps of visual patch clamping. 
 
 
[R3.11] The Figure 1a panel represents a series of confusing icons that can hardly be seen                
and are not an informative algorithm diagram. 
 
[A3.11] As already mentioned in A3.10, we have updated Fig. 1 by adding arrows between               
the icons to demonstrate the order in which the different steps are performed. 

 



 
 
 
[R3.12] The paragraph describing cell recognition and specifically deep learning, including           
training, is very brief and needs to be vastly expanded. There should be more information,               
more details about how the cells are recognized, what happens to the recognized cells in               
each z-stack cross-section, how they are then combined, etc. This is probably the biggest              
innovation of the paper, yet there is almost no information about how this is done. 
 
[A3.12] We have integrated the related Supplementary Information into the main text,            
Results, Cell detection section. Furthermore, we have added a description on how the             
detections are combined along the z-axis. 
 
 
[R3.13] Figure 2 describing the algorithms, and the cell detection module is incomplete.             
Specifically, Figure 2b has the model mentioned, but which model? Is it a convolutional              
network or maybe LSTM? This is not clear, yet this information is critical and needs to be                 
obvious from arguably the most important figure in the paper. 
 
[A3.13] We have updated Fig. 3 (previously Fig. 2) which now contains “Convolutional             
Neural Network” instead of just “Model”. Furthermore, we have included an extensive            
description of the algorithm in the Results, Cell detection section. 
 
 
[R3.14] The information about calling Caffe libraries from Matlab is only available in the              
supplemental information, with only a brief mention of the requirement of a separate             
computer with GPUs for training vs. recognition. This kind of information about the core              
innovation of the paper needs to be in the main text. 
 
[A3.14] We have moved (and updated) the previous supplementary information on cell            
detection to the main text. Most luckily, due to recent Matlab updates it became possible to                
import Caffe networks and calling Caffe libraries is not required anymore, thus we have              
removed this part from the text. Furthermore, we have performed a comparison of deep              
learning algorithms (new supplementary document) and implemented a Faster R-CNN          
algorithm besides Caffe. The detection systems can be changed in the main configuration             
file as described in Supplementary Information: Software usage and parameters, which also            
serves as a user manual. 
 
 
[R3.15] A lot of other information about the setup is very hard to find. For example, the                 
authors use the 40x water immersion lens. This needs to be in the first figure describing the                 
hardware setup. What happens if one uses a 63x lens, will it work with the software? 
 
[A3.15]  
We have addressed this issue in multiple ways. We have reworked the figure of the               
hardware setup (Figure 2). Furthermore, we have updated the Results, Hardware           

 



development and control, and Methods, Hardware setup sections. The former contains the            
description of hardware elements that are developed by us or just controlled by the software,               
while the latter contains the element descriptions that are used as-is. 
Related to higher magnification objectives, we had access to a 60x objective and tested the               
cell detection algorithm. Below are some selected image-pairs of the same tissue regions,             
40x on the left with highlighted regions of the 60x pair on the right. As can be seen, the cells                    
are often undetected, or when detected, usually the confidence is lower. This is expected, as               
CNNs are often not scale invariant. The patch clamping procedure could be used after              
setting the correct pixel size in the software. This value is either given by the manufacturer or                 
can be determined by a calibration sample. However, we have not performed such             
measurements with this objective. 

 

 

 
 
 

 



[R3.16] How does the system operate when you switch between a lower magnification lens              
(10x?) used for the initial targeting of the brain slice. Do the authors even use one? It is not                   
clear from the article. Is the initial calibration of the pipette and the derivation of the                
slice->pipette transformation function necessary at the low magnification? Is it done           
manually or fully automatically? 
 
[A3.16] We have not tested our system with lower magnification objectives either and we              
think it would raise further problems. First of all, deep learning architectures are known not to                
perform well on small objects. Neurons with a 10x objective would look very small in the                
digital images compared to 40x and we do not expect even a re-trained algorithm to perform                
well. Moreover, even if there would be a reliable object detector it would be very hard to                 
precisely target with the pipette so that it does not “slip off” of the neuron. As for the pipette                   
calibration, it would be necessary when the objective changes. The most important would be              
to determine the pixel size in micrometers. The value which is given by the objective               
manufacturer usually does not consider other optics elements, including the focal length of             
the digital camera. Thus it should be determined manually, preferably with a calibration slide              
or microbeads. In our case for the 40x objective, Femtonics provided a good approximate for               
this value, but the final value (0.115 micrometer) was determined empirically. 
 
 
[R3.17] There are several questions related to pipette detection. First, the authors cite only              
their own previous conference paper [21] while ignoring previous earlier work from other             
groups demonstrating successful automatic pipette tip detection. 
 
[A3.17] We thank the reviewer for pointing out that this should be detailed. We are aware of                 
previous approaches from other groups, some of which we already cited in the manuscript              
(Suk, HJ et al. 2017; and Wu, Q et al. 2016) but did not cover the pipette detection part. We                    
have added a discussion about these and one other approach (Yang, R et al. 2014) in the                 
Introduction. Unfortunately, we could not include them in the comparison due to differences             
in imaging conditions. In case of fluorescent modality, the inside of the pipette becomes              
visible which opens up new analysis possibilities, unlike in label-free imaging when only the              
edges of the pipettes are visible. As for the approaches that use label-free modality, they               
utilize a low magnification objective (4x) which results in a long depth of field (for details we                 
refer to this Nikon page), and thus the edges of the pipette are sharp all over the image. As                   
we had no access to a motorized/automated objective changer and our 40x objective has              
much lower depth of field, we decided to develop our own solution for the pipette localization                
problem for images where the edges of the pipette are sharp only in a rather small region. 
 
 
[R3.18] Another confusion is related to the pipette tip detection. It is mentioned that the               
mouse clicking on the tip of the pipette is required for calibration. If this is correct, this may                  
not represent the fully automatic detection of the pipette tip. 
 
[A3.18] In the early phase of development we implemented only the manual tip update              
functionality. As the fully automatic detection is still somewhat slower, we decided to leave              

 

https://www.microscopyu.com/microscopy-basics/depth-of-field-and-depth-of-focus


the manual in as well. However, the fully automatic detection works as intended and              
presented, and the operator has the option to use either. 
We would like to note that, in our terminology, pipette calibration and tip position update are                
two different actions. Calibration is the process of setting the pipette axes and calculating the               
transform matrix to the coordinate systems of the stage. This requires at least 4 tip               
detections, and even more when performed stepwise in an automated manner for higher             
precision. In this case it is much easier and faster to manually follow the pipette tip with the                  
stage and the objective and set the new tip positions. Furthermore, it is only required before                
the first use of the system. On the other hand, tip position update is performed after a fresh                  
pipette is inserted, or the current one is cleaned. In this case, the pipette is assumed to be                  
close to its estimated position, has to be detected only once, and time difference compared               
to manual detection is not so significant. 
 
 
[R3.19] Figure 3a is also confusing. The path of the pipette seems very strange for an                
algorithm. I assume the idea here is to demonstrate a patch attempt with an obstacle hit.                
There is no annotation of the stages 1,2,3 in Fig. 3a. I assume 3 represents a complicated                 
avoidance path, but this is is a very complicated path. Is this performed by a human to                 
re-position the pipette? It looks from the schematic as if some of the path includes lateral                
movements within the slice? Not sure. 
 
[A3.19] Indeed, Fig. 3a demonstrates the obstacle avoidance algorithm. The trajectory was            
reconstructed from a successful measurement where an obstacle was hit. Indeed, step 3             
indicates lateral movement in a spiral path which is based on the referenced paper (Stoy,               
WA et al., 2017). We have further annotated the image and added a description of the steps. 
 
 
[R3.20] Fig. 3b. There are several non-regular changes in the pipette pressure during the              
approach, which are strange? Were there any commands performed by the algorithm to             
apply positive/neutral pressure? Also, after the start fo the sealing process, again, several             
step-like changes in the negative pressure. Again, without the algorithm or a description of              
their state-system, it is not clear what is going on here. 
 
[A3.20] We thank the reviewer for pointing out that more details are required regarding the               
patch clamp phases. We have added more information to the Results, Automated patch             
clamping steps section. During the whole process the pressure should be kept at a few (4-6)                
predefined values, thus the changes visible in the figure are irregularities when the controller              
was unable to readjust it fast. This is mostly due to pulling back the pipette in the beginning                  
of the obstacle avoidance part, when the pipette leaves an empty space in the tissue and the                 
pressure escapes easily.  
 
 
[R3.21] There need to be more representative examples of successful and unsuccessful            
patches (both path and diary files with resistance and pressure measurements). 
 

 



[A3.21] We have created a new supplementary document that contains 9 successful and 6              
failed representative examples. Each contains 2 plots, the reconstructed pipette trajectory in            
3D, and the triplet of pipette depth, pressure, and resistance values. These attempts             
originate from the measurements included in the main text. The image stacks are not saved               
automatically when the patching process is started, thus identical figures to Fig. 4 in the               
main document could not be created. We tried to select and include diverse attempts in the                
new supplementary: e.g. pipette got adjusted by cell tracker, an obstacle was hit, the attempt               
was (re)started from the break-in phase, the break-in was successful in a few/lot of attempts,               
etc. 
 
 
 
Minor issues: 
[R3.22] Some of the citations are not precise. For example, “ … Object detection of neurons                
in label-free tissue images is challenging [24]…” 24 represents a paper by the authors, which               
performs image recognition on the astrocytes stained using immunohistochemistry (IHC). It           
would probably be more appropriate to say something like: … we have previously             
demonstrated the identification of labeled cells using deep learning following          
immunohistochemistry. 
 
[A3.22] We have rewritten this part of the text and the cited sentence is not present                
anymore. 
 
 
[R3.23] There needs to be more extensive discussion how different hardware can be used              
with the authors’ DIGAP system. Also, there needs to be more discussion of how different               
deep learning frameworks can be potentially used with the software. 
 
[A3.23]  

We have added a discussion in the Results, Hardware development and control            
section on how to use different hardware with the software than what is described.              
Furthermore, we have integrated another deep learning framework (FRCNN) in the software            
and describe in Supplementary Information: Software usage and parameters how it can be             
selected. This is also an example of how arbitrary frameworks can be integrated. 
 
 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have comprehensively addressed my concerns. 

 

 

 

 

 

Reviewer #2: 

Remarks to the Author: 

General Remarks: 

"Automatic deep learning driven label-free image guided patch clamp system for human and 

rodent in vitro slice physiology" 

 

I would like to thank the authors for putting some effort in addressing the points that were raised. 

I continue to maintain that their approach to automate the in vitro recording of unlabeled cells and 

hence the electrophysiological, anatomical and potentially also molecular characterization of 

human neurons or other non-genetically tractable species is useful. I am nevertheless not entirely 

convinced about some of the technical aspects of this study especially the way deep learning is 

implemented for the goals of the project, also because it is the most novel of the aspects of their 

pipeline. 

 

Regarding the Deep learning approach 

 

Even though the authors have now included more information about their method and also tested 

other Deep Learning architectures on cell detection, they still do not present a very strong 

argument for pushing the deep learning approach as part of their pipeline for the following two 

main reasons. 

 

Firstly, the method that they ultimately decide to go with, DetectNet, does not have a good 

performance (F1 score ~60%). In the first round of reviews the authors were asked to test 

alternative deep learning methods to assess the performance of their network. After running 3 

other networks on their datasets (2 being closely related, Darknet XX), they demonstrate that 

Faster RCNN gives significantly better results than DetectNet. The authors nevertheless decide not 

to focus their paper on Faster-RCNN, because they had performed all their electrophysiological 

recordings with DetectNet and also because of the time complexity of Faster-RCNN. The reason 

though that time may be an issue, as tested by the authors, is because they have used ResNet as 

the backbone architecture. As has been shown in Iqbal, et. al. Sci. Reports. 2019, a good level of 

precision can be achieved in much less time if a simple backbone architecture is built with only a 

few convolutional layers. If the argument against this network is the time sink, the authors could 

aim at a high level of precision with less time complexity for their application. For this it’d be 

important to just adapt a simple backbone architecture of Faster R-CNN and then compare its 

performance with ResNet-based Faster-CNN and their existing DetectNet architecture. A 

performance comparison plot of accuracy (mean average precision curve) and time complexity will 

be useful. 

 

 

Secondly, as also mentioned in the first review, automating cell detection for whole-cell patching is 

not really an object detection problem, it is rather an instance-based object segmentation issue. 

Therefore, even expanding the detected bounding box to several frames in z direction will not 

solve the issue of 3D segmentation since the structure, shape and size of neurons are extremely 

diverse so the precision of bounding box in z-depth#1 will be off as we move deeper into the 

tissue. The authors mention in the text that they have tried 3D segmentation methods, but did not 



get good results from them “We have tried the seminal work of Januszewski etal, and other novel 

3D deep architectures eg. Weigert etal. 2020 (StarDist), etc, however, we found that the 

segmentation quality of neuron cells on our DIC images was not satisfactory”. 

Nevertheless they do not show any of these results or the performance these achieve and claim 

that for their purpose only the cell detection network they have used is sufficient and works well. 

Unfortunately, the data that they present though suggests that their proposed method does not 

work optimally and has a poor performance based on the F1 score. An accuracy between 55-60% 

is already close to a random chance which can probably easily be achieved by a naive linear 

classifier, henceforth, there seems to be little advantage of using a deep learning-based network 

for this purpose. 

 

Besides these two main points, there are a couple of other important ones listed below: 

 

1) Having now provided more information on the implementation of their network, the reviewer 

finds it surprising that the training was done on 265 stacks and the testing on 3 (the authors 

report that this corresponds to almost 300 images). If this is correct, it means that the results only 

report on about 1% of the total dataset. The standard protocol is to use a train/test split of 80/20 

or 70/30 % (randomly shuffled and cross-validated), which is used to measure the generalized 

performance of a machine learning-based method. With 3 stacks, the reviewer thinks it is unlikely 

that the results will be generalizable, due to over-fitting. 

 

2) In addition, the number of epochs is stated as 6 (Line#225-227). Please check if this is a 

mistake, since the network cannot learn any features with a epoch size of 6. Sometimes thousands 

of epochs need to be used in order to train a network for a reasonable performance. 

 

3) To the question whether the authors use transfer learning, they reply positively. Nevertheless, 

when asked about the number of layers that are frozen in the network, they replied that “We did 

not freeze any layers to provide the opportunity to the network for slight changes in the early 

layers”. These two replies are somewhat contradictory. If all the network layers are frozen during 

training then no transfer learning is applied. 

 

For all the above issues and even though deep learning is presented as probably the most 

important aspect of the novelty of the pipeline presented in this paper, I would propose that it is 

somewhat toned down throughout the text and/or the low performance and the need to improve 

on the approach should be clearly stated. The focus of the paper could instead be on an effort 

towards automating the cell patching system, also using deep learning for cell detection, instead of 

focusing too much on deep learning, which seems to be the weaker part of the paper. 

 

Regarding the electrophysiology. 

 

In this part I will follow the specific answers of the authors 

 

Regarding the previous point [R2.8] 

In terms of the detection of synaptic events I did not imply that the authors should implement 

automated whole-cell paired recordings by introducing a second pipette. I was referring to 

spontaneous synaptic events by recording in continuous mode, either in voltage or current clamp. 

Since the idea of the approach that the authors propose is the automatic recording of 

electrophysiological properties of neurons and many labs are performing standard recordings of 

spontaneous synaptic events in control versus genetically modified tissue for example, it may be 

nice if the authors showed some synaptic events (if they have already collected them) and also 

comment on that. 

 

 

Regarding the previous point [R2.9] 

Thank you for adding these new recordings. Again it would be good if the authors commented on 



their new recordings in the text somewhere, letting the readers know that the cells could be kept 

for up to 1 hour according to their new efforts. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The manuscript is much improved. 

I have no other issues. 

 

 



Review Answers 
 
Our response to the comments from the reviewers 
 
Below,  we  provide  a  detailed  summary  of  the  comments  made  by  the  reviewers.  Each 
comment is followed by our response (denoted in italic font). We have responded to every 
comment [Rx.y] from the reviewers and made a genuine effort to address all concerns [Ax.y]. 
In  order  to  clearly  denote  where  changes  have  been  made  to  the  manuscript,  we  have 
highlighted changes from the previous version of the manuscript in red. 

 
 

REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
[R1.1] 
The authors have comprehensively addressed my concerns. 
 
 
[A1.1] 
We are grateful to this reviewer for his time, effort, and the critical comments that we believe 
resulted in higher quality work. 
 
 
Reviewer #2 (Remarks to the Author): 
 
[R2.1] 
General Remarks: 
"Automatic deep learning driven label-free image guided patch clamp system for human and 
rodent in vitro slice physiology" 
 
I would like to thank the authors for putting some effort in addressing the points that were 
raised.  I  continue  to  maintain  that  their  approach  to  automate  the  in  vitro  recording  of 
unlabeled  cells  and  hence  the  electrophysiological,  anatomical  and  potentially  also 
molecular  characterization  of human neurons or other non-genetically tractable species is 
useful. I am nevertheless not entirely convinced about some of the technical aspects of this 
study  especially  the  way  deep  learning  is  implemented  for  the  goals  of the project, also 
because it is the most novel of the aspects of their pipeline. 
 
[A2.1] 
We thank the reviewer for carefully examining our study again. We have performed further 
deep learning tests to address the issues that are raised. The reviewer has pointed out in 



R2.4 that the dataset should be split better so that the validation set becomes bigger. To be                 
able to run every new test necessary (including parameter search, comparisons, and cross             
validation), we have decided to revise the dataset and select a representative subset (35              
stacks) of human samples that were imaged in the later stages. We have used this smaller                
dataset for this round of review, and in the manuscript we indicate when this subset is used.                 
Please find our detailed answers below. 
 
 
Regarding the Deep learning approach 
 
[R2.2] 
Even though the authors have now included more information about their method and also              
tested other Deep Learning architectures on cell detection, they still do not present a very               
strong argument for pushing the deep learning approach as part of their pipeline for the               
following two main reasons. 
 
Firstly, the method that they ultimately decide to go with, DetectNet, does not have a good                
performance (F1 score ~60%). In the first round of reviews the authors were asked to test                
alternative deep learning methods to assess the performance of their network. After running             
3 other networks on their datasets (2 being closely related, Darknet XX), they demonstrate              
that Faster RCNN gives significantly better results than DetectNet. The authors nevertheless            
decide not to focus their paper on Faster-RCNN, because they had performed all their              
electrophysiological recordings with DetectNet and also because of the time complexity of            
Faster-RCNN. The reason though that time may be an issue, as tested by the authors, is                
because they have used ResNet as the backbone architecture. As has been shown in Iqbal,               
et. al. Sci. Reports. 2019, a good level of precision can be achieved in much less time if a                   
simple backbone architecture is built with only a few convolutional layers. If the argument 
against this network is the time sink, the authors could aim at a high level of precision with                  
less time complexity for their application. For this it’d be important to just adapt a simple                
backbone architecture of Faster R-CNN and then compare its performance with           
ResNet-based Faster-CNN and their existing DetectNet architecture. A performance         
comparison plot of accuracy (mean average precision curve) and time complexity will be             
useful. 
 
[A2.2] 
We agree that simpler backbones can often be used to achieve good quality results and that                
we might have put our efforts too much on detection quality and less on usability due to                 
hardware limitations. Now, we have tested the FRCNN architecture with simpler backbones            
as well. First, we have tried the DeNeRD model that was used in Iqbal et. al. 2019. The                  
training was performed for 100 epochs with decay of 0.2 every 10 epochs and initial               
LR=1e-3. The results were F1=42.59, P=50.42, R=37.86, and the requested curves are            
shown in Fig. 1 below. Unfortunately, these were rather low even compared to the DetectNet               
model, thus we tried to use another light-weight network, MobileNetV2. This backbone is             
much less complex than ResNet-50 and also known to provide good results (Bianco et. al.               
2018). We have trained this network with the same settings. The results were F1=60.93,              



P=55.13, R=71.47 (Fig. 2). This model is competitive and we have included it in the               
software.  
 
 

 
Figure 1: precision-recall and ROC curve of the FRCNN-DeNeRD model. 

 

 
Figure 2: precision-recall and ROC curve of the FRCNN-MobileNetV2 model. 

 
 
 
 
[R2.3] 
Secondly, as also mentioned in the first review, automating cell detection for whole-cell             
patching is not really an object detection problem, it is rather an instance-based object              
segmentation issue. Therefore, even expanding the detected bounding box to several           
frames in z direction will not solve the issue of 3D segmentation since the structure, shape                
and size of neurons are extremely diverse so the precision of bounding box in z-depth#1 will                
be off as we move deeper into the tissue. The authors mention in the text that they have                  
tried 3D segmentation methods, but did not get good results from them “We have tried the                
seminal work of Januszewski etal, and other novel 3D deep architectures eg. Weigert etal.              
2020 (StarDist), etc, however, we found that the segmentation quality of neuron cells on our               
DIC images was not satisfactory”. 



Nevertheless they do not show any of these results or the performance these achieve and               
claim that for their purpose only the cell detection network they have used is sufficient and                
works well. Unfortunately, the data that they present though suggests that their proposed             
method does not work optimally and has a poor performance based on the F1 score. An                
accuracy between 55-60% is already close to a random chance which can probably easily              
be achieved by a naive linear classifier, henceforth, there seems to be little advantage of               
using a deep learning-based network for this purpose. 
 
[A2.3] 
With the assumption that the somata of the neurons are convex objects, aiming for the               
center of their bounding box should be rather close to the centroid of their accurately               
determined shape/contour. We agree that aiming for their centroid is theoretically more            
correct and believe that it can improve the ultimate success rate of automatic patch clamp               
systems. However, given the complexity difference between object detection and instance           
segmentation tasks, and that there are no other publicly available annotated DIC tissue             
dataset, we believe our choice is obvious and useful for the community. As generating              
annotations for 3D segmentation would be very time consuming, we think that other             
approaches could be used to still aim for the cell centroid based on object detection results.                
Lee J. et. al. (2018) developed a segmentation and tracking method in DIC tissues that               
expects a manually given seed point and can be used for automatic patch clamp systems.               
We think the integration of this algorithm can be an improvement of our system in the future. 
 
We would like to make up for not showing the mentioned results previously. As our               
annotations are for object detection task (i.e. bounding boxes), we have used networks             
trained on the Kaggle DSB 2018 fluorescence images for nuclei segmentation. The DIC             
images were reconstructed by our previous DIC reconstruction algorithm (Koos 2016), that            
were the input of StarDist-2D (Fig. 3) and StarDist-3D (Fig. 4). The result instances are               
thresholded at 0.8 confidence. There are still many false detections in the image, and the               
contours of the correctly found neurons are rather rough (as it can be expected for this type                 
of training).  

  
Figure 3: Result of StarDist-2D on a reconstructed DIC image. Left: original DIC image. 

Right: Result of StarDist-2D on the phase-reconstructed image. 
 

https://ieeexplore.ieee.org/abstract/document/8240678


 
Figure 4: Result of StarDist-3D on a reconstructed DIC image. Left: original DIC image. 

Right: Result of StarDist-3D on the phase-reconstructed image. 
 

The reviewer mentioned that 55-60% accuracy is close to a random choice and thus the use                
of deep learning is not justified. We do not know what accuracy could be reached with                
hand-crafted feature analysis and linear classifiers (although we have started with a similar             
approach many years ago when we started this project, but it did not prove to be useful), we                  
would like to note that a random choice in the object detection task would give much worse                 
accuracy than 50%, possibly something close to 0%. This is because objects in the image               
can appear in any number, anywhere, and with various sizes. Furthermore, we compare 3D              
bounding boxes which makes this task even more complex. The random choice is 50%              
accurate only in binary classification problems. 
 
 
Besides these two main points, there are a couple of other important ones listed below: 
 
[R2.4] 
1) Having now provided more information on the implementation of their network, the             
reviewer finds it surprising that the training was done on 265 stacks and the testing on 3 (the                  
authors report that this corresponds to almost 300 images). If this is correct, it means that                
the results only report on about 1% of the total dataset. The standard protocol is to use a                  
train/test split of 80/20 or 70/30 % (randomly shuffled and cross-validated), which is used to               
measure the generalized performance of a machine learning-based method. With 3 stacks,            
the reviewer thinks it is unlikely that the results will be generalizable, due to over-fitting. 
 
[A2.4] 
We agree with the reviewer that using 1% of the dataset for testing is rather low. Our idea                  
was that this way we can compare every algorithm with multiple manual annotations. Since              
the network was used for hundreds of recordings we do not think it overfit, but still agree that                  
the metrics can be misleading. Note, that the annotators had to annotate the same stacks               
multiple times for the intra- and inter-accuracies and increasing the size of the test set would                
be very time consuming. Because of this and assuming that the best architecture (FRCNN)              
will be used from now on, we have performed a new training and cross validation with                
FRCNN on the subset of the full dataset as mentioned in A2.1. The cross-validation showed               
that the network, when trained for 20 epochs, gives an F1-score of 65.33% which is close to                 



the previously reported 65.83%. Please find the results in the cell detection supplementary             
material. 
 
 
[R2.5] 
2) In addition, the number of epochs is stated as 6 (Line#225-227). Please check if this is a                  
mistake, since the network cannot learn any features with a epoch size of 6. Sometimes               
thousands of epochs need to be used in order to train a network for a reasonable                
performance. 
 
[A2.5] 
We have checked that the training was run for 6 epochs and the number is correct. At the                  
moment, we are running a training using 2 NVIDIA GeForce RTX 2080 Ti cards for 20                
epochs on this dataset, but 1 epoch takes 21.5 hours and it will take 18 days to finish. We                   
will evaluate the quality of this model and make it available with the source code on                
Bitbucket if it performs better. We plan to do the same for 100 epochs (approx 3 months                 
runtime). Please note, that we finetuned the network pretrained on ImageNet and that the              
265 stacks resulted in 12600 images in the training set. These together allowed us to use a                 
low number of epochs, but without initialization we agree that we might have needed              
hundreds or even thousands of epochs. However, we have performed a further test where              
we checked how the training performs after 6, 20, and 100 epochs on the smaller dataset                
(mentioned in A2.1). The quality is similar to what was given for the previous test set of 3                  
stacks. 20 epochs proved to be marginally the best choice, but the network is competitive               
after only 6 epochs. Please find the detailed results in the cell detection supplementary              
material. 
 
 
[R2.6] 
3) To the question whether the authors use transfer learning, they reply positively.             
Nevertheless, when asked about the number of layers that are frozen in the network, they               
replied that “We did not freeze any layers to provide the opportunity to the network for slight                 
changes in the early layers”. These two replies are somewhat contradictory. If all the network               
layers are frozen during training then no transfer learning is applied. 
 
[A2.6]  
We are somewhat confused by the last sentence, as we wrote that we did not freeze any                 
layers but left all of them trainable. Initializing a network using the parameters acquired at               
the end of another training on a slightly different task is a very common approach in deep                 
learning. Depending on how many data points we have in the target dataset we can choose                
to freeze some of the layers or no layers at all. If no layers are frozen during the training, the                    
process is called fine tuning that is the sub-area of transfer learning. We believe that freezing                
the layers is optional and since we transferred the knowledge from another task in the               
materialization of the learned weights, our approach can be called transfer learning. We refer              
to the seminal work of Yosinski et. al. (2014) for the terminology that is aligned with our                 
manuscript. 
 

http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf


 
[R2.7] 
For all the above issues and even though deep learning is presented as probably the most                
important aspect of the novelty of the pipeline presented in this paper, I would propose that it                 
is somewhat toned down throughout the text and/or the low performance and the need to               
improve on the approach should be clearly stated. The focus of the paper could instead be                
on an effort towards automating the cell patching system, also using deep learning for cell               
detection, instead of focusing too much on deep learning, which seems to be the weaker               
part of the paper. 
 
[A2.7] 
We thank the reviewer for pointing out that deep learning is over expressed in the               
manuscript. We have made changes in the text and included ideas in the Discussion on how                
the cell detection could be improved. 
 
 
Regarding the electrophysiology. 
 
In this part I will follow the specific answers of the authors 
 
[R2.8] 
Regarding the previous point [R2.8] 
In terms of the detection of synaptic events I did not imply that the authors should implement                 
automated whole-cell paired recordings by introducing a second pipette. I was referring to             
spontaneous synaptic events by recording in continuous mode, either in voltage or current             
clamp. Since the idea of the approach that the authors propose is the automatic recording of                
electrophysiological properties of neurons and many labs are performing standard          
recordings of spontaneous synaptic events in control versus genetically modified tissue for            
example, it may be nice if the authors showed some synaptic events (if they have already                
collected them) and also comment on that. 
 
[A2.8] Although we could detect spontaneous events we did not perform long term             
continuous recordings for analysis of spontaneous events. Therefore we have performed           
longer continuous voltage clamp recordings from a fast-spiking basket cell and a pyramidal             
neuron to record spontaneous excitatory postsynaptic currents (sEPSC). We detected          
spontaneous events from 30 seconds long recordings using the Neuromatic tool (Rothman            
and Silver, 2018) for Igor (Wavemetrics). We collected n=866 and n=24 sEPSC from the              
basket and pyramidal cell, respectively. In the figure below, the left sides of the panels show                
a representative 450 ms and 1.7 sec long part of the recordings (panel A basket cell; panel B                  
pyramidal cell). Red dots denote detected sEPSC events. Right sides show the averaged             
sEPSCs with SD. 
We indicated these informations in the manuscript by inserting the following sentence:  
During our measurements we were able to detect spontaneous postsynaptic events in the             
entire length of the recordings. 



 
 
 
 
[R2.9] 
Regarding the previous point [R2.9] 



Thank you for adding these new recordings. Again it would be good if the authors               
commented on their new recordings in the text somewhere, letting the readers know that the               
cells could be kept for up to 1 hour according to their new efforts. 
 
[A2.9] 
We have accepted the reviewers suggestion and now included the followings in the Results              
section of the manuscript: 
Once the whole cell configuration was formed cells were usually held at most for 15 minutes                
to protect neuron viability for further procedures. To test the stability of whole cell              
configurations we executed a separate set of experiments and found that half of the trials               
(n=5 out of 9) could be kept up to 1 hour. The average time of experiments during the                  
recording configuration could be maintained was 2729.9 ± 1104.2 s (n=9, min: 928 s, max:               
3825 s). 
 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
[R3.1] 
The manuscript is much improved. 
I have no other issues. 
 
[A3.1] 
We thank the reviewer for reading our changes and for his time, effort, and critical comments                
that we believe have improved the quality of our manuscript. 
 
 



Reviewers' Comments: 

 

Reviewer #2: 

Remarks to the Author: 

The reviewer would like to thank the authors for the extra effort they put into the manuscript and 

for addressing the points raised concerning the deep learning and experimental parts. I have no 

further issues. 

 

 


