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Supplementary Figure S1. Cylindrical shape decomposition algorithm1. (a) An object is a union of several semantic-co
mponents. (b) Thesemantic-components of the object in (a) are color-coded. Intersections of the semantic-components ar
e colored grey. (c)The curve skeleton of the synthetic object in (a) is the union of all skeleton branches. Skeleton branc
hes are color-coded 
and denoted as γ . We defined a skeleton junction-point j as such a point that skeleton branches connect. Junction-points 
are shown as blue-filled-circles. (d) We found m maximal length sub-skeletons denoted as ψ via minimizing an orientation 
cost-function. The sub-skeletons are color-coded. (e) On a sub-skeleton ψ and in the proximity of a junction-point j ∈ ψ , we 
defined two decomposition intervals. The boundaries of decomposition intervals are shown with red-filled-circles. In each 
interval, the cross-section of the object was swept along ψ and towards the joint j to find a critical point. At a critical point, the 
normalized Hausdorff distance Hρ between a cross-sectional contour and the mean of visited cross-sectional contours exceeds 
θH . Sweeping directions are shown with arrows. (f) We cut the object at critical points to obtain object-parts. The object-parts 
along the same sub-skeleton were assigned the same label to construct a semantic-component. The semantic-components were 
further reconstructed between their comprising object-parts using generalized cylinders, magnified in (f1-f4). The synthetic 
object in (a) comprised of seven object-parts, and our algorithm decomposed it into three semantic-components. 
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Supplementary Figure S2. Decomposition of Sunder-segmented myelinated axons into their semantic axonal compo
nents using the CSDalgorithm1. 
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Supplementary Figure S3. Quantification of the inter-mitochondrial distance. (a) We defined the inter-mitochondrial dista
nce in two, alternateways: 1) we projected the entirety of mitochondria on the axonal skeleton and measured the shortest geode
sic distance between 
two consecutive mitochondria (d1); 2) we projected the centroids of mitochondria on the axonal skeleton and measured the 
geodesic distance between the consecutive projected centroids (d2). (b, c) We compared the inter-mitochondrial distance, (b:
d1 definition, c: d2 definition), between sham-operated and TBI rats. We did not find significant differences between the groups 
in any of the brain areas. On each bean plot, the central mark indicates the median, and the left and right edges of the box 
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers. 
The colors correspond with the animal ID. 
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Supplementary Figure S4. DeepACSON evaluation scores. (a) We evaluated DeepACSON neural networks on test s
ets using Precision,Recall, and F1 score metrics. The same metrics over the training set are provided as a reference. No large 
differences between 
the training and test metrics exist, demonstrating in part that the network did not overfit. In the DCNN-mAx section, red
rows show evaluations of myelin semantic segmentation, and gray rows show evaluations of the semantic segmentation of
intra-axonal spaces. The DCNN-cN training set included only ten cell nuclei, and we used all the volumes for training. The
performance of SVMs was evaluated using leave-one-group-out (LOGO) cross-validation (CV). An expert evaluated the final
segmentation of myelinated axons and mitochondria as an added qualitative measure over the entire pipeline. The maximum 
value of all scores is one. (b) The training and validation losses of DCNN-mAx. (c) The training and validation losses of 
DCNN-cN. We trained the networks on an NVIDIA Tesla P100-16 GB GPU for one day. 
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Supplementary Figure S5. DeepACSON evaluation. We developed a GUI-based software tool, gACSON2, in Matlab to lo
ad and visualize thesegmentation for proofreading. gACSON is designed for the visualization of the large-scale image-datasets/
segmentation. Using 
gACSON, an expert evaluated the DeepACSON segmentation of myelinated axons and mitochondria at the object-level. We
randomly sampled each low-resolution dataset and its corresponding segmentation by non-overlapping images of size 300×300
voxels. The sampled images were quantified for the number of true-positives (TP), false-positives (FP), and false-negatives
(FN) to calculate the precision, recall, and F1 score. The expert had no access to the dataset ID nor the sampling location. 
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Supplementary Figure S6. BM4D3 filtering of the low-resolution SBEM datasets. BM4D recognized the noise as Gaussi
an-distributed withthe standard deviation in the range [17, 22] in our low-resolution SBEM datasets. Shown images were 
acquired from the 
cingulum and corpus callosum of low-resolution sham #25 dataset. 
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Supplementary Figure S7. The architecture of DCNNs used in DeepACSON. We used the same architecture for DCNN-m
Ax and DCNN-cN.The size of the convolutional kernels is denoted as Conv(x,y,z). The number of channels/feature maps crea
ted from a layer of 
convolutional kernels is denoted by @n. The size of the max pooling operation is denoted as Max pool(x,y,z). 
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Supplementary Figure S8. A U-Net4 architecture with residual modules. We used a ResNet-345, pre-trained on the Im
ageNet dataset6, asthe encoder of the U-Net. In the encoding path of the U-Net, the height and width of the feature maps 
were halved, and the 
depth of the feature maps was doubled. In the decoding path of the U-Net, the height and width of the feature maps were
doubled, and the depth of the feature maps was halved. The basic residual blocks of ResNet-34 were constructed on 3 × 3 
convolutional layers, using rectified linear unit (ReLU) as the activation function, and batch normalization (BN)7. The basic 
decoding blocks applied nearest-neighbor interpolation for up-sampling the feature maps to recover the spatial resolution
of input images. Feature maps generated in the encoding path were concatenated to the corresponding feature maps in the
decoding path by the skip connections. The model was trained by minimizing cross-entropy loss. 
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Supplementary Figure S9. Frangi filtering8 the probability map of the membrane of cell nuclei. (a) The probability map 
of the membrane ofcell nuclei returned by DCNN-cN. (b) Application of Frangi filtering on (a). 



Supplementary Table S1. Characteristics of the low-resolution (LR) and high-resolution (HR) SBEM datasets. We 
collected the low-resolution images from the ipsi- and contralateral corpus callosum and cingulum for each rat. The low-      
resolution images from the ipsilateral hemisphere of the sham #49 rat included only the cingulum. The high-resolution images 
were collected from theipsi- and contralateral corpus callosum. The size of datasets is given in voxels (x,y,z). 

Condition Rat ID LR-size (voxel) LR (nm3) HR-size (voxel) HR (nm3)

Sham

#25 contra 2044×4096×1306 50×50×50 1042×1048×285 13.8×13.8×50
#25 ipsi 4096×2048×1384 50×50×50 1049×1076×285 15.4×15.4×50
#49 contra 4096×2048×1882 50×50×50 1081×1053×285 18.3×18.3×50
#49 ipsi 2048×2048×1210 50×50×50 1037×1058×285 13.0×13.0×50

TBI

#2 contra 4096×2048×1086 50×50×50 1048×1124×285 15.0×15.0×50
#2 ipsi 2154×4134×620 50×50×50 1343×1316×285 15.0×15.0×50
#24 contra 4091×2028×1348 50×50×50 1289×1280×285 15.0×15.0×50
#24 ipsi 2946×2162×1250 50×50×50 1290×1295×285 15.0×15.0×50
#28 contra 4096×2048×1278 50×50×50 1076×1051×285 16.5×16.5×50
#28 ipsi 4075×2000×1300 50×50×50 1035×1056×285 16.5×16.5×50

x



Supplementary Table S2. Volumetry of ultrastructures. The volume of myelin and myelinated axons was expressed as 
a percentage of thecorresponding SBEM dataset. The volume fraction that was occupied by a cell body/process varied   
between the datasets. Therefore, a direct comparison of the volumes is not reasonable. 

Treatment Tissue Rat ID Myelin (%) mAxons (%) Cell nuclei mAxons Mitochondria

Sham Cc

#25 contra 48.74 22.24 218 42318 168512
#25 ipsi 49.07 23.17 214 43209 175508
#49 contra 43.53 23.39 161 30723 116123
#49 ipsi - - - - -

TBI Cc

#2 contra 46.42 19.56 133 25 865 91997
#2 ipsi 44.13 19.95 124 29883 58089
#24 contra 51.38 19.40 221 49866 172241
#24 ipsi 52.20 22.94 102 23256 96032
#28 contra 42.32 19.31 226 34804 104102
#28 ipsi 40.16 18.61 213 35553 114204

Sham Cg

#25 contra 52.61 29.14 90 16076 58583
#25 ipsi 49.72 28.58 97 15868 62838
#49 contra 50.18 28.19 70 10537 55825
#49 ipsi 48.42 26.49 126 16932 71742

TBI Cg

#2 contra 49.14 22.76 120 23039 97777
#2 ipsi 42.98 12.19 100 14094 21722
#24 contra 49.32 21.98 76 16495 58180
#24 ipsi 41.26 14.72 108 20374 63798
#28 contra 42.68 22.89 131 17510 77116
#28 ipsi 39.79 16.58 167 18297 48830

xi



Supplementary Table S3. Computation time. M1: Intel Core i7 6700 CPU 3.4 GHz with 64 GB RAM. M2: 2 × Intel 
Xeon E5 2630 CPU2.4 GHz machine with 512 GB RAM. M3: NVIDIA Tesla P100-16 GB GPU. Because the size of         
datasets and the number of instances segmented in each dataset are different, we measured the computation time based on     
the sham #25 dataset in the last column. 

Process Machine Time Time/dataset (h)
BM4D filtering M1 - MATLAB R2017b 0.056 MB/s 54.23
Training DCNN-mAx M3 - Python 2.7 24 h -
Training DCNN-cN M3 - Python 2.7 24 h -
DCNN-mAx inference M3 - Python 2.7 0.297 MB/s 10.23
DCNN-cN inference M3 - Python 2.7 0.299 MB/s 10.16
CSD M2 - Python 2.7 ∼ 113.8 s/myelinated axon 44.66
Myelinated Axon feature extraction M2 - MATLAB R2017b ∼ 15 s/myelinated axon 5.89
2D Frangi filtering M1 - MATLAB R2017b 0.267 MB/s 11.38
Cell nucleus feature extraction M1 - MATLAB R2017b ∼ 30 s/nucleus 5.76
SVM Bayesian optimization M1 - MATLAB R2017b 173 s -
SVM inference M1 - MATLAB R2017b ∼ 4.4 µs/component 5.14 ×10−5
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