
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
This paper presents a pipeline for automated segmentation of ultrastructures in 3D EM images 
of neuronal structures. The authors have proposed a top-bottom pipeline to perform the 
segmentation as compared to previously proposed methods that involve over-segmentation and 
region merging. 
The proposed research lacks novelty as follows: 
• The authors claim that the previously proposed methods (bottom-up design) require 
sophisticated training and rely on a considerable amount of manual interaction. However, the 
proposed method also involves sophisticated steps and the computational complexity of the 
proposed method has not been compared to the state-of-the-art methods. 
• The proposed network architecture involves a limited number of parameters, as highlighted in 
the paper. Considering the bits of data used for training such a shallow network that does not 
even include residual blocks, the proposed network becomes highly prone to underfitting and 
hence weak inference results. This research lacks ablation studies. 
• The authors have stressed out deep learning in the proposed study; however, the results 
primarily rely on post-processing and demonstrates less dependency on deep learning as the 
proposed network is vulnerable to underfitting. 
• The evaluation metrics are limited, and the choice of thresholding values for binarising the 
images remains vague. Potential drawbacks of downsampling the high-resolution images also 
remain uninvestigated. 
• The authors have split the training and test data by 0.4 and 0.6 ratios, respectively. However, 
the random sampling for testing purposes involves very few patches extracted randomly, and 
this could lead to highly biased inference results (please check the sample sizes). 
• The authors have not compared the computational complexity of the proposed method to that 
of the state-of-the-art methods and have just provided the timing of the proposed pipeline. 
• The authors have referenced some of the state-of-the-art methods in the discussion section. 
However, the comparisons made in that section seems to be subjective rather than objective as 
the discussion section lacks justification of the claims that the authors have made. 
In summary, I think this paper provides very limited novelty to the field and needs much 
comprehensive analysis and justification of the claims made in the paper. 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
A formatted version of response is also attached. 
 
<B>Summary</B> 
DeepACSON is a segmentation method that utilizes segmented data from a previous method, 
ACSON, to train a network for segmenting lower resolution data. By reducing the size of the 



original data along with the segmented data from ACSON, DeepACSON can be trained with this 
“ground truth” data. The authors claim two major advantages of this technique: 
1. Less human interaction, “providing human-annotation-free training sets.” 
2. Being able to use lower resolution and thus larger field of view datasets. 
 
<B>Community Impact</B> 
This method can be useful to the neuronal community that uses EM data for their studies. The 
ability to take a single high-resolution sample to train from and then use low-resolution there 
after could allow for higher throughput. A much larger section of brain matter could be imaged 
quickly and more reliably at this lower resolution. 
 
<B>Originality</B> 
This method is very close to previous methods mentioned in the Introduction. However, 
DeepACSON differs enough to be called an improvement or at least a hybrid of prior work. 
 
<B>Conceivability</B> 
It would be of interest to the reader to have timing comparison of this method to some of the 
others. Five days to segment a single image seems to be a lot. But maybe, this needs to be in 
the context of volume per hour or something comparable. 
 
This manuscript emphasizes imaging speed. However, it is not clear how much is gained 
without knowing if this method is just as fast computationally as others? In the discussion 
section it is mentioned that it takes 24 hours to train on the high resolution data using ACSON. It 
would be beneficial for the authors to comment on where most of the computational time is 
spent, clarify the timing from start to finish. Meaning, break out the training phase from the high 
resolution, training on low resolution, and running final segmentation. 
 
It is mentioned that training sets were “augmented using randomized histogram distortions…” to 
make this method more robust to changes in contrast and brightness. How does this perform in 
practice with different sample preparation? Were there samples made by more than one 
person? 
 
It is not clear why a new GUI was necessary to write for validation. How do the authors ensure 
the GUI is not biasing the results in any way? 
 
The simplification of mitochondria to a centroid seems ill advised to measure distribution. Take 
for instance two large mitochondria almost touching. These centroids can be equi-distance to 
that of two small mitochondria. However, the two large mitochondria would seem more dense 
than the two small ones… I think minimum distance between mitochondria, or even the 
coverage of mitochondria projected on the skeleton would be a more informative metric. 
Alternatively, the centroid distance can be useful if the variance of mitochondria length is small 
enough. In which case, reporting this variance would be sufficient. 
 



It is mentioned that the volumes of the cells could not be directly compared because of variation 
between samples. Is there a reason for this variation? Can it not be normalized out in some 
manner? 
 
In the discussion section, it is not clear what the authors mean by “error-aware” in the second 
paragraph. 
 
<B><I>My largest concern is that the source code has not been made available to the 
reviewers.</I></B> 
 
<B>Recommendation</B> 
Over all this paper is well written. The benefits of this method if adopted should increase 
throughput of neuron tracing in large field of views. I would recommend that, after minor 
changes relating to the comments above and the release of the code for review, this manuscript 
be accepted. 
 
 
Reviewer #3 (Remarks to the Author): 
 
- Introduction and motivation 
 
The reason for doing the image segmentation on the low-resolution images (using learning) is 
not well or clearly motivated. The introduction has a list of relevant studies with some trivialised 
details, but lacks distillation and categorisation of the related work. 
 
The introduction has not summarised so well about the existing works: what are the limitations 
and how this proposed new approach is motivated? Compared with existing techniques, the 
paper's unique contribution is vague, because why going for low-resolution images is not 
elaborated clearly, especially the paper mentioned that the high-resolution images are actually 
available. (only a few sentences about the rationale of using low and high-resolution images are 
stated much later in the discussion session). 
 
The paper uses bottom-up and top-down design as the standard to classify different learning 
techniques, which is a debatable way of differentiating their own work from the previous works. 
In essence, the bottom-up approach uses the local features to detect or represent semantic 
information - this is the case no matter how CNN is used (referring to thousands of papers from 
the computer vision), because this is how neural network works, since NNs have no 
parameterized model to represent the Marco information, and this brings the following statement 
into a question: "This approach is made possible by the use of a-priori knowledge of the 
topology of myelinated axons and cell nuclei.". How the typological information is used as prior 
knowledge? The best it can do is the pre-training of networks given enough datasets, which is 
different from the "knowledge" in normal human's definition. 
 
 



- methodology 
"The simultaneous high- and low-resolution imaging enables to use the high-resolution images 
as the training data to segment low-resolution datasets." 
 
There is a one-to-one correspondence between high res and low-resolution images, ie both of 
them record the same spatial-temporal information, and the low-resolution images *are* 
down-sampled from the very same higher resolution ones. Of course, using the high-resolution 
images as the ground truth for training the low-resolution datasets down-sampled from 
themselves, you can always get very good fitting results with minimal loss - using simply brute 
force supervised learning, for example. 
 
 
- computational advantage 
There's not yet information to compare the processing time for the low-resolution images vs the 
processing time of the higher resolution images *directly*. Note that most of the computational 
time is in (1) BM4D filtering and (2) CSD SVM code, which is not related with the CNNs being 
the selling point of the paper. 
 
Computation time (The pipeline required about five days to segment one raw low-resolution 
SBEM dataset of size 4 000×2 000×1 200 voxels into its final segmentation. The details are 
presented in Supplementary Table S4) 
Supplementary material gives the specification of CPU, GPU and time. There are several 
technical questions: 1 the pipeline seems not automatically because it's a mixture of MATLAB 
code and Python code; 2 the hurdle of the computational time is limited primarily by the 
MATLAB computing which is known to be slow, and the second is the CSD Python code 
(despite python is popular in machine learning but it is too slow compared to C++, and 
especially if the CSD Python code is not optimised). In short, if the whole codebase is all written 
in Python class and heavily optimised, the speed should be much faster. 
 
Even regardless of all these technical aspects, when it comes to the central motivation of the 
paper, what is the indication of this computation time? What it supports? Because it seems to 
possess such low-resolution images is also very slow (5 days). The computational time usually 
can be resolved by parallel computing, change/optimise the programming code, use clusters 
instead of PCs. Therefore the justification of this approach is not clear. 
 
 
- motivation of using low-resolution images (especially down-sampled from existing high 
resolution ones) 
 
The author also clearly states that "We segmented the high-resolution datasets using our earlier 
automated ACSON pipeline4. We used the ACSON segmentation of the high-resolution 
datasets to train DeepACSON, eliminating the need for manually annotated training sets." and 
"We acquired SBEM images of the white matter simultaneously at low- and high-resolution". 



So indeed, high-resolution datasets are available, which means that a lot of existing methods 
can be used directly to analyse as well, and therefore what is the motivation of using 
down-sampled low-resolution images? 
 
Also, regarding "We used the ACSON segmentation of the high-resolution datasets to train 
DeepACSON", we know that the training of deep neural network always have artifacts, where 
the tests are different from training sets. So how the authors take that into account? (also see a 
separate comment regarding support vector machine later). 
 
In the Essence, the key scientific fundamental is that a low-resolution image, no matter original 
or down-sampled, loses important features and information, therefore to acquire truthful 
high-resolution data at the first place is the reason for scientists to improve high-resolution 
imaging techniques - that is a whole purpose, because no matter humans or trained CNNs, all 
the extracted information and understanding are all *probabilistic* based on limited information 
because of lack of certainty. 
 
 
- Datasets 
In addition to the description, Please provide a table to clearly show what are the datasets 
resolved in both low and high resolution, which are only resolved only in high resolution. A table 
is much clearer to read. 
 
"the remaining six datasets were reserved for testing", and "six unseen high-resolution SBEM 
datasets labeled by the automated ACSON pipeline" 
 
It is a small number of datasets, which are not sufficient to have valid statistical conclusions. Is 
there a more indicated number, for example, the number of images? 
 
 
- Evaluation 
In that section "White matter 3D morphology analysis", there are descriptions of how these 
measurements are quantified, but there's no information about how this process of 
measurement is done. The question is that: is this procedure done manually, for automatically? 
This is important because a manual procedure provides limited data and therefore the statistical 
indication is compromised. Instead, an automated procedure or benchmark can process a large 
quantity of data, yielding much better statistics. (Computer vision algorithms of object 
recognition have a well-established image bank benchmark to quantify.) 
 
Also, it is not convincing that the evaluation using 1 human expert is conclusive, and we don't 
know how much the human expert is biased due to other factors (conflict of interest, benefits), 
despite an expert has no access to the info. 
 
 
- CSD SVM 



There are improvements that can be made regarding the relationship between the artefacts 
from the CSD composition algorithm using support vector machine and the overall contribution 
of DeepACSON. There should be more discussion about ambiguities and artefacts processed 
from CSD the algorithm. 
 
The trained SVM is manually designed and tuned (specifically adapted parameters), which do 
not generalise to corner cases. This makes step 4 "eliminating false positives" less robust for 
processing different new datasets. 
 
 
- Discussion section 
Many part of the discussion section actually is doing the job of the introduction section. Instead, 
the discussion should concentrate more on the conclusive findings and further implications. 
 
 
- English Writing and language usage 
 
Some examples of imprecise wording: "The purple panel shows a cell nucleus from the 
low-resolution dataset (a), which membrane is resolved, but not continuously."; "The 
segmentation of myelinated axons and cell nuclei was finalized by eliminating non-axonal and 
non-nucleus structures with support vector machines (SVMs)." ; "We evaluated the performance 
of the two SVMs by a leave-one-group-out (LOGO) cross-validation, where the classifier was 
trained excluding the data from one group of animals (sham-operated or TBI) from training and 
evaluated against it (Supplementary Table S2). 
 
Word usage: use "where" instead of "which"; use 'using' instead of 'with'; avoid using several 
clauses and put 'it' at the end of a long sentence (what exactly this "it" is pointing to?). 
 
The paper overall needs significant re-writing and requires proofreading from native speakers 
and senior academics.  



DeepACSON: Automated Segmentation of White Matter in 3D Electron 
Microscopy 

Ali Abdollahzadeh, Ilya Belevich, Eija Jokitalo, Alejandra Sierra, and Jussi Tohka 
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Summary of the major changes applied to the manuscript in response to the 
reviewers´ comments: 

• We compared our technique, DeepACSON, to state-of-the-art, deep learning-based, 
automated techniques in the segmentation of three-dimensional electron microscopy (3D-
EM) images: 1) DeepEM2D, 2) DeepEM3D, and 3) Flood filling network (FFN). We 
showed that DeepACSON outperforms these techniques in the segmentation of low-
resolution EM datasets of white matter. We also compared the computation time of 
DeepACSON to these techniques. The computation time of DeepACSON is shorter than 
FFN but longer than DeepEM2D and DeepEM3D.  
 

• We performed an ablation study on the DeepACSON pipeline to evaluate the effect of: 
 

o utilizing a deeper architecture (a U-Net with residual modules) on the semantic 
segmentation. We found that this deeper network is prone to overfitting, and 
for this reason, the segmentation was more accurate with the original 
architecture in terms of the evaluation metrics. 
 

o BM4D denoising, as a pre-processing step, on the semantic segmentation. 
We found that dropping the BM4D denoising step made segmentations less 
accurate.  
 

• We clarified our motivation for low-resolution EM imaging of large tissue volumes, 
compared to high-resolution EM imaging of small tissue volumes, as a technique to 
increase the field-of-view at a reasonable usage of resources. 

 

 

 

 

 

 

 

 

 



Reviewers’ comments: 

Reviewer #1: 

Reviewer summary: This paper presents a pipeline for automated segmentation of 
ultrastructures in 3D EM images of neuronal structures. The authors have proposed a top-
bottom pipeline to perform the segmentation as compared to previously proposed methods 
that involve over-segmentation and region merging. 

 

Comment 1.1: The authors claim that the previously proposed methods (bottom-up design) 
require sophisticated training and rely on a considerable amount of manual interaction. 
However, the proposed method also involves sophisticated steps and the computational 
complexity of the proposed method has not been compared to the state-of-the-art methods. 

Answer 1.1: We agree with the reviewer that DeepACSON required comparisons with 
existing state-of-the-art segmentation methods. DeepACSON is a fully automated 
segmentation technique, requiring no human interaction, and even provided with a human-
annotation-free training set. As suggested, we compared DeepACSON against state-of-the-
art automated segmentation techniques, DeepEM2D8, DeepEM3D8, and FFN10, and showed 
that our method outperforms these methods in terms of accuracy. Also, in the computation 
time section of the manuscript, we now included the computation-complexity of deepACSON 
for the BM4D15 denoising step, cylindrical shape decomposition algorithm14, and 
convolutional neural networks (CNNs) in generating semantic segmentations. We also 
compared the computation time of DeepACSON to DeepEM2D, DeepEM3D, and FFN. The 
computation time of DeepACSON is shorter than FFN but longer DeepEM2D and 
DeepEM3D. We added this information to the Results section on page 11-13, line 217-235, 
and also in the panel g of the new Figure 6.  

Computation time 

The pipeline required about five days to segment a raw, low-resolution SBEM dataset 
of 4000×2000×1200 voxels into its final segmentation. The details are presented in 
Supplementary Table S4. Approximately 40% of the DeepACSON computation time 
was spent during BM4D denoising15. We run BM4D filtering on non-overlapping 
patches of the SBEM volumes to enable parallel processing. We remark that BM4D 
filtering can be dropped from the pre-processing steps to improve the computation 
time, but as shown in Fig. 6d-f, dropping BM4D filtering made segmentations less 
accurate. Approximately 30% of the DeepACSON computation time was spent on the 
CSD algorithm. In more detail, the time complexity of the sub-voxel precise 
skeletonization is O(n NΩ log NΩ), where n is the number of skeleton branches, and 
NΩ is the number of voxels of a discrete object, i.e., a myelinated axon. The NΩ log NΩ 
factor is from the fast marching algorithm21. The time complexity to determine a 
critical point is O(Np), where Np is the number of inquiry points to check for the cross-
sectional changes in a decomposition interval. Therefore, the overall time complexity 
of the CSD algorithm is O(n NΩ log NΩ) + O(Np). Approximately 10% of the 
DeepACSON computation time was spent on the semantic segmentation, with time 
complexity of O(N), where N is the number of voxels in an SBEM dataset. 



We also compared the computation time of DeepACSON, DeepEM2D, DeepEM3D, 
and FFN techniques (see Fig.6g for results). These techniques were compared over 
the six test datasets on a computer with an NVIDIA Tesla V100-32 GB GPU, 2 × Intel 
Xeon E5 2630 CPU 2.4 GHz, and 512 GB RAM. DeepEM2D and DeepEM3D had the 
shortest computation time (about 1 minute) as the segmentation mainly relies on an 
Inception-ResNet-v2 network22 and watershed segmentation. FFN required the 
longest computation time for an end-to-end segmentation (about 28 minutes). 
DeepACSON required about 4 minutes (using 15 CPU cores) to segment the test 
datasets, which was longer than DeepEM2D/3D and shorter than FFN. 

 

 

Figure 6. DeepACSON evaluations. Comparison of DeepACSON against state-of-the-art 
segmentation, DeepEM2D, DeepEM3D, and FFN, by (a) variation of information (VOI, split 
and merge contribution, lower is better), (b) Wallace indices (split and merge contribution, 
higher is better), and (c) adapted Rand error (ARE, lower is better) and the sum of VOI split 
and VOI merge (VOI sum, lower is better). DeepACSON outperformed these techniques as it 
produced the smallest VOI split, VOI merge, VOI sum, and ARE and the biggest Wallace split 
and merge values. Comparison of the design parameters of DeepACSON: standard 
DeepACSON (DeepACSON-A), a U-Net with residual modules (DeepACSON-B), the effect of 
BM4D denoising (DeepACSON-C), and adjusting the resolution between the training and test 
sets (DeepACSON-D) over (d) VOI (split and merge contribution) (e) Wallace indices (split 
and merge contribution), and (f) ARE and VOI sum. The filled circles and error bars show the 
mean and standard deviation of the evaluations, respectively. The dash-dotted lines show the 
choice of binarization threshold. The comparisons were run over the best threshold, i.e., 
smallest VOI merge and VOI split. (g) Comparing the computation time of DeepACSON 
against DeepEM2D/3D and FFN (mean ± standard deviation). All comparisons were run over 

six test SBEM datasets of size 290×290×285 voxel3 automatically segmented using the 
ACSON5 pipeline.  
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Comment 1.2: The proposed network architecture involves a limited number of parameters, 
as highlighted in the paper. Considering the bits of data used for training such a shallow 
network that does not even include residual blocks, the proposed network becomes highly 
prone to underfitting and hence weak inference results. This research lacks ablation studies. 

Answer 1.2: We now performed an ablation study on the DeepACSON pipeline, as 
suggested by the reviewer. We utilized a deeper architecture, a U-Net with residual modules, 
for the semantic segmentation. We used a ResNet-34, pre-trained on the ImageNet dataset, 
as the encoder of the U-Net. We found that a deeper network is prone to overfitting, hence 
generating less accurate segmentation. We evaluated the effect of BM4D denoising, as a 
pre-processing step, on the semantic segmentation. We found that dropping the BM4D 
denoising step made segmentation less accurate. We also evaluated the effect of down-
sampling of the training set to the resolution of the low-resolution images. We found that 
adjusting the resolution for training is essential, and dropping this step worsens the 
evaluation measures. We demonstrated the choice of binarization thresholds over the 
variation of information (split and merge errors) metric. We added this information in Results, 
Materials and Methods, and Supplementary Information as follows: 
 
Please, see Fig. 6d-f (Answer 1.1) for the results of the ablation study. 
 
Results, page 10-11, line 189-199: 
 

We also evaluated the DeepACSON pipeline to understand its design parameters, 
such as denoising, resolution adjustment, and an alternative, deeper architecture. In 
Fig.6d-f, we denoted the standard DeepACSON design as DeepACSON-A, which 
used a light fully convolutional network18 (FCN) for the semantic segmentation. The 



standard DeepACSON was trained using down-sampled and BM4D filtered volumes. 
We replaced the FCN design of the standard DeepACSON with a U-Net19 with 
residual modules, denoted as DeepACSON-B in Fig.6d-f. In this figure, we also show 
the effect of omitting BM4D15 denoising as a pre-processing step (DeepACSON-C) 
and down-sampling the high-resolution images to generate the training set 
(DeepACSON-D). In addition, we demonstrated the choice of thresholds at which the 
probability maps were binarized. Evaluations were run over the six SBEM volumes. 
The comparisons showed that the standard DeepACSON performed better than a 
deeper network, which was prone to over-fitting. Denoising the train/test datasets as 
a pre-processing step improved our results as did adjusting the resolution between 
the training and test sets. We binarized the probability maps at thresholds, which 
generated the smallest VOI split/merge values. 
 

Materials and Methods, page 18-19, line 412-431: 
 

For the semantic segmentation of myelinated axons, we also tested a U-Net19 with 
residual modules, implemented in PyTorch53. For that, we used a ResNet-3454 with 
about 21 million parameters, pre-trained on the ImageNet dataset55, as the encoder of 
the U-Net (Supplementary Fig.S5). In the encoding path of the U-Net, the height and 
width of the feature maps were halved, and the depth of the feature maps was 
doubled. In the decoding path of the U-Net, the height and width of the feature maps 
were doubled, and the depth of the feature maps was halved. The basic residual 
blocks of ResNet-34 were constructed on 3×3 convolutional layers, rectified linear 
unit (ReLU) as the activation function, and batch normalization56. The basic decoding 
blocks applied nearest-neighbor interpolation, up-sampling the feature maps to 
recover the spatial resolution of input images. Feature maps generated in the 
encoding path were concatenated to the corresponding feature maps in the decoding 
path by the skip connections. The model was trained by the softmax function and 
cross-entropy loss function. We set the batch size equal to 8 and feed every three 
SBEM images with stride 1, in z-direction, as input. The training set was normalized 
to have the mean of (0.485, 0.456, 0.406) and the standard deviation of (0.229, 
0.224, 0.225) in (x, y, z) directions. Also, half of the training set was augmented by 
geometrical transformation, such as horizontal and vertical flips, scaling, shifting, and 
rotation. For the optimization, we used Adam optimizer52 and set its initial learning 
rate α = 1×10-4, the exponential decay rate for the first moment β1 = 0.9, the 
exponential decay rate for the second-moment β2 = 0.999, and the weight decay = 
1×10-5 (we use the same notation as in 52). We set the class weights to 0.3, 0.3, 0.3, 
and 1 for the background, myelin, myelinated axons, and mitochondria, respectively. 
We trained this U-Net architecture with the same datasets as mentioned for the FCN 
network for case scenarios: 1) the training set was BM4D denoised and down-
sampled, 2) the training set was not BM4D denoised but down-sampled, 3) the 
training set was BM4D denoised but not down-sampled. In the first case, we 
evaluated the effect of using a deeper network than our FCN design, and in the 
second and third cases, we evaluated the effect of BM4D denoising and down-
sampling the high-resolution datasets of the training set. 
 

Materials and Methods, page 21-22, line 512-534 
 



Segmentation evaluation metrics. We used precision P, recall R, and F1 scores to 
compare an automated segmentation to the ground truth, as there is a one-to-one 
match between voxels constituting the segmentations. To define these measures, let 
A and B be the sets of voxels of a particular ultrastructure (myelin, myelinated axon, 
mitochondrion) in an automated segmentation and ground-truth, respectively.  We 

defined ܲ = |஺∩஻||஻| , and	ܴ = |஺∩஻||஺| , and F1 score as 1ܨ = 2 × ௉×ோ௉ାோ. The maximum for the 

precision, recall, and F1 score is equal to one when the test segmentation perfectly 
matches the ground-truth. However, these metrics do not describe topological 
differences, and they are sensitive to small changes in the region boundary. 
Therefore, we evaluated automated segmentation with metrics less sensitive to small 
variations in boundary, but sensitive to topological differences. For that, we measured 
variance of information62 (VOI, split and merge contributions) and Wallace indices63 to 
account for merge and split errors of a segmentation separately. We also computed 
adapted Rand error (ARE) as defined by the SNEMI3D contest 
(http://brainiac2.mit.edu/SNEMI3D/evaluation) as 1 minus the maximal F-score of the 
Rand index64 (excluding the zero component of the original labels). We performed 
these evaluations using the Gala library described by Nunez-Iglesias et al65. The VOI 
metric is defined as the sum of the conditional entropies between two segmentations 
VOI(A,B) = H(A|B) + H(B|A), where A is the automated segmentation, and B is the 
ground-truth. The VOI metric is decomposed into VOI split H(A|B) and VOI merge 
H(B|A)65. A lower VOI value indicates a better segmentation; for a perfect match 
between an automated segmentation and ground truth, we have VOI split = VOI 

merge = 0. Also, the Wallace splitting index is defined as 
௔௔ା௕ and the Wallace 

merging index is defined as  
௔௔ା௖, where a is the number of pairs of voxels in the input 

image that have the same label in A and the same label in B, b is the number of pairs 
of voxels in the input image that have the same label in A but a different label in B, c 
is the number of pairs of voxels in the input image that have a different label in A but 
the same label in B, and d is the number of pairs of voxels in the input image that 
have different labels in A and different labels in B. The Wallace indices are between 0 
and 1, where a higher value indicates a better segmentation, i.e., less split and merge 

compared to the ground truth. The Rand index is defined as  
௔ାௗ௔ା௕ା௖ାௗ, where a, b, c, 

and d are defined the same as in the case of Wallace indices. Note that we applied 
the adapted Rand error, where a lower value indicates a better segmentation. 
 

Supplementary Information, page v: 



 
Figure S5. A U-Net19 architecture with residual modules. We used a ResNet-3454, pre-trained on the 
ImageNet dataset55, as the encoder of the U-Net. Where the size of the feature maps was halved, the 
depth was doubled, and where the size of the feature maps was doubled, the depth was halved. The 
basic residual blocks of ResNet-34 were constructed on 3×3 convolutional layers, rectified linear unit 
(ReLU) as the activation function, and batch normalization56 (BN). The basic decoding blocks applied 
nearest-neighbor interpolation, up-sampling the feature maps to recover the spatial resolution of input 
images. Feature maps generated in the encoding path were concatenated to the corresponding feature 
maps in the decoding path by the skip connections. The model was trained by the softmax function and 
cross-entropy loss function. 
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Comment 1.3: The authors have stressed out deep learning in the proposed study; however, 
the results primarily rely on post-processing and demonstrates less dependency on deep 
learning as the proposed network is vulnerable to underfitting. 

Answer 1.3:  We agree with the reviewer that we addressed the under-segmentation error, 
which is a hard-to-correct topological error. As shown in Answer 1.2, we now tested a 
deeper network, a U-Net with residual modules. We used a ResNet-34, pre-trained on the 
ImageNet dataset, as the encoder of the U-Net (Supplementary Fig. S5). Our results 
showed that using a deeper network was prone to overfitting in this application and 
deteriorated the evaluation measures. 
 
 
Comment 1.4: The evaluation metrics are limited, and the choice of thresholding values for 
binarising the images remains vague. Potential drawbacks of downsampling the high-
resolution images also remain uninvestigated. 
 
Answer 1.4:  We now expanded the evaluation section of the manuscript and applied the 
variation of information (split and merge contribution), Wallace indices (split and merge 
contribution), and adapted Rand error to compare DeepACSON with state-of-the-art 
segmentation techniques and perform an ablation study on the DeepACSON pipeline. In our 
ablation study, we evaluated the effect of down-sampling the high-resolution datasets to the 
resolution of the test volumes and the choice of binarization thresholds. We trained 



DeepACSON once with down-sampled EM volumes and once with EM volumes at their 
original resolution. We showed that dropping this resolution adjustment step generated less 
accurate segmentation. Please, see Answer 1.2 for details about DeepACSON ablation 
studies. 
 
 
Comment 1.5: The authors have split the training and test data by 0.4 and 0.6 ratios, 
respectively. However, the random sampling for testing purposes involves very few patches 
extracted randomly, and this could lead to highly biased inference results (please check the 
sample sizes). 
 
Answer 1.5: We differentiate between two test sets used to evaluate the DeepACON 
pipeline: 1) a test set that comprised six high-resolution EM volumes down-sampled to the 
resolution of low-resolution images. We applied this test set to compare DeepACSON 
against state-of-the-art automated segmentation methods using VOI, Wallace indices, and 
adapted Rand error. Note that each EM volume included approximately 300 axons, and thus 
we evaluated DeepACSON on approximately 6 × 300 = 1800 myelinated axons; 2) a test 
set, which comprised 50 patches of size 300×300 voxels. The patches were acquired from 
the ten low-resolution datasets (large field-of-view datasets), five patches per dataset. This 
test set was used only for expert evaluations. Note that each patch, on average, included 
approximately 130 axonal cross-sections and 30 mitochondria. Therefore, the expert has 
evaluated about 6500 axonal cross-sections and 1500 mitochondria in total, providing robust 
insight into the segmentation accuracy. The expertise of A.S. (from the authors’ list) in 
microscopic tissue information and being a volunteer in contributing her time for the 
evaluation were the reasons that convinced us to finalize the evaluation section with an 
expert subjective point-of-view. We added this information in the Evaluation section on page 
10, line 165-176.  

Evaluations 

We used two test sets to evaluate the DeepACON pipeline: 1) a test set that 
comprised six high-resolution SBEM volumes down-sampled to the resolution of low-
resolution images. We applied this test set to compare DeepACSON against state-of-
the-art automated segmentation methods and perform an ablation study on the 
DeepACSON pipeline. Labels for this test set was provided automatically using 
ACSON5 pipeline and proofread by A.S. In this test set, each SBEM volume included 
approximately 300 axons, and thus we evaluated DeepACSON on approximately 6 × 300 = 1800 myelinated axons; 2) a test set, which comprised 50 patches of size 
300×300 voxels only for the expert evaluations. We randomly sampled every low-
resolution (large field-of-view) dataset for five non-overlapping windows of size 
300×300 voxels (10 datasets, 50 samples). Each patch, on average, included 
approximately 130 axonal cross-sections and 30 mitochondria. Therefore, the expert 
has evaluated about 6500 axonal cross-sections and 1500 mitochondria in total. The 
expert had no access to the dataset ID nor the sampling location. The expert 
evaluated the sampled images of the final segmentation by counting the number of 
true-positives (TP), false-positives (FP), and false-negatives (FN). 

Reference: 



5. Abdollahzadeh, A., Belevich, I., Jokitalo, E., Tohka, J. & Sierra, A. Automated 3D 
Axonal Morphometry of White Matter. Sci. Reports 9, 6084 (2019).  

 

Comment 1.6: The authors have not compared the computational complexity of the 
proposed method to that of the state-of-the-art methods and have just provided the timing of 
the proposed pipeline. 

Answer 1.6: As suggested by the reviewer, we now included the computation complexity of 
DeepACSON, and compared the computation time of our method to state-of-the-art 
automated segmentation techniques, as discussed in Answer 1.1. 

 

Comment 1.7: The authors have referenced some of the state-of-the-art methods in the 
discussion section. However, the comparisons made in that section seems to be subjective 
rather than objective as the discussion section lacks justification of the claims that the 
authors have made. In summary, I think this paper provides very limited novelty to the field 
and needs much comprehensive analysis and justification of the claims made in the paper. 

Answer 1.7: As suggested by the reviewer, we now expanded the Evaluation section in the 
Results section, and compared our method to state-of-the-art automated segmentation 
techniques, DeepEM2D, DeepEM3D, and FFN. We scored these techniques over the 
variation of information (split and merge), Wallace indices (split and merge), and adapted 
Rand error. We showed that DeepACSON outperforms state-of-the-art automated 
techniques in the segmentation of ultrastructures in low-resolution datasets of white matter. 
This information is now included in Results and Materials and Methods. 
 
Please, see Fig.6a-c in Answer 1.1 for the comparison results.  
 
Please, see “segmentation evaluation metrics” in Answer 1.2. 

Results, page 10, line 177-188: 

We compared DeepACSON with state-of-the-art segmentation techniques; 
DeepEM2D8 and DeepEM3D8, which rely on a precise semantic segmentation, and 
FFN10, which accounts for the shape of neural processes during the instance 
segmentation. We trained DeepEM3D8  using the same training set as DeepACSON 
but with two labels, the intra-axonal space of myelinated axons versus the 
complement. To train FFN10,  we used the same training set as DeepACSON but 
preserving the label of each myelinated axon. We first trained FFN, including the 
myelin and mitochondria labels, where the network generated very poor results. 
Therefore, we excluded the myelin label and included mitochondria to the intra-axonal 
space of myelinated axons. We trained DeepACSON and DeepEM2D/3D for one day 
and FFN for one week on a single NVIDIA Tesla V100-32 GB graphics processing 
unit (GPU). As shown in Fig. 6a-c, we quantitatively evaluated the segmentation on a 
test set comprising six SBEM volumes. We compared these techniques by the 
variation of information (VOI, split and merge contribution, lower is better), Wallace 
indices (split and merge contribution, higher is better), and adapted Rand error (ARE, 



lower is better), defined in Materials and Methods, on the segmentation of the intra-
axonal space. DeepACSON outperformed these current state-of-the-art techniques 
as it generated the smallest VOI measures and ARE and the biggest Wallace 
measures. 
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Reviewer #2: 

Reviewer summary: DeepACSON is a segmentation method that utilizes segmented data 
from a previous method, ACSON, to train a network for segmenting lower resolution data. By 
reducing the size of the original data along with the segmented data from ACSON, 
DeepACSON can be trained with this “ground truth” data. The authors claim two major 
advantages of this technique: 

1. Less human interaction, “providing human-annotation-free training sets.” 

2. Being able to use lower resolution and thus larger field of view datasets. 

Community Impact 

This method can be useful to the neuronal community that uses EM data for their studies. 
The ability to take a single high-resolution sample to train from and then use low-resolution 
there after could allow for higher throughput. A much larger section of brain matter could be 
imaged quickly and more reliably at this lower resolution. 

Originality 

This method is very close to previous methods mentioned in the Introduction. However, 
DeepACSON differs enough to be called an improvement or at least a hybrid of prior work. 

Answer: We thank the Reviewer for the accurate summary of the study. We have 
highlighted and clarified the differences to previous methods as well as provided 
comparisons to them in the revised version. 

 



Comment 2.1: It would be of interest to the reader to have timing comparison of this method 
to some of the others. Five days to segment a single image seems to be a lot. But maybe, 
this needs to be in the context of volume per hour or something comparable. 

Answer 2.1: We now compared the computation time of DeepACSON against DeepEM2D8, 
DeepEM3D8, and FFN10 over six datasets of size 290×290×285 voxel3. On average, 
DeepACSON spends four minutes to segment volumes of such size, compared to FFN, 
which on average, spends about 28 minutes. DeepEM2D and DeepEM3D, on average, 
require about one minute to segment a dataset of size 290×290×285 voxel3. However, 
DeepEM2D/3D apply no mechanism to address potential topological errors. The computation 
time from the shortest to the longest was as follows: DeepEM2D, DeepEM3D, DeepACSON, 
and FFN. We also included the computation complexity of deepACSON for the BM4D15 
denoising step, cylindrical shape decomposition algorithm14, and convolutional neural 
networks (CNNs) in generating semantic segmentations. We added this information to the 
Results section on page 11-13, line 217-235, and also in the panel g of the new Figure 6.  

Computation time 

The pipeline required about five days to segment a raw, low-resolution SBEM dataset 
of 4000×2000×1200 voxels into its final segmentation. The details are presented in 
Supplementary Table S4. Approximately 40% of the DeepACSON computation time 
was spent during BM4D denoising15. We run BM4D filtering on non-overlapping 
patches of the SBEM volumes to enable parallel processing. We remark that BM4D 
filtering can be dropped from the pre-processing steps to improve the computation 
time, but as shown in Fig. 6 d-f, dropping BM4D filtering made segmentations less 
accurate. Approximately 30% of the DeepACSON computation time was spent on the 
CSD algorithm. In more detail, the time complexity of the sub-voxel precise 
skeletonization is O(n NΩ log NΩ), where n is the number of skeleton branches, and 
NΩ is the number of voxels of a discrete object, i.e., a myelinated axon. The NΩ log NΩ 
factor is from the fast marching algorithm21. The time complexity to determine a 
critical point is O(Np), where Np is the number of inquiry points to check for the cross-
sectional changes in a decomposition interval. Therefore, the overall time complexity 
of the CSD algorithm is O(n NΩ log NΩ) + O(Np). Approximately 10% of the 
DeepACSON computation time was spent on the semantic segmentation, with time 
complexity of O(N), where N is the number of voxels in an SBEM dataset. 

We also compared the computation time of DeepACSON, DeepEM2D, DeepEM3D, 
and FFN techniques (see Fig.6g for results). These techniques were compared over 
the six test datasets on a computer with an NVIDIA Tesla V100-32 GB GPU, 2 × Intel 
Xeon E5 2630 CPU 2.4 GHz, and 512 GB RAM. DeepEM2D and DeepEM3D had the 
shortest computation time (about 1 minute) as the segmentation mainly relies on an 
Inception-ResNet-v2 network22 and watershed segmentation. FFN required the 
longest computation time for an end-to-end segmentation (about 28 minutes). 
DeepACSON required about 4 minutes (using 15 CPU cores) to segment the test 
datasets, which was longer than DeepEM2D/3D and shorter than FFN. 

 



 

Figure 6. DeepACSON evaluations. Comparison of DeepACSON against state-of-the-art 
segmentation, DeepEM2D, DeepEM3D, and FFN, by (a) variation of information (VOI, split 
and merge contribution, lower is better), (b) Wallace indices (split and merge contribution, 
higher is better), and (c) adapted Rand error (ARE, lower is better) and the sum of VOI split 
and VOI merge (VOI sum, lower is better). DeepACSON outperformed these techniques as it 
produced the smallest VOI split, VOI merge, VOI sum, and ARE and the biggest Wallace split 
and merge values. Comparison of the design parameters of DeepACSON: standard 
DeepACSON (DeepACSON-A), a U-Net with residual modules (DeepACSON-B), the effect of 
BM4D denoising (DeepACSON-C), and adjusting the resolution between the training and test 
sets (DeepACSON-D) over (d) VOI (split and merge contribution) (e) Wallace indices (split 
and merge contribution), and (f) ARE and VOI sum. The filled circles and error bars show the 
mean and standard deviation of the evaluations, respectively. The dash-dotted lines show the 
choice of binarization threshold. The comparisons were run over the best threshold, i.e., 
smallest VOI merge and VOI split. (g) Comparing the computation time of DeepACSON 
against DeepEM2D/3D and FFN (mean ± standard deviation). All comparisons were run over 

six test SBEM datasets of size 290×290×285 voxel3 automatically segmented using the 
ACSON5 pipeline.  

References: 
 

5. Abdollahzadeh, A., Belevich, I., Jokitalo, E., Tohka, J. & Sierra, A. Automated 3D 
Axonal Morphometry of White Matter. Sci. Reports 9, 6084 (2019). 

8. Zeng, T., Wu, B. & Ji, S. DeepEM3D: approaching human-level performance on 3D 
anisotropic EM image segmentation. Bioinforma. (Oxford, England) 33, 2555–2562 
(2017).  

10. Januszewski, M. et al. High-precision automated reconstruction of neurons with 
flood-filling networks. Nat. Methods 15, 605–610 (2018).  

14. Abdollahzadeh, A., Sierra, A. & Tohka, J.  Cylindrical shape decomposition for 3D 
segmentation of tubular objects. arXiv:1911.00571v2 [cs.CV](2019). 



15. Maggioni, M., Katkovnik, V., Egiazarian, K. & Foi, A. Nonlocal Transform-Domain 
Filter for Volumetric Data Denoising and Reconstruction. IEEE Transactions on Image 
Process. 22, 119–133 (2013). 

21. Sethian, J. A. A fast marching level set method for monotonically advancing 
fronts. Proc. Natl. Acad. Sci. 93, 1591–1595 (1996). 

22. Längkvist, M., Karlsson, L. & Loutfi, A. A review of unsupervised feature learning 
and deep learning for time-series modeling. Pattern Recognit. Lett. 42, 11–24 (2014). 

 

Comment 2.2: This manuscript emphasizes imaging speed. However, it is not clear how 
much is gained without knowing if this method is just as fast computationally as others? In 
the discussion section it is mentioned that it takes 24 hours to train on the high-resolution 
data using ACSON. It would be beneficial for the authors to comment on where most of the 
computational time is spent, clarify the timing from start to finish. Meaning, break out the 
training phase from the high-resolution, training on low-resolution, and running final 
segmentation. 

Answer 2.2:  As described in the Answer 2.1, we now expanded the Computation time 
section of the manuscript. We included the computation complexity of the major time-
consuming steps of the DeepACSON pipeline. The percentage of the computation time of 
the major time-consuming steps over the duration of the whole pipeline was stated. We also 
compared the computation time of DeepACSON to DeepEM2D, DeepEM3D, and FFN 
techniques. DeepACSON performed faster than FFN but slower than DeepEM2D/3D. Note 
that DeepEM2D and DeepEM3D do not apply a mechanism to address possible topological 
errors of the segmentation, as in FFN or DeepACSON. Please, see Answer 2.1 for a 
comprehensive response regarding the computation time. 

 

Comment 2.3:  It is mentioned that training sets were “augmented using randomized 
histogram distortions…” to make this method more robust to changes in contrast and 
brightness. How does this perform in practice with different sample preparation? Were there 
samples made by more than one person? 

Answer 2.3: Our samples were prepared for SBEM by a single person following a pedantic 
procedure. We speculate that with proper data augmentation, CNNs can generalize their 
solution when the intensity and contrast vary because of the sample preparation by more 
than one person or due to different staining protocols. Note that the intensity of an 
ultrastructure, e.g., myelin, or the contrast between different ultrastructures, e.g., between 
myelin and the intra-axonal space, varies even within a dataset or among datasets prepared 
by one person under the same staining protocol. DeepACSON segmentation was equally 
robust against the intensity and contrast variations within and among different datasets. 

 

Comment 2.4:  It is not clear why a new GUI was necessary to write for validation. How do 
the authors ensure the GUI is not biasing the results in any way? 



Answer 2.4: The reason for developing the GUI called gACSON was to facilitate the 
visualization and validation procedures for the expert. gACSON enables the expert to 
manually mouse-click on the segmented image overlaid on the original EM image, and 
express if a segmentation component was a true-positive (TP), false-positive (FP), or false-
negative (FN) as shown in the Supplementary Figure S1, page i. The source code for 
gACSON is available at https://github.com/AndreaBehan/g-ACSON. A GUI, in itself, cannot 
ensure an unbiased evaluation of the segmentation because the GUI just counts the number 
of TP, FP, and FN that the expert assigns and calculates the precision, recall, and F1 scores. 
We minimized the biasedness of the expert by providing no access to the dataset ID nor the 
sampling location. The expert evaluated 50 samples of 300×300 voxels, and each sample 
included about 200 axonal cross-sections. The expert evaluated about 10000 axonal cross-
sections providing robust insight into the segmentation accuracy. We added this information 
to the Evaluations section. 

Results, page 10, line170-176: 

2) a test set, which comprised 50 patches of size 300×300 voxels only for the expert 
evaluations. We randomly sampled every low-resolution (large field-of-view) dataset 
for five non-overlapping windows of size 300×300 voxels (10 datasets, 50 samples). 
Each patch, on average, included approximately 130 axonal cross-sections and 30 
mitochondria. Therefore, the expert has evaluated about 6500 axonal cross-sections 
and 1500 mitochondria in total. The expert had no access to the dataset ID nor the 
sampling location. The expert evaluated the sampled images of the final 
segmentation by counting the number of true-positives (TP), false-positives (FP), and 
false-negatives (FN). 

Results, page 11, line 210-214: 

Finally, an expert (A.S.) evaluated the DeepACSON segmentation of myelinated 
axons and mitochondria in at an object-level using GUI-based visualization software, 
called gACSON20 that we developed for this purpose (Supplementary Fig.S1). We 
developed gACSON to facilitate the visualization and validation procedures for the 
expert. gACSON enables the expert to manually mouse-click on the segmented 
image overlaid on the original EM image and express if a segmentation component 
was a TP, FP, or FN, as shown in Supplementary Fig.S1. 

 

Comment 2.5:  The simplification of mitochondria to a centroid seems ill advised to measure 
distribution. Take for instance two large mitochondria almost touching. These centroids can 
be equi-distance to that of two small mitochondria. However, the two large mitochondria 
would seem more dense than the two small ones… I think minimum distance between 
mitochondria, or even the coverage of mitochondria projected on the skeleton would be a 
more informative metric. Alternatively, the centroid distance can be useful if the variance of 
mitochondria length is small enough. In which case, reporting this variance would be 
sufficient.. 

Answer 2.5: We defined an alternative measure for the inter-mitochondrial distance, as 
suggested by the reviewer. Now, we measure the inter-mitochondrial distance along each 
myelinated axon using two definitions: we projected the centroids of mitochondria on the 



axonal skeleton and measured the geodesic distance between the consecutive projected 
centroids, and we projected the entirety of mitochondria on the axonal skeleton and 
measured the shortest geodesic distance between two consecutive mitochondria. Both 
measurements are equivalently descriptive of the distance between consecutive 
mitochondria along axons, and they are highly correlated; the Pearson correlation coefficient 
within each dataset was 0.99, where the number of observations exceeds 10000 per dataset. 
We compared the inter-mitochondrial distance, both definitions, between sham-operated and 
TBI rats, and we did not find a significant difference between the two groups. We added this 
information to Results and Supplementary Information. 

Results, page 7-8, line 116-121: 

To quantify the spatial distribution of mitochondria, we measured the inter-
mitochondrial distances along each myelinated axon. We applied two definitions to 
quantify the inter-mitochondrial distances: we projected the centroids of mitochondria 
on the axonal skeleton and measured the geodesic distance between the consecutive 
projected centroids, and we projected the entirety of mitochondria on the axonal 
skeleton and measured the shortest geodesic distance between two consecutive 
mitochondria as shown in Supplementary Fig. S2. 

Results, page 9, line 145-152: 

We did not find a difference between sham-operated and TBI rats regarding the inter-
mitochondrial distances (distance between centroids) of the contralateral cingulum (F 
= 0.33, p = 0.603), contralateral corpus callosum (F = 0.07, p = 0.812), ipsilateral 
cingulum (F = 6.26, p = 0.086), and ipsilateral corpus callosum (F = 1.04, p = 0.414) 
(Fig. 5d), nor for the inter-mitochondrial distances when measuring the shortest 
distance between consecutive mitochondria in the contralateral cingulum (F = 0.28, p 
= 0.630), contralateral corpus callosum (F = 0.05, p = 0.830), ipsilateral cingulum (F = 
7.10, p = 0.073), and ipsilateral corpus callosum (F = 0.43, p = 0.577) 
(Supplementary Fig. S2). Defining the inter-mitochondrial distance as the distance 
between centroids of mitochondria was highly correlated with defining the inter-
mitochondrial distance as the shortest distance between consecutive mitochondria; 
the Pearson correlation coefficient was 0.99. 

Supplementary Information, page ii: 



  

Figure S2. Quantification of the inter-mitochondrial distance. (a) We defined the inter-
mitochondrial distance in two manners: we projected the entirety of mitochondria on the 
axonal skeleton and measured the shortest geodesic distance between two consecutive 
mitochondria, (d1), or we projected the centroids of mitochondria on the axonal skeleton and 
measured the geodesic distance between the consecutive projected centroids (d2). (b) We 
compared the inter-mitochondrial distance, d1 definition, between sham-operated and TBI rats. 
We did not find significant differences between the groups in any of the brain areas. (c) We 
compared the inter-mitochondrial distance, d2 definition, between sham-operated and TBI 
groups. Comparing these two groups, we did not find significant differences in any of the brain 
areas. On each bean plot, the central mark indicates the median, and the left and right edges 
of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most 
extreme data points not considered outliers. The colors correspond with the animal ID. 

 

Comment 2.6: It is mentioned that the volumes of the cells could not be directly compared 
because of variation between samples. Is there a reason for this variation? Can it not be 
normalized out in some manner? 

Answer 2.6: We thank the reviewer for pointing this out. The single membrane of cell 
body/processes and single membrane of unmyelinated axons do not resolve at 50×50×50 
nm3 resolution, and we can not discern these two ultrastructures apart. Therefore, we could 
not measure the cell volume, but the volume of the extra-axonal space, i.e., cell volume plus 
the volume of unmyelinated axons. The volume of the extra-axonal space can vary among 



datasets. For example, the presence of blood vessels in a dataset causes a variation in the 
volume of the extra-axonal space for two reasons: the volume of the vessels themselves and 
the number of cells surrounding the walls of the vessels (astrocytes, pericytes). Now, we 
modified this sentence in Results, page 9, line 153-154 as:  

We could not directly compare the volume of the myelin and myelinated axons among 
datasets because the volume of the extra-axonal space varies among datasets. 

 

Comment 2.7: In the discussion section, it is not clear what the authors mean by “error-
aware” in the second paragraph. 

Answer 2.7:  We modified this paragraph and removed the term “error-aware.” This 
paragraph can be read as: 

Discussion, page 13, line 247-249: 

The top-down design of DeepACSON instance segmentation allows for including a 
priori knowledge of the topology of neuronal processes that makes it different from 
the bottom-up design of the current automated neurite segmentation techniques 8-11, 

23-25. 
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Comment 2.8: My largest concern is that the source code has not been made available to 
the reviewers. 

Answer 2.8:  The code is published at https://github.com/aAbdz/DeepACSON 

 

Reviewer recommendation: Over all this paper is well written. The benefits of this method if 
adopted should increase throughput of neuron tracing in large field of views. I would 
recommend that, after minor changes relating to the comments above and the release of the 
code for review, this manuscript be accepted. 

Answer: We thank the reviewer for positive feedback.  

 

Reviewer #3: 

Comment 3.1: -Introduction and motivation: The reason for doing the image segmentation 
on the low-resolution images (using learning) is not well or clearly motivated.  

Answer 3.1: The motivation of the low-resolution imaging is to reduce the imaging time and 
the size of datasets, imaging larger tissue volumes. Being able to image large tissue volumes 
is important, as for analyzing a longer length of axons, the entire cells and cell surroundings, 
and covering/imaging a representative tissue volume of two brain areas in the same sample 
(here, cingulum and corpus callosum). In our study, we acquired SBEM images of the white 
matter at low- and high-resolution simultaneously. The low-resolution datasets were acquired 
from big tissue volumes of 200×100×65 μm3 with a voxel size of 50×50×50 nm3. The high-
resolution datasets were acquired from small tissue volumes of 15×15×15 μm3 and imaged 
with a voxel size of 15×15×50 nm3 (please, see Fig. 2a). The high-resolution datasets 
covered only a very small tissue volume, while the low-resolution images displayed a 400 
times bigger field-of-view. Covering a large filed-of-view at a high-resolution requires months 
of imaging and produces massive datasets, which can limit imaging the tissue volume per 
brain sample. Now, we clarified our motivation for low-resolution imaging in the Introduction 
section. 



 

Figure 2. Low- and high-resolution SBEM imaging of the contralateral corpus callosum and cingulum 
of a sham dataset. (a) We acquired SBEM images of the white matter, corpus callosum (cc) and 
cingulum (cg), simultaneously at the high- and low-resolution. The field-of-view of the low-resolution 
dataset is 204.80×102.20×65.30 μm3 equivalent to 4096×2044×1306 voxels in x, y, and z directions, 
respectively, which is about 400 times larger than the field-of-view of the high-resolution datasets. (b) 
Images of the low- and high-resolution datasets acquired from the same location (the orange-rendered 
volume in (a)). The visualization of the high- and low-resolution images shows that myelin, myelinated 
axons, mitochondria, and cell nuclei were resolved in both settings. In contrast, the axonal membrane 
at nodes of Ranvier (cyan panel, arrowheads) and unmyelinated axons (fuchsia panel, asterisks) was 
only resolved in the high-resolution images. The purple panel shows a cell nucleus from the low-
resolution dataset (a), where the membrane is resolved, but not continuously. (c) A 3D rendering of 
myelinated axons in the high-resolution SBEM dataset (contralateral sham #25) segmented by the 
automated ACSON pipeline. 

Introduction, page 2, line 24-29: 

Although these automated EM segmentation techniques have yielded accurate 
reconstructions of neuronal processes, they have focused on EM datasets at very 
high-resolution to explore synaptic connectivity. At synaptic resolutions, EM imaging 
of a large tissue volume generates a massive dataset. Imaging 1 mm3 tissue at 
4×4×40 nm3 tera-voxels in size, demanding fully automated image acquisition 
techniques and microscopes which run for several months continuously2,3. By taking 
coarser resolution images, we can make acquiring big tissue volumes a plausible 



task: imaging 1 mm3 tissue at 50×50×50 nm3 generates a dataset of eight tera-voxels 
during a few days.  
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Comment 3.2: The introduction has a list of relevant studies with some trivialised details, but 
lacks distillation and categorisation of the related work. The introduction has not summarised 
so well about the existing works: what are the limitations and how this proposed new 
approach is motivated? 

Answer 3.2: We now expanded the Introduction section on existing works and mentioned 
the limitations of the current techniques and the motivation of our approach.  

Introduction, page 1-2, line 8-11 

Semi-automated segmentation methods based on machine learning approaches4,6 

have improved the rate of segmentation. However, these methods still require a 
considerable amount of manual interaction as the segmentation is driven on the 
manually extracted skeletons of neuronal processes, proofreading, or correction of 
errors. 

Introduction, page 2, line 29-40 

However, imaging at low-resolution can limit the visualization of the cellular 
membranes, such as at nodes of Ranvier, where no distinctive image feature 
differentiates the intra- and extra-axonal space of a myelinated axon. Distinctive 
image features are required for a segmentation technique with a bottom-up design. 
Bottom-up design is subjected to greedy optimization, which makes the locally 
optimal choice at each stage while intending to find a global optimum. Therefore, the 
mentioned automated techniques7-11 cannot be used to segment low-resolution 
images. Techniques such as DeepEM3D8 and its cloud-based implementation7, which 
only rely on a precise semantic segmentation, encounter either over- or under-
segmentation errors, depending on the instance segmentation step. Or techniques 
such as FFN10 and its multi-object tracking counterpart11, where networks learn the 
shape of a neural process, encounter over-segmentation errors. Merging FFN super-
voxels does not necessarily generate a correct segmentation of an axon as the 
segmentation leaks to the extra-axonal space at nodes of Ranvier. Therefore, we 
developed DeepACSON, a Deep learning-based AutomatiC Segmentation of axONs, 
to account for severe membrane discontinuities inherited with low-resolution imaging 
for tens of thousands of myelinated axons. 
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Comment 3.3: Compared with existing techniques, the paper’s unique contribution is vague, 
because why going for low-resolution images is not elaborated clearly, especially the paper 
mentioned that the high-resolution images are actually available. (only a few sentences 
about the rationale of using low and high-resolution images are stated much later in the 
discussion session). 

Answer 3.3: The high-resolution images are available, but only from a small portion of the 
total volume of the low-resolution images (please, see Fig. 2 in Answer 3.1). Our low-
resolution images display 400 times bigger tissue volume than the high-resolution images. 
By working on bigger volumes, we have the possibility to trace longer length of myelinated 
axons or include representative volumes of the cingulum and corpus callosum. As stated in 
the Answer 3.1, we have now explained the motivation for low-resolution imaging in more 
detail in the revised manuscript. We also clarified the unique contribution of DeepACSON in 
Introduction, page 2, line 38-40: 

Therefore, we developed DeepACSON, a Deep learning-based AutomatiC 
Segmentation of axONs, to account for severe membrane discontinuities inherited 
with low-resolution imaging for tens of thousands of myelinated axons. 

We included the detail of the imaging acquisition of our SBEM images to emphasize the 
differences between high- and low-resolution to the reader in Introduction, page 3, line 44-
51: 



We applied DeepACSON on low-resolution, large field-of-view 3D-EM datasets 
acquired using serial block-face scanning electron microscopy13 (SBEM). The SBEM 
volumes were obtained from the corpus callosum and cingulum, in the same field-of-
view, of five rats after sham-operation (n = 2) or traumatic brain injury (TBI) (n = 3). 
The images were acquired ipsi- and contralaterally, thus for five rats, we had ten 
samples. Each sample was SBEM imaged simultaneously at two resolutions, and in 
two fields-of-view: high-resolution images, 15×15×50 nm3, were acquired in a small 
field-of-view, 15×15×15 μm3, and low-resolution images, 50×50×50 nm3, were 
acquired in a large field-of-view, 200×100×65 μm3. The low-resolution images 
covered a field-of-view 400 times bigger than high-resolution images.  

Also, we expanded the information of the SBEM datasets in Results, page 3, line 65-73: 

Dataset 

The samples were prepared for SBEM imaging by a single person following a 
pedantic procedure (Materials and Methods). We simultaneously acquired SBEM 
images of the white matter at the low- and high-resolution (Fig. 2a). The low-
resolution datasets were acquired from big tissue volumes of 200×100×65 μm3 with a 
voxel size of 50×50×50 nm3. Two-thirds of the low-resolution images were from the 
corpus callosum and one-third from the cingulum (Supplementary Table S1). The 
high-resolution datasets were acquired from small tissue volumes of 15×15×15 μm3 
and imaged with a voxel size of 15×15×50 nm3. The high-resolution images were 
acquired from the corpus callosum. All the images were acquired from the ipsi- and 
contralateral hemispheres of the sham-operated and TBI animals. Figure 2a shows 
the contralateral corpus callosum and cingulum of a sham-operated rat in the low- 
and high-resolution. 

Additionally, we added the information regarding the high-resolution images in the 
Supplementary Table S1.  

Supplementary Information, page ix 

Table S1. Characteristics of the low-resolution (LR) and high-resolution (HR) SBEM 
datasets. For each rat, we collected the low-resolution images from the ipsi- and 
contralateral of the corpus callosum and cingulum. The low-resolution images from 
the ipsilateral of the sham 49 rat included only the cingulum. The high-resolution 
images were collected from the ipsi- and contralateral of the corpus callosum. The 
size of datasets is given in voxels (x,y,z). 

 



References: 
13. Denk, W. & Horstmann, H. Serial Block-Face Scanning Electron Microscopy to 
Reconstruct Three-Dimensional Tissue Nanostructure. PLoS Biol.2, e329 (2004). 

 

Comment 3.4:  The paper uses bottom-up and top-down design as the standard to classify 
different learning techniques, which is a debatable way of differentiating their own work from 
the previous works. In essence, the bottom-up approach uses the local features to detect or 
represent semantic information - this is the case no matter how CNN is used (referring to 
thousands of papers from the computer vision), because this is how neural network works, 
since NNs have no parameterized model to represent the Marco information, and this brings 
the following statement into a question: “This approach is made possible by the use of a-
priori knowledge of the topology of myelinated axons and cell nuclei.”. How the typological 
information is used as prior knowledge? The best it can do is the pre-training of networks 
given enough datasets, which is different from the “knowledge” in normal human’s definition. 

Answer 3.4: We agree with the reviewer that in the case of CNNs for the semantic 
segmentation, this division would not be possible. But for the instance segmentation, which 
mostly comes after the semantic segmentation, we argue that our division holds. We now 
clarified that by the bottom-up and top-down designs, we refer to the instance segmentation 
strategies in the Introduction section: 

Introduction, page 2, line 15-17: 

DCNNs are typically used for the semantic segmentation, whereas other, more 
traditional image analysis techniques are used for the instance segmentation. 
Moreover, the segmentation techniques generally favor a bottom-up design, i.e., 
over-segmentation and subsequent merge. 

Introduction, page 2-3, line 42-44: 

However, the instance segmentation of DeepACSON approaches the segmentation 
problem from a top-down perspective, i.e., under-segmentation and subsequent split, 
using a priori knowledge of the topology of myelinated axons and cell nuclei. 

 

Comment 3.5: -methodology 

“The simultaneous high- and low-resolution imaging enables to use the high-resolution 
images as the training data to segment low-resolution datasets.” There is a one-to-one 
correspondence between high res and low-resolution images, ie both of them record the 
same spatial-temporal information, and the low-resolution images *are* down-sampled from 
the very same higher resolution ones. Of course, using the high-resolution images as the 
ground truth for training the low-resolution datasets down-sampled from themselves, you can 
always get very good fitting results with minimal loss - using simply brute force supervised 
learning, for example. 
 
Answer 3.5: The high- and low-resolution images overlap only for 15×15×15 μm3. The high-
resolution images are available only for a small fraction of the total volume of the low-



resolution images, 200×100×65 μm3. Our low-resolution images display 400 times bigger 
tissue volume than the high-resolution images. Please, see Answer 3.1 and Fig. 2 in the 
same answer. We down-sampled the high-resolution images to the resolution of low-
resolution images to provide a training set for the CNNs. The semantic segmentation of the 
CNNs received high evaluation scores, which means that the CNNs have been successful in 
generalizing what they learned from the small high-resolution training material to the test set.  

 

Comment 3.6:  computational advantage 

There’s not yet information to compare the processing time for the low-resolution images vs 
the processing time of the higher resolution images *directly*. Note that most of the 
computational time is in (1) BM4D filtering and (2) CSD SVM code, which is not related with 
the CNNs being the selling point of the paper. 

Answer 3.6: We have clarified our setup, as explained in Answers 3.1, 3.2, and 3.3. Our 
goal is to segment low-resolution images in a large field-of-view using the information 
learned from the high-resolution images acquired in a small field-of-view. Therefore, the 
processing of high-resolution images is not relevant to this manuscript as the acquisition of 
large field-of-view in high-resolutions currently is not possible. The automated processing of 
the high-resolution images can be done by our earlier ACSON5 method. As explained in the 
current manuscript, ACSON is utilized to generate the training data for DeepACSON.  

We now included the computation complexity of the deepACSON pipeline. We also 
compared the computation time of DeepACSON against DeepEM2D, DeepEM3D, and FFN. 
The computation time of DeepACSON was shorter than FFN and longer than DeepEM2D, 
DeepEM3D. We added this information to page 11-13, line 217-235, and Figure 6, panel g. 

Computation time 

The pipeline required about five days to segment a raw, low-resolution SBEM dataset 
of 4000×2000×1200 voxels into its final segmentation. The details are presented in 
Supplementary Table S4. Approximately 40% of the DeepACSON computation time 
was spent during BM4D denoising15. We run BM4D filtering on non-overlapping 
patches of the SBEM volumes to enable parallel processing. We remark that BM4D 
filtering can be dropped from the pre-processing steps to improve the computation 
time, but as shown in Fig. 6 d-f, dropping BM4D filtering made segmentations less 
accurate. Approximately 30% of the DeepACSON computation time was spent on the 
CSD algorithm. In more detail, the time complexity of the sub-voxel precise 
skeletonization is O(n NΩ log NΩ), where n is the number of skeleton branches, and 
NΩ is the number of voxels of a discrete object, i.e., a myelinated axon. The NΩ log NΩ 
factor is from the fast marching algorithm21. The time complexity to determine a 
critical point is O(Np), where Np is the number of inquiry points to check for the cross-
sectional changes in a decomposition interval. Therefore, the overall time complexity 
of the CSD algorithm is O(n NΩ log NΩ) + O(Np). Approximately 10% of the 
DeepACSON computation time was spent on the semantic segmentation, with time 
complexity of O(N), where N is the number of voxels in an SBEM dataset. 

We also compared the computation time of DeepACSON, DeepEM2D, DeepEM3D, 
and FFN techniques (see Fig.6g for results). These techniques were compared over 



the six test datasets on a computer with an NVIDIA Tesla V100-32 GB GPU, 2 × Intel 
Xeon E5 2630 CPU 2.4 GHz, and 512 GB RAM. DeepEM2D and DeepEM3D had the 
shortest computation time (about 1 minute) as the segmentation mainly relies on an 
Inception-ResNet-v2 network22 and watershed segmentation. FFN required the 
longest computation time for an end-to-end segmentation (about 28 minutes). 
DeepACSON required about 4 minutes (using 15 CPU cores) to segment the test 
datasets, which was longer than DeepEM2D/3D and shorter than FFN. 

 

 

Figure 6. DeepACSON evaluations. Comparison of DeepACSON against state-of-the-art 
segmentation, DeepEM2D, DeepEM3D, and FFN, by (a) variation of information (VOI, split 
and merge contribution, lower is better), (b) Wallace indices (split and merge contribution, 
higher is better), and (c) adapted Rand error (ARE, lower is better) and the sum of VOI split 
and VOI merge (VOI sum, lower is better). DeepACSON outperformed these techniques as it 
produced the smallest VOI split, VOI merge, VOI sum, and ARE and the biggest Wallace split 
and merge values. Comparison of the design parameters of DeepACSON: standard 
DeepACSON (DeepACSON-A), a U-Net with residual modules (DeepACSON-B), the effect of 
BM4D denoising (DeepACSON-C), and adjusting the resolution between the training and test 
sets (DeepACSON-D) over (d) VOI (split and merge contribution) (e) Wallace indices (split 
and merge contribution), and (f) ARE and VOI sum. The filled circles and error bars show the 
mean and standard deviation of the evaluations, respectively. The dash-dotted lines show the 
choice of binarization threshold. The comparisons were run over the best threshold, i.e., 
smallest VOI merge and VOI split. (g) Comparing the computation time of DeepACSON 
against DeepEM2D/3D and FFN (mean ± standard deviation). All comparisons were run over 

six test SBEM datasets of size 290×290×285 voxel3 automatically segmented using the 
ACSON5 pipeline. 
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Comment 3.7: Computation time (The pipeline required about five days to segment one raw 
low-resolution SBEM dataset of size 4 000×2 000×1 200 voxels into its final segmentation. 
The details are presented in Supplementary Table S4).  

Supplementary material gives the specification of CPU, GPU and time. There are several 
technical questions: 1 the pipeline seems not automatically because it’s a mixture of 
MATLAB code and Python code; 2 the hurdle of the computational time is limited primarily by 
the MATLAB computing which is known to be slow, and the second is the CSD Python code 
(despite Python is popular in machine learning but it is too slow compared to C++, and 
especially if the CSD Python code is not optimised). In short, if the whole codebase is all 
written in Python class and heavily optimised, the speed should be much faster.  

Even regardless of all these technical aspects, when it comes to the central motivation of the 
paper, what is the indication of this computation time? What it supports? Because it seems to 
possess such low-resolution images is also very slow (5 days). The computational time 
usually can be resolved by parallel computing, change/optimise the programming code, use 
clusters instead of PCs. Therefore the justification of this approach is not clear. 

Answer 3.7: We agree with the reviewer that the pipeline is not written on a single platform. 
However, we argue that the pipeline is automatic, meaning that no human interaction is 
required for the segmentation steps. 

We agree about the superiority of C++ to speed up the computation time. We also remark 
that Matlab and Python have almost the same computation performance 
(https://julialang.org/benchmarks/). Indeed, unlike Python, Matlab execution engine currently 
uses just-in-time compilation use to compile all Matlab codes 
(https://se.mathworks.com/products/matlab/matlab-execution-engine.html). However, the 
main limitation of MATLAB is that it is proprietary (Matlab compiler and stand-alone 



applications provide a work-around, which, however, is not perfect). Our future work is to 
transfer the DeepACSON pipeline, end-to-end, to Python.  

We agree that parallel-computing on high-performance computing (HPC) servers reduces 
the computation time. Henceforth, the cylindrical shape decomposition (CSD) technique 
analyzes myelinated axons in-parallel on HPCs. In fact, the ability of the CSD algorithm in 
parallel-processing of myelinated axons enabled analyzing hundreds of thousands of 
myelinated axons, which traversed the low-resolution datasets (Discussion, page 13, line 
261-263). Also, we run BM4D filtering on HPCs in-parallel, such that we divided the low-
resolution images into non-overlapping patches and applied BM4D on patches in-parallel. 

Discussion, page 13, line 260-263.  

The CSD technique can analyze myelinated axons in-parallel on high-performance 
computing (HPC) servers. The parallelizability of the CSD algorithm makes the 
DeepACSON pipeline highly scalable. For example, we analyzed hundreds of 
thousands of myelinated axons traversing large field-of-view datasets on different 
CPU cores of different HPC servers, reducing the computation time of the 
segmentation.   

 

Comment 3.8: - motivation of using low-resolution images (especially down-sampled from 
existing high-resolution ones)  

The author also clearly states that “We segmented the high-resolution datasets using our 
earlier automated ACSON pipeline4. We used the ACSON segmentation of the high-
resolution datasets to train DeepACSON, eliminating the need for manually annotated 
training sets.” and “We acquired SBEM images of the white matter simultaneously at low- 
and high-resolution”. 

So indeed, high-resolution datasets are available, which means that a lot of existing methods 
can be used directly to analyse as well, and therefore what is the motivation of using down-
sampled low-resolution images? 

Answer 3.8: We have clarified our setup, as explained in Answers 3.1, 3.2, and 3.3. The 
high-resolution images are available only for a small field-of-view, and we down-sampled the 
high-resolution images to build a training set for CNNs to semantic-segment the low-
resolution (large field-of-view) images. We now compared DeepACSON to state-of-the-art 
automated methods in the segmentation of low-resolution (large field-of-view) images, as the 
reviewer suggested. This information is added to Results, Material and Methods, and Fig. 6a-
c (Answer 3.6). 

Please, see Fig. 6a-c in Answer 1.1 for the comparison results. 

Results, page 10, line 177-188: 

We compared DeepACSON with state-of-the-art segmentation techniques; 
DeepEM2D8 and DeepEM3D8, which rely on a precise semantic segmentation, and 
FFN10, which accounts for the shape of neural processes during the instance 
segmentation. We trained DeepEM3D8  using the same training set as DeepACSON 



but with two labels, the intra-axonal space of myelinated axons versus the 
complement. To train FFN10,  we used the same training set as DeepACSON but 
preserving the label of each myelinated axon. We first trained FFN, including the 
myelin and mitochondria labels, where the network generated very poor results. 
Therefore, we excluded the myelin label and included mitochondria to the intra-axonal 
space of myelinated axons. We trained DeepACSON and DeepEM2D/3D for one day 
and FFN for one week on a single NVIDIA Tesla V100-32 GB graphics processing 
unit (GPU). As shown in Fig.6a-c, we quantitatively evaluated the segmentation on a 
test set comprising six SBEM volumes. We compared these techniques by the 
variation of information (VOI, split and merge contribution, lower is better), Wallace 
indices (split and merge contribution, higher is better), and adapted Rand error (ARE, 
lower is better), defined in Materials and Methods, on the segmentation of the intra-
axonal space. DeepACSON outperformed these current state-of-the-art techniques 
as it generated the smallest VOI measures and ARE and the biggest Wallace 
measures. 

Materials and Methods, page 21-22, line 512-534 

Segmentation evaluation metrics. We used precision P, recall R, and F1 scores to 
compare an automated segmentation to the ground truth, as there is a one-to-one 
match between voxels constituting the segmentations. To define these measures, let 
A and B be the sets of voxels of a particular ultrastructure (myelin, myelinated axon, 
mitochondrion) in an automated segmentation and ground-truth, respectively.  We 

defined ܲ = |஺∩஻||஻| , and	ܴ = |஺∩஻||஺| , and F1 score as 1ܨ = 2 × ௉×ோ௉ାோ. The maximum for the 

precision, recall, and F1 score is equal to one when the test segmentation perfectly 
matches the ground-truth. However, these metrics do not describe topological 
differences, and they are sensitive to small changes in the region boundary. 
Therefore, we evaluated automated segmentation with metrics less sensitive to small 
variations in boundary, but sensitive to topological differences. For that, we measured 
variance of information62 (VOI, split and merge contributions) and Wallace indices63 to 
account for merge and split errors of a segmentation separately. We also computed 
adapted Rand error (ARE) as defined by the SNEMI3D contest 
(http://brainiac2.mit.edu/SNEMI3D/evaluation) as 1 minus the maximal F-score of the 
Rand index64 (excluding the zero component of the original labels). We performed 
these evaluations using the Gala library described by Nunez-Iglesias et al65. The VOI 
metric is defined as the sum of the conditional entropies between two segmentations 
VOI(A,B) = H(A|B) + H(B|A), where A is the automated segmentation, and B is the 
ground-truth. The VOI metric is decomposed into VOI split H(A|B) and VOI merge 
H(B|A)65. A lower VOI value indicates a better segmentation; for a perfect match 
between an automated segmentation and ground truth, we have VOI split = VOI 

merge = 0. Also, the Wallace splitting index is defined as 
௔௔ା௕ and the Wallace 

merging index is defined as  
௔௔ା௖, where a is the number of pairs of voxels in the input 

image that have the same label in A and the same label in B, b is the number of pairs 
of voxels in the input image that have the same label in A but a different label in B, c 
is the number of pairs of voxels in the input image that have a different label in A but 
the same label in B, and d is the number of pairs of voxels in the input image that 
have different labels in A and different labels in B. The Wallace indices are between 0 
and 1, where a higher value indicates a better segmentation, i.e., less split and merge 



compared to the ground truth. The Rand index is defined as  
௔ାௗ௔ା௕ା௖ାௗ, where a, b, c, 

and d are defined the same as in the case of Wallace indices. Note that we applied 
the adapted Rand error, where a lower value indicates a better segmentation. 
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Comment 3.9: Also, regarding “We used the ACSON segmentation of the high-resolution 
datasets to train DeepACSON”, we know that the training of deep neural network always 
have artifacts, where the tests are different from training sets. So how the authors take that 
into account? (also see a separate comment regarding support vector machine later). 

Answer 3.9:  We now performed an ablation study on the DeepACSON pipeline and 
evaluated the effect of down-sampling the training set to the resolution of low-resolution 
images. We found that the semantic segmentation of CNNs receives better evaluation scores 
including the down-sampling step compared to using the high-resolution images directly as 
the training set. We added this information in Results as follows: 

 
Please, see Fig. 6d-f presented in Answer 3.6 for the results of the ablation study, and 
“segmentation evaluation metrics” in Answer 3.8.  

Results, page 10-11, line 189-199: 
 

We also evaluated the DeepACSON pipeline to understand its design parameters, 
such as denoising, resolution adjustment, and an alternative, deeper architecture. In 



Fig.6d-f, we denoted the standard DeepACSON design as DeepACSON-A, which 
used a light fully convolutional network18 (FCN) for the semantic segmentation. The 
standard DeepACSON was trained using down-sampled and BM4D filtered volumes. 
We replaced the FCN design of the standard DeepACSON with a U-Net19 with 
residual modules, denoted as DeepACSON-B in Fig.6d-f. In this figure, we also show 
the effect of omitting BM4D15 denoising as a pre-processing step (DeepACSON-C) 
and down-sampling the high-resolution images to generate the training set 
(DeepACSON-D). In addition, we demonstrated the choice of thresholds at which the 
probability maps were binarized. Evaluations were run over the six SBEM volumes. 
The comparisons showed that the standard DeepACSON performed better than a 
deeper network, which was prone to over-fitting. Denoising the train/test datasets as 
a pre-processing step improved our results as did adjusting the resolution between 
the training and test sets. We binarized the probability maps at thresholds, which 
generated the smallest VOI split/merge values. 
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Comment 3.10:  In the Essence, the key scientific fundamental is that a low-resolution 
image, no matter original or down-sampled, loses important features and information, 
therefore to acquire truthful high-resolution data at the first place is the reason for scientists 
to improve high-resolution imaging techniques - that is a whole purpose, because no matter 
humans or trained CNNs, all the extracted information and understanding are all 
*probabilistic* based on limited information because of lack of certainty. 

Answer 3.10: We agree with the reviewer that low-resolution imaging loses information. We 
reduced the imaging resolution to the point that we were still able to trace and quantify the 
cellular components of white matter. Therefore, we were able to image a larger volume of 
tissue in a shorter imaging time; please see Answer 3.1 and 3.3. As suggested by the 
reviewer, we clarify our motivation for the low-resolution imaging and the advantages of 
acquiring large field-of-view datasets. Please, see Answer 3.1 and Discussion, page 14, 
line 295-297: 

Large field-of-view imaging enables quantifying parameters whose measurement in a 
small field-of-view is not reliable as the measurement in the small field-of-view may 
reflect a very local characteristic of the underlying ultrastructure. Particular examples 
of such parameters are the tortuosity of myelinated axons, inter-mitochondrial 
distance, and cell density. 



 

Comment 3.11:  Datasets 

In addition to the description, Please provide a table to clearly show what are the datasets 
resolved in both low and high-resolution, which are only resolved only in high-resolution. A 
table is much clearer to read. 

Answer 3.11:  As suggested by the reviewer, we included the information regarding the 
high-resolution datasets in the Supplementary Table S1. Please, see Supplementary Table 
S1 in Answer 3.3. 

 

Comment 3.12: “the remaining six datasets were reserved for testing”, and “six unseen high-
resolution SBEM datasets labeled by the automated ACSON pipeline” 

It is a small number of datasets, which are not sufficient to have valid statistical conclusions. 
Is there a more indicated number, for example, the number of images? 

Answer 3.12: The evaluation metrics that we assessed the DeepACSON pipeline is now 
expanded. Therefore, as suggested by the reviewer, we now included the average number of 
myelinated axons, over which the evaluations were run. We added this information in the 
Evaluation section on page 10, line 165-176.  

Evaluations 

We used two test sets to evaluate the DeepACON pipeline: 1) a test set that 
comprised six high-resolution SBEM volumes down-sampled to the resolution of low-
resolution images. We applied this test set to compare DeepACSON against state-of-
the-art automated segmentation methods and perform an ablation study on the 
DeepACSON pipeline. Labels for this test set was provided automatically using 
ACSON5 pipeline and proofread by A.S. In this test set, each SBEM volume included 
approximately 300 axons, and thus we evaluated DeepACSON on approximately 6 × 300 = 1800 myelinated axons; 2) a test set, which comprised 50 patches of size 
300×300 voxels only for the expert evaluations. We randomly sampled every low-
resolution (large field-of-view) dataset for five non-overlapping windows of size 
300×300 voxels (10 datasets, 50 samples). Each patch, on average, included 
approximately 130 axonal cross-sections and 30 mitochondria. Therefore, the expert 
has evaluated about 6500 axonal cross-sections and 1500 mitochondria in total. The 
expert had no access to the dataset ID nor the sampling location. The expert 
evaluated the sampled images of the final segmentation by counting the number of 
true-positives (TP), false-positives (FP), and false-negatives (FN). 

 

Comment 3.13: -Evaluation 

In that section “White matter 3D morphology analysis”, there are descriptions of how these 
measurements are quantified, but there’s no information about how this process of 
measurement is done. The question is that: is this procedure done manually, for 



automatically? This is important because a manual procedure provides limited data and 
therefore the statistical indication is compromised. Instead, an automated procedure or 
benchmark can process a large quantity of data, yielding much better statistics. (Computer 
vision algorithms of object recognition have a well-established image bank benchmark to 
quantify.) 

Answer 3.13: The white matter 3D morphology analysis was accomplished automatically; a 
moving reference frame, i.e., a perpendicular plane to the axonal skeleton, extracts cross-
sections of a myelinated axon at each skeleton point. We added the term “automatically” to 
the text as:   

Results, page 7, line 112-113: 

For every myelinated axon, we automatically extracted cross-sections along its 
axonal skeleton, i.e., central axis, with a plane perpendicular to the skeleton. 

Also, benchmarking DeepACSON requires white matter electron microscopy datasets 
appended with the ground truth segmentation, which to our knowledge, currently, there are 
no such datasets available. Therefore, we compared DeepACSON segmentation with state-
of-the-art automated segmentation techniques on six SBEM volumes that we had available. 
Each of these six SBEM volumes, on average, included approximately 300 axons. In total, 
about 1800 myelinated axons, were used to perform the evaluations. We scored these 
techniques over the variation of information (split and merge), Wallace indices (split and 
merge), and adapted Rand error. This added comparison to state-of-the-art techniques was 
also run automatically. We included our evaluation in detail in Answer 3.8. 

 

Comment 3.14: Also, it is not convincing that the evaluation using 1 human expert is 
conclusive, and we don’t know how much the human expert is biased due to other factors 
(conflict of interest, benefits), despite an expert has no access to the info. 

Answer 3.14: We agree with the reviewer that the expert’s evaluation can be biased. 
However, the expertise of A.S. (from the authors’ list) in microscopic tissue information and 
being a volunteer in contributing her time for the evaluation were the reasons that convinced 
us to finalize the evaluation section with an expert subjective point-of-view. We added new 
information regarding the test sets in Answer 3.12. The test set that the expert evaluated 
contained 50 patches, that each patch, on average, included approximately 130 axonal 
cross-sections and 30 mitochondria. Therefore, the expert has evaluated about 6500 axonal 
cross-sections and 1500 mitochondria in total. We minimized the biasedness of the expert by 
providing no access to the dataset ID nor the sampling location. In addition, we expanded the 
Evaluation section of the manuscript thoroughly, Answer 3.8, and the expert’s evaluation 
now can be read as an added qualitative measure over the whole pipeline.  

 

Comment 3.15: - CSD SVM 

There are improvements that can be made regarding the relationship between the artefacts 
from the CSD composition algorithm using support vector machine and the overall 



contribution of DeepACSON. There should be more discussion about ambiguities and 
artefacts processed from CSD the algorithm. 

The trained SVM is manually designed and tuned (specifically adapted parameters), which 
do not generalise to corner cases. This makes step 4 “eliminating false positives” less robust 
for processing different new datasets. 

Answer 3.15: As suggested by the reviewer, we discussed the CSD algorithm and its 
artifacts in Discussion, page 13-14, line 259-267: 

We have compared the CSD algorithm to state-of-the-art shape decomposition 
techniques,29,30, and we have shown that it outperforms these methods in the 
segmentation applications14. The CSD technique can analyze myelinated axons in-
parallel on high-performance computing (HPC) servers. The parallelizability of the 
CSD algorithm makes the DeepACSON pipeline highly scalable. For example, we 
analyzed hundreds of thousands of myelinated axons traversing large field-of-view 
datasets on different CPU cores of different HPC servers, reducing the computation 
time of the segmentation. We also remark that the CSD algorithm evaluates the 
cylindricity of an object using the object curve skeleton. In cases where the surface 
protrusion of the object is very irregular the skeletonization may over-estimate the 
number of skeleton branches. The CSD algorithm detects maximal-length straight 
sub-skeletons following the skeletonization, but yet over-segment the surface 
protrusion, yielding false-positives. We eliminated false-positives after the CSD 
algorithm using support vector machines. 
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In the manuscript, we also clarified that the SVM hyperparameter selection is automatic. We 
modified the text mentioned in Materials and Methods, page 21, line 502-505 as follows: 

To determine the optimal SVM hyperparameters, the regularization parameter C and 
kernel parameter σ, we selected the pair that minimized 5-fold cross-validation error 
on the training set using Bayesian optimization algorithm60,61. C and σ were 
constrained in the range [10-6, 106]. The optimal parameters were C = 1.12 and σ = 
8.48. 
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Comment 3.16: - Discussion section 

Many part of the discussion section actually is doing the job of the introduction section. 
Instead, the discussion should concentrate more on the conclusive findings and further 
implications. 

Answer 3.16: We thank the reviewer for noticing this. We now removed repetitions from the 
Discussion section. By performing the ablation studies on the DeepACSON pipeline and 
comparing our method to state-of-the-art automated segmentation techniques, now we have 
a more conclusive discussion.  

 

Comment 3.17: - English Writing and language usage 

Some examples of imprecise wording: “The purple panel shows a cell nucleus from the low-
resolution dataset (a), which membrane is resolved, but not continuously.”; “The 
segmentation of myelinated axons and cell nuclei was finalized by eliminating non-axonal 
and non-nucleus structures with support vector machines (SVMs).”; “We evaluated the 
performance of the two SVMs by a leave-one-group-out (LOGO) cross-validation, where the 
classifier was trained excluding the data from one group of animals (sham-operated or TBI) 
from training and evaluated against it (Supplementary Table S2). 

Word usage: use “where” instead of “which”; use ‘using’ instead of ‘with’; avoid using several 
clauses and put ‘it’ at the end of a long sentence (what exactly this “it” is pointing to?). 

Answer 3.17:  Thank you for noticing these issues. We corrected the manuscript as 
suggested by the reviewer. 

 

Comment 3.18:  The paper overall needs significant re-writing and requires proofreading 
from native speakers and senior academics. 

Answer 3.18: Senior academics have proofread the paper.  

 



Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have addressed some of the concerns raised in the previous round, partially. The 
significance of the contribution remains weak as the improvements are limited/negligible to the 
previous studies. 
My concerns are: 
• Comments to the answer 1.1: The authors have stated that their proposed method 
outperforms the SOTA in terms of accuracy. As highlighted in previous review round, accuracy 
is not considered as a primary judgment on deep neural networks. This metric could lead to 
biased comparisons, and the evaluation could become prone to ill-posed deductions. The 
authors have stated that about 40% of the time has spent on denoising. It seems that 
DeepASCON has a minor contribution to the segmentation task. The authors have also stated 
that skipping the denoising step leads to poor results. The role of deep learning is to address an 
automate such limitations, and I am confident that with deep learning, we can fit the underlying 
to any noise pattern within data. In other words, it is reliable to automate fitting deep neural 
networks to data distribution and minimise data manipulation such as sophisticated 
pre-processing steps. Otherwise, the role of deep learning will remain insignificant as I find in 
this study. 
The improvement of ARA remains very insignificant compared to the DeepEM2D/3D, as shown 
in Figure 6. 
• Comments to the answer 1.2 and 1.3: the authors have proposed to perform ablation 
studies by using ResNet-34 as an encoder (pre-trained). I am not sure if this means ablation 
study. I cannot find any comprehensive statistical analysis over tweaking the network 
architecture “DeepASCON” and why they have opted ResNet-34, remains unclear. The ablation 
study is not satisfactory at this stage. 
• Comments to the answer 1.6: I am afraid if the computational complexity means only a 
comparison of training/inference timings. The authors have failed to convince the reader why 
DeepASCON is computationally efficient over SOTA as they have highlighted one of the 
important features of DeepASCON as “faster” method. 
In summary, my evaluation is that DeepASCON contributes to insignificant improvements over 
SOTA in terms of deep learning context. 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
All of my concerns have been addressed. Recommend publish. 
 
 
Reviewer #3 (Remarks to the Author): 
 
Brief summary 



 
The research work develops learning-based segmentation to solve membrane discontinuity and 
segment large field of view images using low-resolution images. 
 
Overall: The manuscript has necessary revisions to reflect review comments. The revised paper 
contains more technical details, which improves the reproducibility of the paper. 
 
 
- Specific comments 
 
1.In the abstract, it is worth mentioning by one sentence what is algorithm, method or 
contribution that results in DeepACSON’s ability to resolve severe membrane discontinuities. 
 
2.To help readers to understand better the contributions of the scientific of work, a dedicated 
explanation to state its novelty is needed. For example, is that an original invention of some 
image processing algorithms? Integration of existing technologies/techniques? Or a capability or 
functionality that has not been achieved before? (eg, specifically for solving the limitation of 
low-resolution imaging, as suggested in “Therefore, we developed DeepACSON, a Deep 
learning-based AutomatiC Segmentation of axONs, to account for severe membrane 
discontinuities inherited with low-resolution imaging for tens of thousands of myelinated axons.”) 
At the moment, the Introduction has covered these related aspects very broadly, but it should be 
made clear for readers “what exactly the scientific contribution is”. 
 
3.The question still exists in the revision, because it is vauge to use "knowledge" in the context 
of the a computer algorithm, unless human is manuually involved in the process using human 
knowledge. In "i.e., under-segmentation and subsequent split, using a priori knowledge of the 
topology of myelinated axons and cell nuclei". Instead of "a priori knowledge of the topology of 
..", does it intend to say "Distinct features" or "Distinct differences" of the topology of myelinated 
axons and cell nuclei? 
 
4.In “We down-sampled the high-resolution images to the resolution of low-resolution images to 
provide a training set for the CNNs. The semantic segmentation of the CNNs received high 
evaluation scores, which means that the CNNs have been successful in generalizing what they 
learned from the small high-resolution training material to the test set.” This has been made 
more clearer now regarding the training and test sets. Though the paper has info “Only four of 
the ten datasets were used as training data, while the remaining six datasets were reserved for 
testing.”, this text is quite hidden. So, in additional to Table S1-S4, please provide a separate 
Table to provide and list the number of training and test sets, respectively, and include the 
training loss and score values. 
 
5.Related to comment 4, since it is quite small training sets in order to generalize, please 
include some discussion of the “overfitting” problem in the paper as well. 
 



6.For better clarity, some key statements shall be presented in absract and introduction earlier 
on. There are good, clear statements in the response letter as such: “we down-sampled the 
high-resolution images to build a training set for CNNs to semantic-segment the low-resolution 
(large field-of-view) images”, and “Our goal is to segment low-resolution images in a large 
field-of-view using the information learned from the high-resolution images acquired in a small 
field-of-view.”. These are more straightforward, easily understandable compared to many 
descriptions in the paper. However, this simple goal and clear statement should be made clear 
and added in the Introduction. The Introduction now stacks quite some technical 
details/numbers, and such a one-sentence summary of goal can very much improve the clarity. 
 
7.Expert evaluation. As in Answer 3.14 “and the expert’s evaluation now can be read as an 
added qualitative measure over the whole pipeline.”, it is worth adding a clear sentence to 
explicitly say: Expert evaluation is an “added qualitative measure”, or “an additional qualitative 
measure”. 
 
 
- Consistency, accuracy, grammar/brevity of the writing 
 
Newly revised text is not well integrated and rather a stack of separate sentences. At times, 
readers have to read back and forth of several sentences to figure out what a noun or pronoun 
refers to. 
 
The newly added text is less polished and needs more rework to improve in terms of basic 
scientific writing, and to match the rest of the paper, eg redundant repetition of words and minor 
grammar mistakes (wrong use of preposition). Some examples, suggestions below. 
 
The low-resolution images covered a field-of-view 400 times bigger than high-resolution images. 
 
--> The low-resolution images covered a field-of-view 400 times bigger than *the* 
high-resolution images. 
 
Semi-automated segmentation methods based on machine learning approaches4,6 have 
improved the rate of segmentation. However, these methods still require a considerable amount 
of manual interaction as the segmentation is driven on the manually extracted skeletons of 
neuronal processes, proofreading, or correction of errors. 
 
--> Semi-automated segmentation methods based on machine learning approaches4,6 have 
improved the rate of segmentation, but still require a considerable amount of manual interaction 
because of the manually extracted skeletons of neuronal processes, proofreading, or correction 
of errors. 
 
 
as the segmentation is driven on the manually extracted skeletons of neuronal processes, 
proofreading, or correction of errors. 



 
--> is driven on --> is based on 
 
 
Distinctive image features are required for a segmentation technique with a bottom-up design. 
Bottom-up design is subjected to greedy optimization, which makes the locally optimal choice at 
each stage while intending to find a global optimum. 
 
--> Distinctive image features are required for a segmentation technique with a bottom-up 
design that is subjected to greedy optimization, making the locally optimal choice at each stage 
while finding a global optimum. 
 
 
Therefore, the mentioned automated techniques7-11 cannot be used to segment low-resolution 
images. Techniques such as DeepEM3D8 and its cloud-based implementation7, 
 
--> Therefore, the mentioned automated techniques7-11 cannot be used to segment 
low-resolution images, such as DeepEM3D8 and its cloud-based implementation7, which ..... 
 
 



Reviewers’ comments: 

Reviewer #1: 

The  authors  have  addressed  some  of  the  concerns  raised  in  the  previous  round, 

partially. The significance of the contribution remains weak as the improvements are 

limited/negligible to the previous studies. 

Comment  1.1:  Comments  to  the  answer  1.1:  The  authors  have  stated  that  their 

proposed  method  outperforms  the  SOTA  in  terms  of  accuracy.  As  highlighted  in 

previous  review  round,  accuracy  is  not  considered  as  a  primary  judgment  on  deep 

neural  networks.  This  metric  could  lead  to  biased  comparisons,  and  the  evaluation 

could become prone to ill-posed deductions.  

Answer  1.1: We  think  that  this  comment  is  partly  due  to  our  previous  answer  1.1, 

where we used the term ‘accuracy’ in an imprecise way, referring to the performance 

metrics in general rather than to the particular performance metric ‘accuracy.’ We fully 

agree with the Reviewer that the accuracy should not be used as a primary metric on 

deep learning-based segmentation tasks, and it was not our intention to argue for this. 

In the previous revision, we have evaluated DeepACSON and different deep learning- 
based  segmentation  methods  using  various metrics  (F1-score,  precision,  recall,  the 

variance of information, adapted Rand index, Wallace index) defined in the paragraph 

“Segmentation  evaluation  metrics”  at  the  end  of  the  methods  section8-11.  We  have 



specified that we used multiple metrics to evaluate the segmentation in the Results 

section: 

Results, pages 10-11, lines 191-195 

We compared these techniques on the segmentation of the intra-axonal space 

using three metrics: the variation of information (VOI, split and merge 

contribution, lower value is better), Wallace indices (split and merge 

contribution, higher value is better), and adapted Rand error (ARE, lower value 

is better). These metrics are defined in Materials and Methods. DeepACSON 

outperformed these current state-of-the-art techniques as it generated the 

smallest VOI measures and ARE and the biggest Wallace measures. 

Results, page 11, lines 209-211 

In addition, we evaluated the semantic segmentation of the standard 

DeepACSON on an ultrastructural level, i.e., myelin and myelinated axons 

(including mitochondria), on the six SBEM volumes. For this evaluation, we 

reported precision (positive predictive value), recall (sensitivity), and F1 scores 

(harmonic mean of precision and recall) in Supplementary Fig. S1. 

Moreover, DeepACSON is a pipeline, and neural networks are only one component of 

the pipeline, responsible for semantic segmentation. We now clarified the goal of 

developing the DeepACSON pipeline and its contributions in the Introduction, page 

2-3, lines 39-45: 

Our goal is to segment low-resolution images in a large field-of-view using the 

information learned from the high-resolution images acquired in a small field-of-

view. To achieve this goal, we developed a pipeline called DeepACSON, a Deep 

learning-based AutomatiC Segmentation of axONs, to account for severe 

membrane discontinuities inescapable with low-resolution imaging of tens of 

thousands of myelinated axons. The proposed pipeline utilizes an innovative 

combination of the existing deep learning-based methods for semantic 

segmentation and a novel shape decomposition technique for instance 

segmentation that uses the information about the geometry of myelinated axons 

and cell nuclei. Applying DeepACSON, we were able to segment low-resolution 

large field-of-view datasets of white matter automatically. 
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Comment 1.2: The authors have stated that about 40% of the time has spent on 

denoising. It seems that DeepASCON has a minor contribution to the segmentation 

task. The authors have also stated that skipping the denoising step leads to poor 

results. The role of deep learning is to address an automate such limitations, and I am 

confident that with deep learning, we can fit the underlying to any noise pattern within 

data. In other words, it is reliable to automate fitting deep neural networks to data 

distribution and minimise data manipulation such as sophisticated pre-processing 

steps. Otherwise, the role of deep learning will remain insignificant as I find in this 

study. 

Answer 1.2: We agree with the reviewer that spending 40% of the pipeline on 

denoising is computationally expensive. However, BM4D is an advanced non-local 

denoising method, whose application as a pre-processing step improved the 

segmentation results. As the time consumption of the segmentation pipeline is not as 

important as the segmentation quality, we argue that it is better to use advanced pre-

processing steps if these can improve the quality of the final segmentation. We 

emphasized this  information in Results, page 12, lines 227-231 as follows: 

Approximately 40 % of the DeepACSON computation time was spent on BM4D 

denoising15. We run BM4D filtering on non-overlapping patches of the SBEM 

volumes to enable parallel processing. BM4D is computationally expensive for 

denoising large EM volumes; however, as shown in Fig.6 d-f, the application of 

BM4D improved the segmentation results. The number of floating point 

operations required by BM4D is O(N) with large constants, where N is the 

number of voxels21.  
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Comment 1.3: The improvement of ARA remains very insignificant compared to the 

DeepEM2D/3D, as shown in Figure 6. 



Answer 1.3: The comparison of DeepACSON to DeepEM2D/3D and FFN showed that 

while improvements in adapted Rand error (ARE) were modest, the variation of 

information (VOI) and Wallace metrics substantially improved as compared to SOTA. 

The reference [65] argues that the VOI metric has several advantages over the Rand 

Index (RI) and is a better metric for comparing segmentation results. For example, 

errors in the VOI scale linearly with the error size, whereas the Rand Index scales 

quadratically. This makes VOI more directly comparable between volumes. Also, 

because RI is based on point pairs and the vast majority of pairs are in disjoint regions, 

RI has a limited useful range near zero, and that range is different for each dataset. In 

contrast, VOI ranges between zero and log(K), where K is the number of objects in the 

image. This information is added to the Materials and Methods, page 22, lines 548-

553: 

As Nunez-Iglesias et al.65 argued, the VOI metric has several advantages over 

the Rand index and is a better metric for comparing EM segmentation results. 

For example, errors in the VOI scale linearly with the error size, whereas the 

Rand index scales quadratically, making VOI more directly comparable between 

volumes than the Rand index. Also, the Rand index has a limited useful range 

near one, and that range is different for each image. In contrast, VOI ranges 

between zero and log(K), where K is the number of objects in the image. 

Furthermore, DeepEM2D/3D does not apply a mechanism to address potential 

topological errors, neither for over-segmentation nor under-segmentation. 

DeepACSON addresses the under-segmentation error in myelinated axons, as 

depicted in Supplementary Fig. S3. We cannot ignore topological errors because one 

of our goals is to extract morphological information, such as axonal tortuosity and 

diameter, to study ultrastructures. In the Introduction, page 2, lines 33-35, we now 

clarified that DeepEM2D/3D does not address the topological errors after semantic 

segmentation.   

For example, techniques such as DeepEM3D8 and its cloud-based 

implementation7 essentially rely on a precise semantic segmentation and apply 

no mechanism to correct potential topological errors during instance 

segmentation. Therefore, semantic segmentation errors propagate into 

instance segmentation as either over- or under-segmentation. 

 



 

Figure S3. Decomposition of under-segmented myelinated axons into their semantic 

axonal components using the CSD algorithm. 
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Comment 1.4. Comments to the answer 1.2 and 1.3: the authors have proposed to 

perform ablation studies by using ResNet-34 as an encoder (pre-trained). I am not sure 

if this means ablation study. I cannot find any comprehensive statistical analysis over 



tweaking the network architecture “DeepASCON” and why they have opted ResNet-

34, remains unclear. The ablation study is not satisfactory at this stage. 

Answer 1.4: We have studied the main components of the DeepACSON pipeline, 

replacing the original FCN network with a deeper network (U-Net with ResNet 

encoder), the effect of BM4D denoising as a pre-processing step, and the resolution 

adjustment between training and test sets. Considering that we used a standard FCN 

architecture in the DeepACSON pipeline, we consider this high-level ablation study 

more important than the traditional ablation study of the FCN architecture details. This 

information is now added to the Results, page 11, lines 196-199: 

We evaluated the DeepACSON pipeline to understand the behavior of its main 

components better. We replaced the original fully convolutional network18 (FCN) 

with a U-Net19 and omitted the BM4D denoising and resolution adjustment steps 

from the pipeline. We considered this high-level ablation study more informative 

than the traditional ablation study of the details of the standard FCN 

architecture.  

The original design of DeepACSON neural networks had ten layers and did not include 

residual blocks. Therefore, we used a U-Net with ResNet encoder (a deeper network 

which includes residual blocks) to compare to the original DeepACSON. We selected 

the U-Net architecture because it is widely used for semantic segmentation of 

biomedical image volumes, resulting in precise segmentation and not requiring many 

annotated training images29. Also, ResNet is the most common network for image 

feature extraction, as we used in the encoding path of U-Net; the residual blocks of 

ResNet are easier to optimize and can gain accuracy by increasing the network 

depth54. We now added this information to Materials and Methods, page 18, 

lines 425-429: 

We selected the U-Net architecture because it is widely used for the semantic 

segmentation of biomedical image volumes, resulting in precise segmentation 

and not requiring many annotated training images29. Also, ResNet, which we 

used in the encoding path of U-Net, is the most widely used network for image 

feature extraction. The residual blocks of ResNet are easy to optimize and can 

gain accuracy from increased network depth54. 

We also demonstrated that a deep architecture could experience overfitting and 

produce worse results than the original DeepACSON design. We now discussed this 

in the Discussion, page 14, lines 275-281:  

We trained the FCN of DeepACSON with four SBEM volumes to segment 

myelinated axons and six volumes to segment cell nuclei. These volumes 

included about 300 axons, one or two cell nuclei, and approximately 

300×300×300 voxels that is sufficient to train a semantic segmentation network 

according to our experiments. We note that training a network for semantic 

segmentation does not necessarily need many annotated training images29. To 

avoid overfitting, DeepACSON utilized a ten-layers fully convolutional network 

in its original design. We compared this design to a deeper network (U-net with 

ResNet encoder), demonstrating that the deeper network can experience 



overfitting and produce worse VOI, ARE, and Wallace indices than the original 

design. 
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Comment 1.5: Comments to the answer 1.6: I am afraid if the computational 

complexity means only a comparison of training/inference timings. The authors have 

failed to convince the reader why DeepASCON is computationally efficient over SOTA 

as they have highlighted one of the important features of DeepASCON as “faster” 

method. 

Answer 1.5: We agree with the reviewer that computational complexity may not only 

mean the training/inference timing. Therefore, we have included the complexity of the 

method measured through the number of basic arithmetic operations performed. This 

information is described in the Results, pages 12-13, lines 227-237 as follows: 

Approximately 40 % of the DeepACSON computation time was spent on BM4D 

denoising15. We run BM4D filtering on non-overlapping patches of the SBEM 

volumes to enable parallel processing. BM4D is computationally expensive for 

denoising large EM volumes; however, as shown in Fig.6 d-f, the application of 

BM4D improved the segmentation results. The number of floating point 

operations required by BM4D is O(N) with large constants, where N is the 

number of voxels21. Approximately 30% of the DeepACSON computation time 

was spent on the CSD algorithm. In more detail, the time complexity of the sub-

voxel precise skeletonization is O(n NΩ log NΩ), where n is the number of 

skeleton branches, and NΩ is the number of voxels of a discrete object, i.e., a 

myelinated axon. The NΩ log NΩ factor is from the fast marching algorithm21. 

The time complexity to determine a critical point is O(Np), where Np is the 

number of inquiry points to check for the cross-sectional changes in a 

decomposition interval. Therefore, the overall time complexity of the CSD 

algorithm is O(n NΩ log NΩ) + O(Np) for one axon. The inference time of the FCN 

corresponded to approximately 10% of the DeepACSON computation time. For 

the general analysis of the time complexity of FCNs, we refer to23. 
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Reviewer summary: In summary, my evaluation is that DeepASCON contributes to 

insignificant improvements over SOTA in terms of deep learning context. 

We thank the reviewer for the suggestions and comments, through which we improved 

our manuscript. As mentioned in Answer 1.1, we now emphasized that the contribution 

of DeepACSON is not about the neural networks but addressing the fundamental 

problem of under-segmentation in image segmentation of EM datasets. Furthermore, 

DeepACSON segments white matter in its components, offering quantitative biological 

information in 3D, and a tissue model with various applications in different research 

disciplines. 

 

Reviewer #2: 

Reviewer recommendation: All of my concerns have been addressed. Recommend 

publish. 

We thank the reviewer for the recommendation. 

 

Reviewer #3: 

Reviewer summary: The research work develops learning-based segmentation to 

solve membrane discontinuity and segment large field of view images using low-

resolution images.  

 

Overall: The manuscript has necessary revisions to reflect review comments. The 

revised paper contains more technical details, which improves the reproducibility of the 

paper. 

We thank the reviewer for the positive feedback. 

 



Comment 3.1: In the abstract, it is worth mentioning by one sentence what is 

algorithm, method or contribution that results in DeepACSON’s ability to resolve severe 

membrane discontinuities. 

Answer 3.1: As suggested by the reviewer, we now added a sentence into the Abstract 

about the contribution of the DeepACSON pipeline to resolve severe membrane 

discontinuities of myelinated axons:  

Abstract, page 1: 

With its top-down design, DeepACSON manages to account for severe 

membrane discontinuities inescapable with the low-resolution imaging. In 

particular, the instance segmentation of DeepACSON uses the tubularity of 

myelinated axons, decomposing an under-segmented myelinated axon into its 

constituent axons. 

 

Comment 3.2: To help readers to understand better the contributions of the scientific 

of work, a dedicated explanation to state its novelty is needed. For example, is that an 

original invention of some image processing algorithms? Integration of existing 

technologies/techniques? Or a capability or functionality that has not been achieved 

before? (eg, specifically for solving the limitation of low-resolution imaging, as 

suggested in “Therefore, we developed DeepACSON, a Deep learning-based 

AutomatiC Segmentation of axONs, to account for severe membrane discontinuities 

inherited with low-resolution imaging for tens of thousands of myelinated axons.”) At 

the moment, the Introduction has covered these related aspects very broadly, but it 

should be made clear for readers “what exactly the scientific contribution is”. 

Answer 3.2: We added the scientific contribution of DeepACSON to the Introduction,  

pages 2-3, lines 39-45, as follows: 

Our goal is to segment low-resolution images in a large field-of-view using the 

information learned from the high-resolution images acquired in a small field-of-

view. To achieve this goal, we developed a pipeline called DeepACSON, a 

Deep learning-based AutomatiC Segmentation of axONs, to account for severe 

membrane discontinuities inescapable with low-resolution imaging of tens of 

thousands of myelinated axons. The proposed pipeline utilizes an innovative 

combination of the existing deep learning-based methods for semantic 

segmentation and a novel shape decomposition technique for instance 

segmentation that uses the information about the geometry of myelinated axons 

and cell nuclei. Applying DeepACSON, we were able to segment low-resolution 

large field-of-view datasets of white matter automatically. 

 

Comment 3.3: The question still exists in the revision, because it is vauge to use 

“knowledge” in the context of the a computer algorithm, unless human is manuually 

involved in the process using human knowledge. In “i.e., under-segmentation and 

subsequent split, using a priori knowledge of the topology of myelinated axons and cell 

nuclei”. Instead of “a priori knowledge of the topology of ..”, does it intend to say 



“Distinct features” or “Distinct differences” of the topology of myelinated axons and cell 

nuclei? 

Answer 3.3: We removed the term “a prior knowledge” and replaced it by a more 

specific description, referring to distinct shape features in the Introduction, page 3, 

lines 47-49: 

However, the instance segmentation of DeepACSON approaches the 

segmentation problem from a top-down perspective, i.e., under-segmentation 

and subsequent split, using the tubularity of the shape of myelinated axons and 

the sphericality of the shape of cell nuclei. 

Discussion, page 13, lines 255-257: 

The top-down design of DeepACSON instance segmentation allows for 

including the tubularity of the shape of myelinated axons and the sphericality of 

the shape of cell nuclei that make it different from the bottom-up design of the 

current automated neurite segmentation techniques8-11, 23-25. 

 

Comment 3.4: In “We down-sampled the high-resolution images to the resolution of 

low-resolution images to provide a training set for the CNNs. The semantic 

segmentation of the CNNs received high evaluation scores, which means that the 

CNNs have been successful in generalizing what they learned from the small high-

resolution training material to the test set.” This has been made more clearer now 

regarding the training and test sets. Though the paper has info “Only four of the ten 

datasets were used as training data, while the remaining six datasets were reserved 

for testing.”, this text is quite hidden. So, in additional to Table S1-S4, please provide 

a separate Table to provide and list the number of training and test sets, respectively, 

and include the training loss and score values. 

Answer 3.4: As suggested by the reviewer, we now added the information regarding 

the training and test sets and the training/validation loss to Supplementary 

Information, page i, Figure S1. We evaluated DeepACSON neural networks on test 

sets using Precision, Recall, and F1 score metrics. The same metrics over the training 

set are provided as a reference. We also merged supplementary Table S2 of the 

previous revision into supplementary Figure S1a. 

Supplementary Information, page i, Figure S1 



 

Figure S1. DeepACSON evaluation scores. (a) We evaluated DeepACSON 

neural networks on test sets using Precision, Recall, and F1 score metrics. The 

same metrics over the training set are provided as a reference. No large 

differences between the training and test metrics exist, demonstrating in part 

that the network did not overfit. In the DCNN-mAx section, red rows show 

evaluations of myelin semantic segmentation, and gray rows show evaluations 

of the semantic segmentation of intra-axonal spaces. The DCNN-cN training set 

included only ten cell nuclei, and we used all the volumes for training. The 

performance of SVMs was evaluated using leave-one-group-out (LOGO) cross-

validation (CV). An expert evaluated the final segmentation of myelinated axons 

and mitochondria as an added qualitative measure over the entire pipeline. The 

maximum value of all scores is one. (b) The training and validation losses of 

DCNN-mAx. (c) The training and validation losses of DCNN-cN. We trained the 

networks on an NVIDIA Tesla P100-16 GB GPU for one day. 

 

Comment 3.5: Related to comment 4, since it is quite small training sets in order to 

generalize, please include some discussion of the “overfitting” problem in the paper as 

well. 



Answer 3.5: As suggested, we now discussed the overfitting problem in the 

Discussion, page 14, lines 275-281:  

We trained the FCN of DeepACSON with four SBEM volumes to segment 

myelinated axons and six volumes to segment cell nuclei. These volumes 

included about 300 axons, one or two cell nuclei, and approximately 

300×300×300 voxels that is sufficient to train a semantic segmentation network 

according to our experiments. We note that training a network for semantic 

segmentation does not necessarily need many annotated training images29. To 

avoid overfitting, DeepACSON utilized a ten-layers fully convolutional network 

in its original design. We compared this design to a deeper network (U-net with 

ResNet encoder), demonstrating that the deeper network can experience 

overfitting and produce worse VOI, ARE, and Wallace indices than the original 

design. 
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Comment 3.6: For better clarity, some key statements shall be presented in absract 

and introduction earlier on. There are good, clear statements in the response letter as 

such: “we down-sampled the high-resolution images to build a training set for CNNs to 

semantic-segment the low-resolution (large field-of-view) images”, and “Our goal is to 

segment low-resolution images in a large field-of-view using the information learned 

from the high-resolution images acquired in a small field-of-view.”. These are more 

straightforward, easily understandable compared to many descriptions in the paper. 

However, this simple goal and clear statement should be made clear and added in the 

Introduction. The Introduction now stacks quite some technical details/numbers, and 

such a one-sentence summary of goal can very much improve the clarity. 

Answer 3.6: We thank the Reviewer for the suggestions. We added these statements 

to the Abstract and Introduction sections, clarifying our goals and contributions.  

Abstract, page 1: 

With its top-down design, DeepACSON manages to account for severe 

membrane discontinuities inescapable with the low-resolution imaging. In 

particular, the instance segmentation of DeepACSON uses the tubularity of 

myelinated axons, decomposing an under-segmented myelinated axon into its 

constituent axons. 

Introduction, pages 2-3, lines 39-42: 

Our goal is to segment low-resolution images in a large field-of-view using the 

information learned from the high-resolution images acquired in a small field-of-

view. To achieve this goal, we developed a pipeline called DeepACSON, a Deep 

learning-based AutomatiC Segmentation of axONs, to account for severe 



membrane discontinuities inescapable with low-resolution imaging of tens of 

thousands of myelinated axons. 

Introduction, page 3, lines 56-59: 

We down-sampled the high-resolution images to build a training set for DCNNs 

for the semantic segmentation of the low-resolution (large field-of-view) images, 

eliminating the need for manually annotated training sets. Using the 

DeepACSON pipeline, we segmented the low-resolution datasets, which sum 

up to 1.09×107 μm3 of white matter tissue, into myelin, myelinated axons, 

mitochondria, and cell nuclei. 

 

Comment 3.7: Expert evaluation. As in Answer 3.14 “and the expert’s evaluation now 

can be read as an added qualitative measure over the whole pipeline.”, it is worth 

adding a clear sentence to explicitly say: Expert evaluation is an “added qualitative 

measure”, or “an additional qualitative measure”. 

Answer 3.7: As suggested by the Reviewer, we explicitly mentioned that the expert’s 

evaluation is an added qualitative measure. 

Results, page 11, line 222-224: 

The expert's evaluation is an added qualitative measure over the entire pipeline, 

which resulted in the following scores: myelinated axons (precision: 0.965 ± 

0.027, recall: 0.877 ± 0.061, and F1 score: 0.918 ± 0.038) and mitochondria 

(precision: 0.856 ± 0.100, recall: 0.804 ± 0.091, and F1 score: 0.823 ± 0.067). 

 

Comment 3.8: Consistency, accuracy, grammar/brevity of the writing 

Newly revised text is not well integrated and rather a stack of separate sentences. At 

times, readers have to read back and forth of several sentences to figure out what a 

noun or pronoun refers to. The newly added text is less polished and needs more 

rework to improve in terms of basic scientific writing, and to match the rest of the paper, 

eg redundant repetition of words and minor grammar mistakes (wrong use of 

preposition). Some examples, suggestions below. 

Comment 3.8.1: The low-resolution images covered a field-of-view 400 times bigger 

than high-resolution images.  

 The low-resolution images covered a field-of-view 400 times bigger than *the* high-

resolution images. 

Comment 3.8.2: Semi-automated segmentation methods based on machine learning 

approaches 4,6 have improved the rate of segmentation. However, these methods still 

require a considerable amount of manual interaction as the segmentation is driven on 

the manually extracted skeletons of neuronal processes, proofreading, or correction of 

errors.  



 Semi-automated segmentation methods based on machine learning approaches 

4,6 have improved the rate of segmentation, but still require a considerable amount of 

manual interaction because of the manually extracted skeletons of neuronal 

processes, proofreading, or correction of errors. 

Comment 3.8.3: as the segmentation is driven on the manually extracted skeletons of 

neuronal processes, proofreading, or correction of errors. 

 is driven on --> is based on 

Comment 3.8.4: Distinctive image features are required for a segmentation technique 

with a bottom-up design. Bottom-up design is subjected to greedy optimization, which 

makes the locally optimal choice at each stage while intending to find a global optimum. 

 Distinctive image features are required for a segmentation technique with a bottom-

up design that is subjected to greedy optimization, making the locally optimal choice at 

each stage while finding a global optimum. 

Comment 3.8.5: Therefore, the mentioned automated techniques 7-11 cannot be used 

to segment low-resolution images. Techniques such as DeepEM3D 8 and its cloud-

based implementation 7, 

 Therefore, the mentioned automated techniques7-11 cannot be used to segment 

low-resolution images, such as DeepEM3D8 and its cloud-based implementation7, 

which ..... 

Answer 3.8: We thank the Reviewer for these excellent suggestions. We corrected 

the manuscript as suggested in comments 3.8.1-5, and we have carefully proofread 

the manuscript to improve its clarity.  



REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
All my comments/concerns have been addressed. Recommend publication.  


