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prediction performance of the different Super Learners (tables 2-4). 

• Calibration plots and ECI coefficients for all models (table 5 and figures 1-11). 

• Super Learner confusion matrices (tables 6-13). 

• Specificity and sensitivity per operation with adjusted risk thresholds (tables 14-15). 
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Table 1. Descriptives table per outcome (Survivors vs Non-survivors) 
 
  

Survivors Non-survivors p-value  
N=6885 N=1356 

 

BMI 27.1 (27.0-27.2) 27.1 (26.9-27.4) 0.911 
Gender: 

  
0.006 

     Female 2077 (30.17%) 461 (34.00%) 
 

     Male 4808 (69.83%) 895 (66.00%) 
 

Age 65.36 (65.09-65.63) 71.08 (70.60-71.56) <0.001 
Pre-operative eCCR 73.63 (72.33-74.92) 63.90 (60.52-67.28) <0.001 
Post-operative eCCR 69.55 (68.92-70.18) 53.99 (52.66-55.33) <0.001 
Per-operative eCCR decrease 4.077 (2.779-5.375) 9.909 (6.619-13.20) 0.001 
Pre-operative eCCR ratio 1.115 (1.092-1.138) 1.376 (1.263-1.489) <0.001 
Creatinine within 24 hours 
before surgery (μmol/L) 

97.53 (55.82) 125.98 (116.21) <0.001 

Pre-operative creatinine 
 

97.29 (95.95-98.62) 121.75 (116.6-126.9) <0.001 

Creatinine 12-24 hours after 
surgery 

86.84 (85.53-88.15) 117.64 (112.30-123.0) <0.001 

Creatinine 24 hours after 
surgery 

88.18 (86.89-89.48) 119.50 (114.00-125.0) <0.001 

Creatinine at day 2 after 
surgery 

96.40 (95.09-97.71) 128.35 (123.2-133.5) <0.001 

Creatinine at day 4 after 
surgery 

91.85 (90.59-93.12) 127.42 (121.8-133.0) <0.001 

Maximum post-operative 
creatinine 

104.1 (102.6-105.6) 151.91 (145.3-158.6) <0.001 

Absolute difference in 
creatinine 

6.85 (6.14-7.56) 30.16 (26.20-34.10) <0.001 

Relative difference in creatinine 1.09 (1.07-1.10) 1.29 (1.22-1.36) <0.001 
Percentual difference in 
creatinine 

8.9 (7.4-10.3) 28.9 (22.3-35.5) <0.001 

Urea within 24 hours before 
surgery (mmol/L) 

6.93 (6.86-6.99) 8.94 (8.69-9.19) <0.001 

Pre-operative urea 6.99 (6.91-7.08) 8.90 (8.64-9.16) <0.001 
Urea 12-24 hours after surgery 7.32 (7.09-7.55) 9.92 (9.38-10.46) <0.001 
Urea at day 2 after surgery 10.48 (9.88-11.08) 13.27 (12.01-14.54) <0.001 
Urea at day 4 after surgery 8.72 (8.06-9.37) 14.00 (11.99-16.00) <0.001 
Maximum CPB flow 4.34 (4.30-4.38) 4.54 (4.45-4.62) <0.001 
Duration of perfusion 120.7 (119.4-122.0) 143.4 (139.5-147.3) <0.001 
Aortic cross-clamp time 76.26 (75.33-77.19) 86.14 (83.67-88.61) <0.001 
HR at start surgery 64 (64-64) 66 (65-67) <0.001 
HR during perfusion 64 (63-66) 64 (61-67) 0.880 
SBP at start surgery (mmHg) 111 (110-111) 111 (109-113) 0.865 
SBP during perfusion 62 (62-63) 63 (62-64) 0.374 
DBP at start surgery (mmHg) 63 (63-64) 61 (60-63) 0.012 
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DBP during perfusion 57 (57-58) 57 (56-58) 0.857 
CVP at start surgery (mmHg) 12 (11-13) 15 (13-17) 0.005 
CVP during perfusion 6 (6-6) 6 (5-7) 0.661 
PaCO2 at start surgery (kPa) 5.02 (5.00-5.04) 5.13 (5.09-5.17) <0.001 
PaCO2 during perfusion 5.19 (5.08-5.10) 5.09 (5.06-5.12) 0.878 
PaCO2 at end surgery 4.86 (4.85-4.87) 4.95 (4.91-4.98) <0.001 
PaO2 at start surgery (kPa) 21.6 (21.2-21.9) 21.3 (20.5-22.1) 0.553 
PaO2 during perfusion 26.1 (25.9-26.3) 27.4 (26.8-28.0) <0.001 
PaO2 at end surgery 19.4 (19.1-19.7) 20.7 (20.0-21.4) 0.001 
SaO2 at start surgery (%) 0.98 (0.98-0.98) 0.98 (0.98-0.99) 0.015 
SaO2 during perfusion 0.99 (0.99-0.99) 0.99 (0.99-0.99) 0.353 
SaO2 at end surgery 0.98 (0.98-0.98) 0.98 (0.98-0.98) 0.148 
ICU stay (hours) 47.49 (44.28-50.70) 141.0 (123.7-158.2) <0.001 
ESR within 24 hours before 
surgery (mm/hour) 

18.93 (18.49-19.36) 28.10 (26.82-29.39) <0.001 

Pre-operative ESR 18.78 (18.34-19.21) 27.64 (26.37-28.91) <0.001 
LDH within 24 hours before 
surgery (U/L) 

233.0 (230.9-235.1) 252.0 (244.7-259.2) <0.001 

Pre-operative LDH 233.9 (231.7-236.0) 263.2 (244.1-282.3) 0.003 
LDH 12- 24 hours after surgery 365.3 (359.2-371.4) 482.1 (449.3-514.9) <0.001 
LDH at day 2 after surgery 356.9 (352.1-361.8) 486.7 (459.7-513.7) <0.001 
LDH at day 4 after surgery 323.2 (314.7-331.8) 562.7 (474.8-650.6) <0.001 
Maximum post-operative LDH 413.6 (404.2-422.9) 735.3 (647.5-823.2) <0.001 
Blood glucose 0-6 hours after 
surgery (mmol/L) 

8.9 (8.8-9.0) 9.4 (9.2-9.5) <0.001 

Blood glucose 6-12 hours after 
surgery  

9.9 (9.8-9.9) 10.1 (10.0-10.3) 0.003 

Blood glucose 12-24 hours after 
surgery 

8.7 (8.7-8.8) 8.9 (8.8-9.0) 0.032 

Maximum post-operative 
glucose 

10.8 (10.7-10.9) 11.4 (11.2-11.5) <0.001 

Hb within 24 hours before 
surgery (mmol/L) 

8.507 (8.483-8.532) 8.000 (7.931-8.066) <0.001 

Pre-operative Hb 8.285 (8.245-8.325) 7.799 (7.707-7.890) <0.001 
Hb 0-6 hours after surgery 5.660 (5.642-5.677) 5.581 (5.540-5.623) 0.001 
Hb 6-12 hours after surgery 6.124 (6.101-6.146) 5.918 (5.874-5.963) <0.001 
Hb 12-24 hours after surgery 6.239 (6.220-6.259) 6.038 (5.996-6.080) <0.001 
Hb at day 2 after surgery 6.258 (6.239-6.277) 6.093 (6.051-6.136) <0.001 
Hb at day 4 after surgery 6.440 (6.416-6.464) 6.163 (6.118-6.209) <0.001 
Minimum post-operative Hb 5.325 (5.308-5.341) 5.146 (5.110-5.183) <0.001 
Leukocytes within 24 hours 
before surgery (x109/L) 

7.6 (7.6-7.7) 8.3 (8.1-8.4) <0.001 

Pre-operative leukocytes  7.8 (7.7-7.8) 8.4 (8.2-8.6) <0.001 
Leukocytes 12-24 hours after 
surgery 

13.8 (13.7-13.9) 13.8 (13.6-14.1) 0.884 
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Leukocytes at day 2 after 
surgery 

16.6 (16.4-16.7) 16.7 (16.4-16.9) 0.491 

Leukocytes at day 4 after 
surgery 

10.8 (10.7-10.9) 12.6 (12.2-13.0) <0.001 

Thrombocytes within 24 hours 
before surgery (x109/L) 

240 (238-241) 247 (242-251) 0.003 

Pre-operative thrombocytes 233 (231-235) 239 (234-244) 0.017 
Thrombocytes 0-6 hours after 
surgery 

143 (142-144) 145 (141-148) 0.286 

Thrombocytes 6-12 hours after 
surgery 

160 (159-161) 151.5 (148-155) <0.001 

Thrombocytes 12-24 hours 
after surgery 

163 (161-164) 152 (149-156) <0.001 

ALAT within 24 hours before 
surgery (U/L) 

36.42 (35.64-37.21) 32.43 (30.95-33.92) <0.001 

Pre-operative ALAT 36.77 (35.97-37.57) 33.61 (31.03-36.19) 0.022 
ALAT 12-24 hours after 
surgery 

34.02 (32.63-35.41) 50.25 (39.19-61.32) 0.004 

ALAT at day 2 after surgery 33.20 (31.23-35.18) 58.88 (44.31-73.44) 0.001 
ASAT within 24 hours before 
surgery (U/L) 

31.55 (31.08-32.03) 31.39 (30.08-32.71) 0.821 

Pre-operative ASAT 32.01 (31.49-32.53) 35.53 (28.30-42.76) 0.341 
ASAT 12-24 hours after 
surgery 

66.50 (64.62-68.38) 114.98 (97.99-132.0) <0.001 

ASAT at day 2 after surgery 56.11 (52.77-59.46) 103.15 (85.34-121.0) <0.001 
ASAT at day 4 after surgery 43.99 (40.04-47.94) 133.98 (90.91-177.0) <0.001 
Neutrophils 12-24 hours after 
surgery (x109/L) 

12.17 (12.08-12.26) 12.12 (11.91-12.34) 0.717 

Monocytes 12-24 hours after 
surgery (x109/L) 

1.213 (1.168-1.258) 1.330 (1.213-1.447) 0.067 

Lymphocytes 12-24 hours after 
surgery (x109/L) 

1.076 (1.030-1.121) 1.355 (1.197-1.513) 0.001 

Minimum Body Temperature 31.48 (31.44-31.53) 31.10 (30.97-31.23) <0.001 
Type operation: 

  
<0.001 

     CABG 3890 (56.50%) 624 (46.02%) 
 

     Aortic valve 1382 (20.07%) 281 (20.72%) 
 

     Mitral valve 710 (10.31%) 174 (12.83%) 
 

     Aortic + coronary 642 (9.32%) 171 (12.61%) 
 

     Mitral + coronary 261 (3.79%) 106 (7.82%) 
 

AKI staging: 
  

<0.001 
     No AKI 4760 (69.14%) 690 (50.88%) 

 

     Mild subclinical AKI 1222 (17.75%) 227 (16.74%) 
 

     Moderate subclinical AKI 236 (3.43%) 34 (2.51%) 
 

     AKI 1 639 (9.28%) 366 (26.99%) 
 

     AKI 2 14 (0.20%) 20 (1.47%)  
     AKI 3 14 (0.20%) 19 (1.40%)  

 



 6 

All values presented as mean (95% CI), and categorical variable with the percentage in parentheses. BMI = 
body mass index, eCCR = estimated creatinine clearance, CPB = cardio-pulmonary bypass, HR = heart rate, 
SBP = systolic blood pressure, DBP = diastolic blood pressure, CVP = central venous pressure, PaCO2 = 
arterial CO2 pressure, PaO2 = arterial oxygen pressure, SaO2 = oxygen saturation, ICU = intensive care unit, 
ESR = erythrocyte sedimentation rate,  LDH = lactate dehydrogenase, Hb = hemoglobin, ALAT = alanine 
aminotransferase, ASAT = aspartate aminotransferase, AKI = acute kidney injury. 
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Tables of p-values of the DeLong test for difference in areas under the curve for 
prediction performance of the different Super Learners.  
 
Table 2. Comparison between SL1 and SL2 to SL6 

SL1 AUROC [95% CI] SL2-6 AUROC Difference 
Aortic (SL1) 0.838 [0.813-0.864] Aortic (SL2) 0.825 [0.798-0.852] 0.013 

Aortic + CABG 
(SL1) 

0.799 [0.763-0.835] Aortic + CABG 
(SL3) 

0.798 [0.760-0.836] 0.001 

Mitral (SL1) 0.846 [0.812-0.880] Mitral (SL4) 0.834 [0.797-0.871] 0.012 
Mitral + CABG 

(SL1) 
0.796 [0.746-0.847] Mitral + CABG 

(SL5) 
0.778 [0.723-0.833] 0.018 

CABG (SL1) 0.784 [0.764-0.804] CABG (SL6) 0.778 [0.758-0.797] 0.006 
All (SL1) 0.810 [0.798-0.823] - - - 

* denotes statistical significance (p-value < 0.01). 

 
Table 3. Comparison between SL1 and GLM trained with the full cohort per operation type 

SL1 AUROC [95% CI] GLM AUROC Difference 
Aortic 0.838 [0.813-0.864] Aortic 0.734 [0.655-0.813] 0.104* 

Aortic + CABG 0.799 [0.763-0.835] Aortic + CABG 0.690 [0.598-0.782] 0.109* 
Mitral 0.846 [0.812-0.880] Mitral 0.810 [0.737-0.883] 0.036 

Mitral + CABG 0.796 [0.746-0.847] Mitral + CABG 0.685 [0.550-0.821] 0.111 
CABG 0.784 [0.764-0.804] CABG (SL6) 0.750 [0.705-0.796] 0.034 

All 0.810 [0.798-0.823] All 0.756 [0.725-0.787] 0.054*  
* denotes statistical significance (p-value < 0.01). 

 
Table 4. Comparison between SL2-6 and GLM trained with operation-specific cohorts 

SL AUROC [95% CI] GLM AUROC Difference 
Aortic (SL2) 0.825 [0.798-0.852] Aortic  0.795 [0.727-0.863] 0.030 

Aortic + CABG 
(SL3) 

0.798 [0.760-0.836] Aortic + CABG 0.589 [0.479-0.700] 0.209* 

Mitral (SL4) 0.834 [0.797-0.871] Mitral  0.689 [0.586-0.790] 0.145* 
Mitral + CABG 

(SL5) 
0.778 [0.723-0.833] Mitral + CABG 0.739 [0.610-0.868] 0.039 

CABG (SL6) 0.778 [0.758-0.797] CABG 0.758 [0.739-0.777] 0.020 
* denotes statistical significance (p-value < 0.01). 
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Calibration plots and ECI coefficients for all models.  

  

Table 5. Estimated calibration index (ECI) per model  
  

Model 1  ECI  Model 2  ECI  Difference  
Aortic (SL1)  0.291  Aortic (SL2)  0.199  0.092  

Aortic + CABG 
(SL1)  

0.249  Aortic + CABG (SL3)  0.292  -0.043  

Mitral (SL1)  0.253  Mitral (SL4)  0.168  0.085  
Mitral + CABG (SL1)  0.522  Mitral + CABG (SL5)  0.337  0.185  

CABG (SL1)  0.067  CABG (SL6)  0.073  -0.006  
All (SL1)  0.149  All (GLM)  0.084  0.065  

  
ECI or estimated calibration index is a measure of model calibration developed by van 

Hoorde et al. (2015). Unlike mean calibration measures which measure calibration at group 

level, the ECI does it at individual level. The lower the ECI, the better the calibration.  

 
Figure 1. Calibration plot aortic valve (calculated from SL1)  
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Figure 2. Calibration plot aortic valve (calculated from SL2)  

  
  
Figure 3. Calibration plot combined aortic valve and CABG (calculated from SL1)  
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Figure 4. Calibration plot combined aortic valve and CABG (calculated from SL3)  
  

  
  
 
 
Figure 5. Calibration plot mitral valve (calculated from SL1)   
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Figure 6. Calibration plot mitral valve (calculated from SL4)  
  

  
  
Figure 7. Calibration plot combined mitral valve and CABG (calculated from SL1)  
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Figure 8. Calibration plot combined mitral valve and CABG (calculated from SL5)  

  
  
Figure 9. Calibration plot CABG (calculated from SL1)  
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Figure 10. Calibration plot CABG (calculated from SL6)  

  
  
Figure 11. Calibration plot all operations combined (calculated from SL1)  
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Super Learner confusion matrices (tables 3A-3H). 

Table 6  
Confusion matrix of the predictions of the Super Learner ensemble trained with aortic valve 
operations data (n=1663)  

 Reference (actual patient outcomes) 
Prediction with cut-off of 0.50 Survivors Non-survivors 
Survivors 1363 219 
Non-survivors 19 62 
Cut-off at 50% increased risk (0.26) Survivors Non-survivors 
Survivors 1227 121 
Non-survivors 155 160 
Cut-off with maximum Youden index Survivors Non-survivors 
Survivors 1067 77 
Non-survivors 315 204 

 
 
Table 7. Confusion matrix of the predictions of the Super Learner ensemble trained with 
combined aortic valve and CABG operations data (n=813) 
 

 Reference (actual patient outcomes) 
Prediction with cut-off of 0.50 Survivors Non-survivors 
Survivors 627 143 
Non-survivors 15 28 
Cut-off at 50% increased risk (0.32) Survivors Non-survivors 
Survivors 467 42 
Non-survivors 175 129 
Cut-off with maximum Youden index Survivors Non-survivors 
Survivors 462 41 
Non-survivors 180 130 

 
 
Table 8. Confusion matrix of the predictions of the Super Learner ensemble trained with mitral 
valve operations data (n=884) 
 
 Reference (actual patient outcomes) 
Prediction with cut-off of 0.50 Survivors Non-survivors 
Survivors 688 104 
Non-survivors 22 70 
Cut-off at 50% increased risk (0.30) Survivors Non-survivors 
Survivors 644 65 
Non-survivors 66 109 
Cut-off with maximum Youden index Survivors Non-survivors 
Survivors 639 60 
Non-survivors 71 114 
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Table 9. Confusion matrix of the predictions of the Super Learner ensemble trained with 
combined mitral valve and CABG operations data (n=367) 
 

 Reference (actual patient outcomes) 
Prediction with cut-off of 0.50 Survivors Non-survivors 
Survivors 248 65 
Non-survivors 13 41 
Cut-off at 50% increased risk (0.435) Survivors Non-survivors 
Survivors 237 53 
Non-survivors 24 53 
Cut-off with maximum Youden index Survivors Non-survivors 
Survivors 224 41 
Non-survivors 37 65 

 
 
 
Table 10. Confusion matrix of the predictions of the Super Learner ensemble trained with 
CABG-only operations data (n=4514) 
 

 Reference (actual patient outcomes) 
Prediction with cut-off of 0.50 Survivors Non-survivors 
Survivors 3866 567 
Non-survivors 24 57 
Cut-off at 50% increased risk (0.21) Survivors Non-survivors 
Survivors 3446 337 
Non-survivors 444 287 
Cut-off with maximum Youden index Survivors Non-survivors 
Survivors 2752 188 
Non-survivors 1138 436 

 
 
Table 11. Confusion matrix of the predictions of the Super Learner ensemble trained with 
whole cohort data (n=8241) for each operation subgroup with a cut off of 0.50 
 
Cut-off of 0.50 Reference (actual patient outcomes) 
Aortic valve Survivors Non-survivors 
Survivors 1365 230 
Non-survivors 17 51 
Aortic valve + CABG  Survivors Non-survivors 
Survivors 623 137 
Non-survivors 19 34 
CABG Survivors Non-survivors 
Survivors 3859 559 
Non-survivors 31 65 
Mitral valve Survivors Non-survivors 
Survivors 687 114 
Non-survivors 23 60 
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Mitral valve + CABG  Survivors Non-survivors 
Survivors 253 76 
Non-survivors 8 30 
All  Survivors Non-survivors 
Survivors 6787 1116 
Non-survivors 98 240 

 
 
Table 12. Confusion matrix of the predictions of the Super Learner ensemble trained with 
whole cohort data (n=8241) for each operation subgroup with a cut off defined by a 50% 
increase in mortality risk 
 
Cut-off at 50% increased risk Reference (actual patient outcomes) 
Aortic valve Survivors Non-survivors 
Survivors 1251 132 
Non-survivors 131 149 
Aortic valve + CABG Survivors Non-survivors 
Survivors 570 97 
Non-survivors 72 74 
Mitral valve Survivors Non-survivors 
Survivors 637 70 
Non-survivors 73 104 
Mitral valve + CABG Survivors Non-survivors 
Survivors 249 69 
Non-survivors 12 37 
CABG Survivors Non-survivors 
Survivors 3460 325 
Non-survivors 430 299 
All Survivors Non-survivors 
Survivors 6152 656 
Non-survivors 733 700 

 
Table 13. Confusion matrix of the predictions of the Super Learner ensemble trained with 
whole cohort data (n=8241) for each operation subgroup with a cut off defined by the 
maximum Youden index 
 
Cut-off with maximum Youden index Reference (actual patient outcomes) 
Aortic valve (0.159) Survivors Non-survivors 
Survivors 1026 57 
Non-survivors 356 224 
Aortic valve + CABG (0.207) Survivors Non-survivors 
Survivors 462 40 
Non-survivors 180 131 
Mitral valve (0.212) Survivors Non-survivors 
Survivors 579 44 
Non-survivors 131 130 
Mitral valve + CABG (0.274) Survivors Non-survivors 
Survivors 203 32 
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Non-survivors 58 74 
CABG (0.155) Survivors Non-survivors 
Survivors 3089 235 
Non-survivors 801 389 
All (0.155) Survivors Non-survivors 
Survivors 5024 343 
Non-survivors 1861 1013 

 
MV = Mitral valve, MV+CABG = combined mitral valve and CABG, AVR = aortic valve, AVR+CA = combined aortic valve 
and CABG.  
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Specificity and sensitivity per operation type with adjusted risk thresholds 

Table 14. Specificity and sensitivity for the outcome “Non-survivors” for the Super Learners 
trained on individual operation groups using the default cut-off of 0.50, the cut-off defined by 
a 50% increase in mortality risk, and the cut-off defined by the maximum Youden index.  
 

 

 Default 50% increased risk Maximum Youden 

 Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity 

AVR 98.6 22.1 88.8 56.9 77.5 72.6 

AVR + CABG  97.7 16.4 72.7 75.4 72.7 76.0 

MV 96.9 40.2 90.7 62.6 90.0 65.5 

MV + CABG 95.0 38.7 90.8 50.0 85.8 61.3 

CABG 99.4 9.1 88.9 46.0 70.1 69.9 
 

MV = Mitral valve, MV+CABG = combined mitral valve and CABG, AVR = aortic valve, AVR+CA = combined aortic valve 
and CABG 

 

Table 15. Specificity and sensitivity for the outcome “Non-survivors” with the Super Learner 
and GLM models trained on the full cohort using the default cut-off of 0.50, the cut-off defined 
by a 50% increase in mortality risk, and the cut-off defined by the maximum Youden index. 
 

 Default 50% increased risk Maximum Youden 

 Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity 

AVR 98.8 18.2 90.5 53.0 74.3 79.7 

AVR + CABG  97.0 19.9 88.8 43.4 72.1 76.6 

MV 96.8 34.5 89.7 59.8 81.8 74.7 

MV + CABG 96.9 28.3 95.4 34.9 77.8 69.8 

CABG 99.2 10.4 89.0 47.9 79.7 62.3 

All 98.6 17.7 89.4 51.6 73.3 74.6 

GLM 97.2 16.2 85.9 46.8 69.9 70.1 

 
MV = Mitral valve, MV+CABG = combined mitral valve and CABG, AVR = aortic valve, AVR+CA = combined aortic valve 
and CABG, GLM = generalized linear model. 
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Peri-operative and pre-operative model comparison  
 
For the comparison between a model built only with pre-operative variables and the full peri-

operative model, the following variables were selected: age, gender, body mass index (BMI), 

pre-operative creatinine, pre-operative urea, pre-operative creatinine clearance (eCCR), pre-

operative erythrocyte sedimentation rate (ESR), pre-operative alanine aminotransferase 

(ALAT), pre-operative aspartate aminotransferase (ASAT), pre-operative lactate 

dehydrogenase (LDH), pre-operative hemoglobin, pre-operative thrombocytes, and pre-

operative leukocytes. 

 
Figure 12. Plot of the Receiver Operating Characteristic (ROC) curves and the respective areas 
under curve (AUCs) for the Super Learner 1 model using all peri-operative data for the whole 
cohort and the XGBoost model using only pre-operative data for the whole cohort. SL = Super 
Learner. 
 
 

 
P-value for difference < 0.01 
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Detailed explanation of the Super Learner, and model hyper-parameter definitions and 
tuning   
 

The Super Learner algorithm was designed by Dudoit and van der Laan, and is a generalization 

of the stacking algorithms developed by Breiman (1996), which chooses the optimal regression 

algorithm from a set of candidates based on a loss function after k-fold-cross-validation 

(Dudoit and van der Laan, 2006, Legrand et al., 2013). In this process, the dataset is divided 

into k mutually exclusive and exhaustive subsets of nearly equal size, with one of the k sets 

serving as a validation set, while the other sets are used for training of each candidate algorithm 

(Van der Laan, Polley, and Hubbard, 2007). At patient level, this means that each patient is 

used exactly once in the validation set, and included in the training set for all other rounds  

(Pirracchio et al., 2015). For each candidate learner, k risks are calculated and averaged into a 

“cross-validated risk”, based on which the learners with the minimal risk are selected and 

applied to the entire dataset. These are then included in the new, weighted estimator (the SL), 

that attributes a relative coefficient to each of the learners that constitute it, so that only those 

which reduce the calculated risk the most end up contributing to the final weighted prediction. 

By automatically estimating the weights of the ensemble, and also automatically removing 

models that do not contribute to the prediction, the SL eliminates the manual tuning and 

experimentation that a non-automated majority vote or weighed ensemble requires. Moreover, 

the SL presents individual patient predicted probabilities for 5-year mortality per ensemble and 

per learner (Polley et al., 2018). This is necessary to define cut-offs for binary classification 

that increase the relevance and potential clinical applicability of the findings of predictive 

modelling.  

Five candidate algorithms were included in the Super Learner: support bayesian additive 

regression trees (BART), extremely randomized trees, elastic net, support vector machine      

(SVM), and extreme gradient boosted machine (XGBoost). To optimize the performance of 

the algorithm, multiple hyper-parameter combinations were generated for each candidate 

algorithm. The hyper-parameters tuned and the values defined as optimal are found below, per 

algorithm.    
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Support bayesian additive regression trees (BART)  

BART is an ensemble-of-trees method which differ from Random Forests and stochastic 

gradient boosting like Gradient Boosting Machines, in that it relies on an underlying 

Bayesian probability model, instead of a pure algorithm (Chipman et al., 2010; Kapelner 

and Bleich, 2016; Breiman, 2001). It sets a number of priors for the structure and the leaf 

parameters of the trees it generates, which provides additional regularization to the model, 

and allows for variable importance exploration, including permutation tests and interaction 

detection. Furthermore, the bartMachine R implementation of this algorithm includes an 

external predict function that allows forecasts to be generated without the need to re-fit the 

whole model (Kapelner and Bleich, 2016).   

The user-defined hyper-parameters that generate different model configurations are alpha 

(α), beta (β), and k. The first two, α and β, represent respectively the base and power 

hyperparameter in the prior probability that a node at a certain depth is nonterminal, 

which is given by the expression:   

(0, 1),β   

Chipman et al. (2010) advise taking α = 0.95 and β = 2, respectively, as pre-defined values 

for these parameters. The higher the alpha, the more splits are encouraged even in situations 

where predictive gains are modest, which is in line with the tendency of BART to include 

spurious splits (Chipman et al., 2010). In turn, k determines the prior probability that 

E(Y|X) is between (-3; 3), which is the number of standard deviations towards each side of 

the mean. The larger k, the broader the coverage of variances of the provided response 

values in the training set, and the more conservative the model fit. Seen as the prior 

specifications for variable selection via BART are a topic of on-going research, we opted 

for not defining hyper-parameter values for this algorithm, using instead the default α, β, 

and k.   

 
Extremely randomized trees   

This Random Forest-based algorithm available in the R package “extraTrees” is a better 

performing update to the original “randomForest” R package developed by Liaw and 

Wiener (2002), mainly due to its novel node splitting process (Simm et al., 2014; Liaw and 
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Wiener, 2002). It also facilitates parallel processing by building a large number of binary 

decision trees, independently of each other, and has the ability to learn non-linear models 

even in large datasets with over 100000 training samples. This algorithm is an extension 

of Multi-task learning (MTL) to a binary decision tree-based ensemble method, allowing 

the user to dedicate tree branches to certain specific tasks. This limits the reciprocal 

influence of multiple tasks on each other, but also reduces a model’s ability to capture 

relevant information from other tasks. The implementation of extraTrees in the Super 

Learner is rich in hyper-parameterization, especially in sub-task definition. Since we do 

not define any a priori tasks due to our naïve approach to the data analysis process, data 

from all tasks is pooled together and no ideal taskwise split hyper- parameter must be 

optimized. Therefore, only the parameters ntree, which stands for the number of trees to be 

built, and mtry, which represents the number of features tried at each node, were chosen 

for tuning. The number of random cuts for each chosen feature was defined as 1, according 

to the official extraTrees method. Ultimately, 21 extraTree models were used, with mtry 

ranging from 1 to 7, and ntree as 500, 1000, and 2000.  

 
Elastic net  
 
The biglasso wrapper in the Super Learner implements more computationally-efficient 

sparse linear and logistic regression models with lasso, ridge, and elastic net penalties by 

providing a better feature screening process to identify and discard inactive features from 

the lasso optimization (Zeng and Breheny, 2017). The elastic net algorithm, developed by 

Zou and Hastie, outperforms lasso-only, as it groups strongly correlated predictors instead 

of doing covariate selection and is applicable with the “biglasso” package (by adjusting the 

hyperparameter penalty) (Zou and Hastie, 2005). This method of variable selection, while 

best applied to cases where the number of predictors (p) is much bigger than the number 

of observations (n), which is not the case in our dataset, increases the interpretability of the 

model, a key issue when addressing its possible clinical applicability.  

We defined 5 different models, all with a sequential strong rule screening algorithm, but 

with different mixing values (α) for the elastic net penalty (0.05, 0.4, 0.5, 0.6, and 0.95), 

which moves from closer to ridge at 0, to close to lasso, at 1, as defined by  

 
α‖𝛽‖$+(1−𝛼)/2‖𝛽‖--  
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For lambda, a hyper-parameter which represents the shrinkage penalty for the fitting process 

and directly affects variance, a maximum of 100 values was tried out by the Super Learner 

algorithm for optimization (Zeng and Breheny, 2017).    

SVM   

A Support Vector Machine (SVM) is a class of supervised learning algorithms which 

classifies data points into two different classes by taking datapoints in a multidimensional 

space and constructing the hyperplane that best differentiates between the two (Chapelle 

and Zien, 2005). The projection of the input data to a higher-dimensional space can further 

be potentiated by the use of kernels, which can increase the efficacy of the trained models.  

The hyper-parameters to be optimized are the cost (C) and sigma (σ). Cost controls the 

misclassification tolerance, so that the higher the cost, the harder the margin and the smaller 

the tolerance for misclassification. In turn, sigma defines the smoothing of the Radial Basis 

Function kernel we chose. Different values of sigma define how much a single training 

example influences the model, with a higher sigma constraining the model towards linear. 

We defined 36 different models for SVM with all possible combinations of cost between 

2-2 and 221, and sigma between 2-7 and 2-21. Since a SVM tries to maximize the distance 

between the separating plane and each support vector (the datapoints closest to the 

hyperplane), the input of attributes with greater numeric ranges can dominate that of those 

with smaller ranges (Hastie et al., 2009). Therefore, dummy variables were created for all 

categorical variables and our numeric predictor variables were centred (subtracting the 

mean) and scaled (dividing by the standard deviation).  

 
XGBoost   
 

The Extreme Gradient Boosting Machine (XGBoost) algorithm is a scalable tree boosting 

system used widely in data science, and with very interesting, potentially clinically-

oriented properties. Like Ridgeway’s original GBM, it is based on the consecutive fitting 

of new models (base-learners) to the training data set in order to provide a more accurate 

estimate of the outcome variable (Ridgeway, 2012). Decision trees are combined, and 

increasingly weigh the “difficult to predict” events to a greater degree, from which a cross 

validation error is estimated, using k-fold cross-validation (Natekin and Knoll, 2013). The 

novelty in XGBoost is its use of column sampling, borrowed from Random Forests, and a 

more solid approach to data sparsity patterns (Chen, 2016).  
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Seen as the adaptability of XGBoost to a certain problem is determined by its configuration, 

thoroughly testing a wide range of hyper-parameter configurations is paramount (Kennedy, 

2017). The hyper-parameter n trees defines the number of trees (iterations) to be generated 

by the algorithm, while Max depth defines the maximum number of terminal nodes of a 

tree (Chen et al., 2018). The learning rate, which controls the rate at which the boosting 

algorithm descends the error surface, is defined by the shrinkage (or eta) hyper-parameter. 

The lower the shrinkage value, the more overfitting is prevented by making the boosting 

process more conservative. We defined 24 different models for XGBoost, with all 

combinations of n trees at 200, 500, and 1000, Max Depth between 1 and 4, and shrinkage 

0.01 and 0.1.  
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