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Supplementary Discussion 

Generalizability of PPI classifiers. ​PPI classifiers are known to have poor universal 

generalization; a PPI classifier trained on interactions between proteins A, B, C, D, E, and F will 

achieve noticeably higher performance predicting new interactions between these proteins 

(in-network prediction) than interactions involving proteins with no examples in the training 

(​e.g., ​A-X, B-Y, or X-Y; out-of-network prediction) ​1,2​. As a potential explanation for the high 

in-network performance, Park and Marcotte suggested that in-network predictions may benefit 

from node degree imbalances between the positive and negative training networks ​3​. 

In this study, we examine whether the high in-network performance of PPI classifiers reflects 

true learning of protein features as Park and Marcotte suggested. If the classifiers truly learnt 

from protein features to make PPI predictions, they should generalize well to independent 

in-network test examples; the in-network performance should not change dramatically when the 

in-network test PPI examples, sampled from an independent dataset, only involve proteins that 

are also present in the training dataset. For the purposes of testing this form of in-network 

generalizability, we ensured that each protein had distinct PPIs that were present in the training 

examples and test examples. In other words, we would only train a classifier on a subset of the 

known positive and negative interactions, and reserve a non-overlapping in-network subset of the 

known interactions for testing. The in-network test examples from the independent dataset were 

curated so that they did not include PPIs identical to those in the utilized subset of the training 

examples. 

Indeed, our auditing framework demonstrated that classifiers do not generalize to in-network test 

examples from independent datasets, effectively demonstrating that the high classifier 

performance is not solely driven by true learning of protein features. Instead, we demonstrate 

that the PPI classifiers learn the node degree bias of the training examples and use this as the sole 

information to make predictions. The node degree of a given protein changes between datasets in 

contrast to the protein features of a given protein that do not change regardless of the dataset. 

Hence, a classifier that predominantly learns from node degrees in a training dataset is incapable 

of accurately predicting interactions between those proteins in an independent dataset with a 

different node degree bias. This illustrates the need for auditing frameworks, such as the one we 

https://paperpile.com/c/ORuQR2/w0Unw+7iKuJ
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designed, to systematically identify unexpected biases that impact the generalizability of 

classifiers. 

Node degree bias. ​ Node degree bias drives classifier performance as follows: All interactions 

(e.g., A-X, B-Y) that involve either protein A or B share an identical half of their feature vectors 

to that of the A-B interaction. For example, if the training dataset has pairs A-B and C-D as 

positive and E-F and A-G as negative training examples, the A-C interaction is evaluated as 

being more similar to two positive training pairs and only one negative pair, resulting in a ~⅔ 

probability of being a positive interaction. The classifier function can thus be described by the 

scoring function in Equation [2] (​Methods ​)​ ​where the predicted score is the sum of A and B’s 

node degrees in the positive training network relative to the sum of their node degrees in both the 

positive and negative training networks. When we repeated the benchmarking of classifiers after 

removing node degree biases from the training datasets (balanced sampling was adopted as 

opposed to random sampling), classifier performance dropped significantly: the average drop in 

​ ​AUC was 0.19, 0.35, and 0.23 for D1, D2, and D3, respectively (Supplementary Data 1). This 

suggests that existing classifiers can be improved upon to derive more accurate PPI predictions.  

  

 

  



Supplementary Note 1 

Protocol for auditing biological Machine learning applications. 
 

Introduction.​ Machine learning (ML) applications in biology can suffer from unexpected biases 

that can inflate performance, and, if overlooked, propagate throughout the scientific community 

through years of subsequent research efforts. Increased attention is being paid to common biases 

in well-established and heavily-researched ML application fields such as image, speech, and text 

processing​4–6​. However, applying ML to biological data is more challenging for two main 

reasons: First, biological data is prone to numerous biases caused by measurement errors, 

different experimental conditions, and natural biological fluctuations. Second, the application of 

ML to biological data is still an emerging field, and one where biases have not been 

systematically addressed thus far. 

 

Here, we present a general auditing framework protocol that systematically identifies biases in 

biological ML applications and is not limited to a certain application type or bias. The Main Text 

discusses in detail how to apply this auditing protocol to three examples of biological ML 

prediction applications that are of the type ‘paired-input’. In this document, we provide 

additional details of the four modules (benchmarking, bias interrogation, bias identification, and 

bias elimination) to enable users to apply this protocol more widely to other biological ML 

applications. 

 

Advantages and limitations of the protocol.​  This auditing protocol is intended to guide users 

through a systematic examination of their biological ML models to identify biases and the 

sources of these biases by using AI auditors. Since the ML framework, architecture, and 

biological data type used for each ML framework can differ, biases will require custom auditors 

to be detected. For that reason, it is not possible to provide a generalizable software application 

that works for all types of ML frameworks and biological data. However, the underlying 

principles of the auditing framework provided below are fully generalizable, and will enable the 

user to search and recognize biases and design AI auditors customized to specific applications. 

Importantly, we also provide general guidelines on how to interpret the auditing results. 

https://paperpile.com/c/ORuQR2/kSOEH+8KXEz+wN6IK


 

Assumptions: ​An ML framework is a system that encompasses all the components necessary to 

develop an ML application starting with raw input data. Specifically, the ML framework 

executes data processing; feature extraction; data splitting into training and testing sets; ML 

model selection; model training; and model testing for performance evaluation. Below we 

provide a step-by-step guide for how to audit an ML framework F​1​ that is trained on Biological 

dataset D​1​.  

 

 

Procedure: 

Module 1: Benchmarking.​ The goal of benchmarking is to establish a performance baseline of 

the framework of interest (​F​1​) compared to other frameworks, which will then be utilized in 

Module 2 (Bias interrogation) to detect biases and then to form hypotheses about bias sources (if 

any are detected). 

 

1. Set up ​n​ frameworks, ​F​2​, F​3​, …, F​n​, for benchmarking in addition to and different from 

framework ​F​1​, using the following guidelines: 

a. If computational resources allow, the larger the ​n​, the more robust and faster the auditing 

process can be. We suggest that 5-10 frameworks are needed in most cases.  

b. If your framework is an improvement over pre-existing frameworks, find the code for or 

re-implement a number of previous widely-used/ reliable/ well-established frameworks.  

c. If neither code nor sufficient information to replicate previous frameworks exist, 

re-implement the frameworks as good as possible and replace poorly described 

components with appropriate alternatives (i.e., a heuristic assumption of the details of the 

implementation, an arbitrary implementation, or the corresponding implementation from 

your own framework ​F​1​). The goal of benchmarking in this step is not to show how well 

your framework performs compared to previous frameworks, but to spot the framework 

components that are potential bias sources (if any are detected).  

d. If your framework treats a new prediction problem where no previous frameworks exist, 

generate variations of your framework by adopting different implementations for the 



various components of the ML framework. For example, adopt different ML models, data 

processing schemes, and training-test split schemes.  

 

2. Collect ​m ​datasets, ​D​2​, D​3​, …, D​m​, independent from the one used for training and testing your 

framework (​D​1​). The larger the ​m​, the more robust and faster the auditing process can be.  

 

3. Withhold a subset ​d​1​, d​2​, …, d​m​, from each dataset, ​D​1​, D​2​,..., D​m​, respectively, for 

benchmarking. The percentage to withhold from each dataset should leave sufficient data points 

in ​d​ for benchmarking and sufficient data points in ​D​ for appropriately training and testing the 

frameworks.  

 

4. Train the frameworks ​F​1​, F​2​, …, F​n ​ on datasets ​D​1​, D​2​, .., D​m​ with the benchmarking subsets 

excluded (​D​1​-d​1​, D​2​-d​2​, …, D​m​-d​m​). For each framework ​F​i​, ​m​ trained predictors should be 

produced, ​F​i1​, F​i2​, ... , F ​im​, trained on ​D ​1​-d ​1​, D ​2​-d ​2​, …, D ​m​-d ​m​, respectively.  

 

5. Test each framework ​F​ij​ (​F ​i​ trained on dataset ​D​j​-d ​j​) on the corresponding benchmarking 

subset​ d​j​.  

 

6. Build a benchmarking performance ​m×n ​matrix​, B, ​where each cell ​B​ij​ corresponds to the 

performance of Framework​ F​ij​ (​F ​i​ trained on dataset ​D​j​-d ​j​ and tested on the benchmarking subset 

d​j​).  
 

 

Module 2: Bias interrogation. ​The goal of this module is to determine whether biases exist in 

the predictor performances by building a ​Generalizability Auditor​.  

 

7. Build a ​Generalizability Auditor​ as follows: 

7.1 Identify ​k​ generalizability datasets, ​D​m+1​, D​m+2​,..., D​m+k​. These datasets will be used to 

assess the generalizability of the framework and should be independent of ​D​1​, D​2​, …, D​m 

(previously used for training and benchmarking).  



7.2 For each dataset​ D​m+z​ (where ​0 < z ≤ k ​), build a generalization performance matrix 

G​m+z​  (similar in shape to the performance matrix in Step 6), where each Framework ​F​ij 
(trained on dataset ​D​j​-d ​j​ and benchmarked on ​d​j​) is tested on ​D​m+z​. 

7.3 Compare ​B​ (the benchmarking performance matrix, Step 6) with ​G​ (the 

generalization performance matrices, Step 7.2) to determine if your framework of 

interest, ​F​1​, is biased. Biases will result in a “generalizability gap”, which is defined as 

the difference in performance between the generalization and benchmarking 

performances (​G−B​, can be scaled or normalized). When biases exist, the generalizability 

gaps are noticeable.  

 

8. Determine whether your framework (​F​1​) is biased based on the generalizability gaps identified 

in Step 7 as follows: 

a. If the generalizability gaps are all negligible or positive (the latter meaning that the 

generalization performance is better than the benchmarking performance) for all versions 

of your framework ​F​1​ (​F​11​, F​12​, …, F​1m​) when tested on all of the generalization datasets 

(​D​m+1 ​ … ​D ​m+k​), then ​F​1​ ​does not suffer from major biases ​and the auditing process can be 

terminated here​.  

b. If the scenario in (​a​) applies to all except a minor set of the generalization datasets, ​F​1 

can still be considered unbiased in this scenario ​and the auditing process can be 

terminated here​.  

c. If the generalizability gaps are all noticeably large for all versions of ​F​1​ when tested on 

all of the generalization datasets, then ​F​1​ is highly likely to be biased.  

d. If the scenario in (​c​) applies to all except a minor set of the generalization datasets, ​F​1 

still should be examined as a potentially biased framework.  

e. If ​F​1​ is generalizable (generalizability gap is insignificant or positive) in some cases, but 

not in others, there can be a bias in ​F​1​ ​or the datasets used for training (​D​1 ​ … ​D​m​).  

 

9. If ​F​1​ is likely to suffer from some bias (as determined in Step 8), determine whether the bias 

source is from the framework or associated with the training or benchmarking datasets. In the 

former scenario, identify the framework component(s) likely causing the bias by examining the 



performance of the other frameworks ​F​2​, F​3​,..., F​n​ relative to ​F​1​ to form hypotheses about the 

source of the bias: 

a. Discard the performance matrices of the outlier generalization datasets (identified in Step 

8.d), if any exist.  

b. If the performance of all frameworks is generalizable, except when they are trained on a 

particular benchmarking dataset, this can indicate a bias associated with that dataset. In 

this case, ​F​1​ is likely not biased ​and the auditing process can be terminated here.​ You 

should use this dataset only with caution and further examination of its source of bias is 

recommended should you use it in the future. 

c. If the performance of some of the frameworks is not generalizable while others are, then 

F​1​ ​is biased either at the data processing or the ML modeling stage. This can be further 

examined in Module 3 by examining each component of ​F​1​ ​compared to the 

generalizable and non-generalizable framework groups.  

d. If the performance of all other frameworks is similarly not generalizable, there can be a 

data bias either associated with the structure of the training datasets, the type of the input 

data utilized for this ML problem (as is the case with the protein-protein interaction [PPI] 

data in the Main Text) or the data processing schemes of the different frameworks 

(feature extraction, data split, data preprocessing, and so forth).  

 

 

Module 3: Bias identification. ​The goal of this module is to form and verify hypotheses about 

the specific nature of the bias by building bias AI auditors.  

An AI auditor is a system that tests an AI/ ML component/ model/ framework for a 

hypothesized bias. This is done by comparing its input and/or output to those of another AI/ML 

model you design (auxiliary model) to enable examining your bias hypothesis​6​ (for examples of 

auditor designs see the Main Text and Supplementary Methods). As each bias can be unique, no 

single auditing system will fit all cases, biases, models, units, and frameworks. We therefore here 

provide guidelines so that users can audit components of their framework that are biased based 

on the results from Module 2 (Step 9).  

 

https://paperpile.com/c/ORuQR2/wN6IK


10. Build a bias identification auditor, or a series of auditors, to examine the potential bias 

hypothesis.  

a. If the framework component (data splitting, feature extraction, model training, and so 

forth) that is likely to introduce the bias is identified in Module 2 (Step 9), build an 

auditor to examine this particular component. Considering your framework as the main 

model, iteratively build auxiliary models by replacing the identified component in your 

framework with the corresponding component from the biased framework groups and 

then, the non-biased framework group. Rerun the benchmarking step (Module 1) for the 

auxiliary models and then the ​Generalizability Auditor​ (Module 2). Compare the 

generalizability performance of the auxiliary models of the biased and unbiased groups to 

that of ​F​1​. If the examined framework component carries the bias source, you will likely 

find a pattern differentiating the two groups. 

b. If the suspected framework component from Module 2 is not confirmed as a bias source 

in Step 10.a, perform a combinatorial search by repeating the same auditing process in 

10.a with another component substituted (along with the examined one). In this case, we 

are testing the combined effect of two components causing the bias. Start with one 

additional component, then increase the number of additional components until a pattern 

emerges. 

c. If the framework component that is likely to introduce the bias is not identified in Module 

2 (Step 9.c), perform Step 10.a to systematically audit each component in framework ​F​1​. 

If no single component is identified, move to Step 10.b and repeat for each framework 

component. Selecting a framework component to examine next should be prioritized as 

follows: i) if a component in ​F​1​ is shared with some of the generalizable frameworks, 

skip it; ii) if a component in ​F​1​ is shared with some of the generalizable and 

non-generalizable frameworks, skip it; iii) if a component in ​F​1​ is shared with some of 

the non-generalizable frameworks, but not the other framework group, audit it [see 10.a]; 

and iv) if a component in ​F​1​ is unique and not shared with any of the two framework 

groups, replace the corresponding components in the other frameworks of the two groups 

with this ​F​1​ component implementation and repeat Step 10.a (and Step 10.b if necessary) 

to build the auxiliary models in your auditor.  



d. If the data type/ structure is the suspected source of bias (Step 9.d), or Steps 10.a, 10.b, 

and 10.c fail to identify the biased component, the final recourse is to examine the 

structure of the data as it can be presented to the framework(s) in a way that enables 

biased learning  (this is the case with the PPI prediction auditing in our study, see Main 

Text).  

To audit the structure of the data, you need to examine how differently the data 

are processed or presented compared to common ML practices. You then need to build an 

auditor to examine the property you identified. As each data type is unique and can carry 

different biases related to how the learning process is performed, this component requires 

thoughtful investigation of the data and its processing to be able to generate hypotheses 

about the bias. Here, it is critical to understand how each ML model processes the data, 

and relate this to the structure of the data, to infer how it may mislead the learning 

process. Once a bias hypothesis is formed, an auditor should be designed (as explained 

earlier throughout Step 10) to verify this hypothesis. Here are some considerations for 

probing data structures:  

i. Is there any class/ input/ output imbalance fed to the ML models?​ For example, 

ML classifiers typically expect equal numbers of positive and negative training 

examples while ML regression models can be misled by overrepresented output 

values.  

ii. Do the ML models learn from the features only?​ The ​Feature Auditor​ can help 

answer this question by randomizing the features and comparing the performance 

to that of benchmarking performance. This removes the information that can be 

derived from the input features by masking them with random numbers while 

keeping the structure of the training and testing datasets intact. Testing different 

hypotheses requires various approaches to randomizing features. For example, in 

the PPI prediction example, we randomized the features of each entity (protein) 

and carried those randomized features to represent the same protein during 

training and testing. If the performance after feature masking/randomization is not 

random (as was the case for the PPI predictors in the Main Text), this indicates 

the models learn some structure of the data.  



iii. Is the data extracted from some complexes, networks, or bipartite graphs that 

carry a bias?​ Biological networks are usually not uniform, meaning that they are 

biased by nature. Probing this bias ensures that learning is not propagating it.  

iv. Is there a common difference between the benchmarking datasets and 

generalization datasets?​ For example, if all the benchmarking data comes from 

curated databases and each generalization datasets comes from a single large scale 

experiment, batch effect and noise of mixing multiple studies of different qualities 

in the curated datasets can be a source of the generalizability gap. In this case, 

there can be no bias in the ML frameworks. Switching some members of the two 

dataset groups can be sufficient to audit this bias possibility.  

 

11. Build a ​Debiasing Auditor​ to validate that the bias identified in Step 10 is driving the 

learning process.  

   Remove the identified bias from the data or the framework and then reapply the auditor that 

identified the bias to assess whether the bias no longer exists (if none of the auditors in Step 10 

does this). For example, in the PPI ​Debiasing Auditor ​in the PPI prediction case (Supplementary 

Methods), the ​Feature Auditor​ was used to identify the bias source (node degree distribution), 

and a ​Debiasing Auditor​ was designed to remove the bias (by balancing the node degree between 

the positive and negative training examples). We then masked the features again (as performed 

in the ​Feature Auditor​) to assess whether the bias has been efficiently removed.  

   Debiasing auditors​ ​are only necessary if the auditors in Step 10 are not sufficient to 

demonstrate that the identified bias is the only and true driver of the learning process. Some 

datasets can have biases that can be made ineffective by the way that ML models represent the 

data and/or perform the learning process. For example, as we showed in the Main Text, the 

MHC-peptide paired-input predictors are prone to node-degree bias similarly to PPI predictors. 

Nonetheless, they generalize well to new datasets, while the PPI predictors do not because of 

differences in feature representation informativity in these two distinct problems. This auditor is 

also helpful in identifying whether there can be additional major biases driving the ML 

frameworks, in which case another auditing round is necessary.  

 



Module 4: Bias elimination. ​Once the bias source is identified and confirmed, this bias should 

be removed and the generalizability should be reassessed. 

 

12. Debias the datasets or predictors. The same debiasing technique as the one utilized in the 

Debiasing Auditor​ (Step 11), or its equivalent (Step 10), should be used to debias the datasets or 

the framework. This should be done without applying the remaining steps in the ​Debiasing 

Auditor​.  

 

13. Assess generalizability after debiasing. The ​Generalizability Auditor ​(Step 7) should be 

reapplied to compare generalizability gaps before and after removing biases. Here are some 

guidelines to interpret the auditor results:  

a. If the generalizability gap is eliminated, then the auditing is complete and the debiasing 

step needs to be included as part of the ML framework.  

b. If the generalizability gap is not eliminated but noticeably reduced, while the 

performance after debiasing is acceptable, there might be other unidentified biases in the 

datasets or framework. In this situation, you will need to go through the auditing 

framework again, but with the datasets/ framework component debiased. 

c. If the performance is noticeably reduced after debiasing to near-random performance, this 

can indicate that the bias was the sole driver of the predictors and that the design/ 

architecture of the framework is not adequate for the problem. This was the case with the 

PPI predictors examined in the Main Text; subsequent experiments suggested that this is 

due to improper feature extraction in all of the tested predictors F1-F7.  

 

Anticipated results.​ This protocol provides detailed instructions on how to examine an ML 

framework applied on biological data for biases and how to remove these biases with the goal of 

developing reliable ML tools. The auditing steps described here will: i) verify whether or not the 

examined ML framework is suffering from major biases, ii) identify major biases if any exist, 

and iii) help remove the bias. This protocol will also point the user to biases in the datasets of 

interest, or suggest that the architecture design of the ML framework is unsuited for the 

biological problem/ data type at hand. 

  



Supplementary Note 2 

Tutorials for auditing biological Machine Learning applications 
This set of tutorials provides information and step-by-step guides to systematically audit 

biological machine learning (ML) applications. It serves as a companion to the protocol in 

Supplementary Note 1. 

 

Tutorial 1: Artificial Intelligence (AI) Auditor design 
An AI auditor is a system where an auxiliary AI/ML model is tailor-made to examine a 

hypothesis about the ML framework of interest. There are four components to an AI auditor: 

main model, hypothesis, auxiliary model, and auditing metric. The auxiliary model can be (i) the 

same as the main model using a different input, (ii) the same as the main model using the same 

input, but with different components (e.g., a different feature extraction scheme, data 

preprocessing scheme, or ML model), (iii) a different model using the same input as the main 

model, or (iv) a different model using the output (and probably the input) of the main model. To 

enable the reader to design auditors, we describe AI auditors in a variety of different situations.  

 

Auditor 1: ​Local Generalizability Auditor  

Main model A black box ML framework, ​F​, trained and tested on an arbitrary dataset 

D​1​. Its performance is assessed as classification accuracy.  

Hypothesis F​ does not generalize well to a specific independent dataset ​D​2​. The goal 

of this auditor is to make a quantifiable assessment for this statement.  

Auxiliary model The same as the main model with dataset ​D​2​ as input.  

Metric Difference in accuracy is an acceptable comparison metric to determine if 

the main model generalizes to ​D​2​. ​A threshold for accuracy difference 

(e.g., 0.1) is set to determine non-generalizability, i.e., if the difference in 

accuracy between the auxiliary model and the main model is larger than 

0.1, the main model does not generalize to ​D​2​. 

 



 

Auditor 2: ​Single-component Auditor 

Main model An ML framework, ​F​1​, with specific components (data pre-processing, 

feature extraction, ML model, model training etc.), trained and tested on 

an arbitrary dataset, ​D​1​. Its performance is assessed as classification 

accuracy.  

Hypothesis Component ​i​ in ​F​1​ causes the main model to perform in a biased way, 

reflected by low accuracy on ​D​1​.  

Auxiliary model The same as the main model, except that component ​i ​in ​F​1​ is replaced 

with a different component performing the same function to construct 

framework ​F​2​.  For example, if the audited component is a feature 

extraction component, the replacement should be extracting features in a 

different way.  

Metric Increased accuracy is an acceptable comparative metric​. ​A threshold for 

accuracy difference (e.g., 0.05), is set to determine improvement, i.e., if 

the accuracy of ​F​2​ is higher than that of ​F​1​ by more than 0.05, component ​i 

can be identified as a source of bias and replaced by the corresponding 

component in ​F​2​ ​in the debiasing step. 

 

Auditor 3: ​Multi-Accuracy Auditor​7–9 

Main model An ML framework, ​F​1​, trained on ​D​1​ and tested on a similarly distributed 

D​2​. The performance is assessed as classification accuracy.  

Hypothesis Accuracy of​ F​1​ is biased against minority subpopulations of ​D​2​: ​p​1​, p​2​, …, 

p​k​.  

Auxiliary model The same framework as ​F​1​ with the test data replaced with each 

subpopulation data (​p​1​, p​2​, …, p​k​), one at a time, to create frameworks ​F ​p1​, 

F​p2​, …, ​F​pk​. 

https://paperpile.com/c/ORuQR2/4sv5N+ystci+2xN9e


Metric A decrease in accuracy of 0.05 between ​F​1​ and each of ​F​p1​,  ​F​p2​, …, ​F​pk​ is 

considered significant. This test identifies the subpopulations against 

which ​F​1​ is biased.  

 

Auditor 4: ​Encoding Auditor  

Main model A black-box encoding system, ​E​, that compresses an object (image, 

sequence, text etc.) into a denser representation of smaller size.  

Hypothesis E​ does not encode this type of data properly.  

Auxiliary model k​ decoder ML models, ​De​1​,  ​De​2​, …, ​De​k​, with different architectures and 

where the input is the encoded output of ​E​ and the training target is the 

corresponding input to ​E​ (full object prior to encoding). The ML task of 

the decoders is to reconstruct the uncompressed objects.  

Metric For a large and diverse dataset, an appropriate metric tests how precisely 

the encoded output of ​E​ can be reconstructed into the original input using 

the decoders ​De​1​,  ​De​2​, …, ​De​k​. The normalized number of matching 

subobjects (pixels for images, letters for texts, items for sequences etc.) 

between the original and the reconstructed objects can serve as a metric for 

reconstruction accuracy. Let the overall reconstruction metric be the 

average of all reconstruction ratios for all objects in the test dataset. An 

80% average reconstruction rate is set as a threshold for acceptable 

reconstruction. When ​k​ is sufficiently large (given the complexity of the 

problem) and the decoders vary and are well-designed, then ​E​ is not 

recommended if none of the decoders pass the acceptable reconstruction 

threshold. 

 

Auditor 5: ​Single-class output Auditor  

Main model 

 

A black box classification predictor ​C​ claimed to have a small prediction 

error. When ​C​ is tested on dataset ​D​, all predictions are mostly from a 



single class ​c​1​. There is no other dataset available and the ground truth for 

D​ is unknown.  

Hypothesis C​ is biased during training and possibly trained and tested on 

class-imbalanced data where examples in class ​c​1​ are overrepresented. The 

alternative hypothesis is that ​c​1​ is truly overrepresented in ​D​.  

Auxiliary model The same classifier ​C ​applied to dataset ​D​ but the feature vectors are 

randomized after feature extraction. Feature randomization can be 

performed by randomizing the feature vector of each datapoint (row-wise), 

substituting each value in the feature vector by a random number within 

the expected range of this feature values, randomizing the values of each 

feature for all data points (column-wise), or randomizing the feature 

matrix of all test data points.  

Metric Accuracy is a reasonable metric for classification problems but in this 

example, the ground truth values are missing. However, if the percentage 

of the randomized points being classified as class ​c​1​ is within a small 

margin (e.g., ∓0.05) from that obtained classifying the original data points, 

then this classifier ​C​ can suffer from class-imbalance bias during training. 

This possibility needs further auditing. Conversely, if the percentage of the 

points in class ​c​1​ for the randomized data is close to a randomly expected 

value (~50% for two class classifiers), then ​C​ does not suffer from class 

imbalance and class ​c​1​ points are overrepresented in ​D​.  

 

Auditor 6: ​Regression Flat-Output Auditor  

Main model A black box regression predictor ​R​ claimed to have a small prediction 

error. When ​R ​is tested on dataset​ D​, the output is nearly constant, with a 

small variance around a single value ​v​. There is no other dataset available 

and the ground truth for ​D​ is unknown.  



Hypothesis R​ is biased during training, possibly with an overrepresented value near ​v 

in the training and testing sets.  

Auxiliary model The same regression model ​R​ is used but the input dataset ​D​ is represented 

with randomized feature vectors as described in Auditor 5.  

Metric Mean deviation (average absolute difference) from the constant value ​v​ in 

the prediction can be a reasonable metric. If the deviation metric of the 

two inputs (original and randomized) is nearly the same, then ​R​ is highly 

likely biased during training with an overrepresented value near ​v​. 

 

 

Tutorial 2: Auditing metric design  
In AI auditors, a metric is needed to compare performances between main and auxiliary models 

and verify the hypothesis for which the auditor is built. In the ​Generalizability Auditors​ of the 

auditing protocol, the main and auxiliary models are the same ML framework, but each model is 

tested on different datasets to assess differences in performance. Comparing the performance of 

two models is a common auditing scenario (two similar models with different inputs or two 

different models with similar input) and requires careful design of the auditing metric. 

Comparing the performance of two models is not always straightforward. In this tutorial, we 

discuss the design of three auditing metrics that have wide applicability towards this aim.  

 

Example 1: Comparison of accuracy metrics of classification models  

Given the classification accuracy of the main and auxiliary models ( ​A​main​ and ​A​aux​, respectively), 

​ ​this example describes how to assess performance differences shown in Tutorial Table 1.  

​
 

Tutorial Table 1: Differences in classification accuracy between main and auxiliary models. 

Case 1 2 3 4 5 6 7 8 9 

A​main 0.85 0.75 0.65 0.40 0.85 0.99 0.99 0.80 0.70 



A​aux 0.75 0.65 0.55 0.30 0.40 0.98 0.90 0.81 0.90 

A​aux​−​A ​main -0.10 -0.10 -0.10 -0.10 -0.45 -0.01 -0.09 0.01 0.20 

 

In the first four cases, the reduction in performance is the same (0.10). Strictly in terms of 

classification accuracy, this decrease in performance is perceived as similar, whether stemming 

from a reduction in performance from 0.85 to 0.75, or from 0.40 to 0.3 (Cases 1 and 4, 

respectively). In this situation, the arithmetic difference between the two performances is 

acceptable as a comparative metric.  

   However​,​ a significance threshold that takes into account the nature of the examined data is 

necessary. A difference of 0.01-0.05 in accuracy can be considered non-significant (negligible) 

for most ML models, but a difference greater than 0.1 is typically considered significant 

(considerable). If the prediction learning task is not considered complex (meaning that high 

performance is easily obtainable during training and testing), a lower threshold should be 

adopted. It is easier to judge the performance gaps as significant or insignificant when the 

difference is very large or very small (Cases 5 and 6, respectively). However, for the 

Generalizability Auditors ​in the auditing protocol, if all gaps are close to a marginally acceptable 

threshold (e.g., ∓0.05), this may reflect the absence of bias and the frameworks can be considered 

generalizable (Case 7).  

   For ​Generalizability Auditors​, performance gaps are logically negative (​A​aux​< ​A ​main​) because a 

model trained on a subset of a dataset is expected to perform better when tested on another 

subset of the same dataset compared to when tested on an independent dataset. However, it is not 

surprising to observe small positive gaps (​A​aux​> ​A ​main​, when a generalization dataset is very 

similar to the training sets in terms of feature vectors (Case 8). However, a large positive value 

(for example >>0.1) should raise concerns and is a reason to audit the generalization dataset 

itself (Case 9). This should be taken into account when designing a performance metric where 

positive and negative performance gaps may occur. For example, in ​Generalizability Auditors​, 
for most ML models, we can consider thresholds of -0.1 and 0.1 as significant decrease and 

increase in accuracy, respectively.  

 

 



Example 2: Comparing AUCs for classification models 

Given the area under the ROC curve (AUC) of the main and auxiliary models (AUC​ ​main​ and 

AUC​aux​, respectively), this example describes how to assess performance differences in Tutorial 
Table 2​​.  
   Very small gaps between the main and auxiliary AUC values (for example, <0.05, in Cases 1 

and 2) are acceptable. However, when these differences increase (for example, >0.1, in Cases 3 

and 4), the absolute value of the AUCs in question becomes important. For example, although 

the two cases show the same decrease in absolute AUC (-0.20), a decrease from 0.90 to 0.70 

means the auxiliary model is still functional while a decrease from 0.70 to 0.50 means the 

auxiliary model is exhibiting random behavior (for the common case of two-class classification 

systems, because random behavior in terms of an AUC is 0.5).  

​Tutorial Table 2: Differences in AUC between main and auxiliary models.  

Case 1 2 3 4 5 

AUC​main 0.90 0.60 0.90 0.70 0.90 

AUC​aux 0.87 0.57 0.70 0.50 0.50 

AUC​aux​− ​AUC ​main -0.03 -0.03 -0.20 -0.20 -0.4 

(AUC​aux​− ​AUC ​main​)/0.5 -0.06 -0.06 -0.40 -0.40 -0.8 

AUC​aux​ /  AUC ​main 0.97 0.95 0.78 0.71 0.56 

(AUC​aux​− ​0.5)/(AUC ​main ​-0.5)  0.93  0.70 0.50 0.00 0.00 

 

Collectively, we conclude that the difference in AUC is not an appropriate measure for 

comparing two AUC values in general and scaling or normalization is needed. Scaling the 

difference in AUC values by 0.5 (​(AUC ​aux​−​AUC ​main​)/0.5) ​does not discriminate between Cases 3 

and 4. Taking the ratio of the two AUC values (​AUC ​aux​ /  AUC ​main​) seems more reasonable, but 

the absolute value of that ratio is not intuitive. Subtracting 0.5 from both AUC values before 

calculating the ratio (​(AUC​aux​−​0.5)/(AUC ​main ​-0.5) ​) is potentially appropriate since it scales the 



ratio of the AUC values relative to the reference point of 0.5. If this last metric is selected, 

attention should be paid to its suitability for assessing differences in Cases 1 and 2.  

 

Example 3: Comparing mean absolute error for regression models.  

​ ​

Mean absolute error (MAE) is a standard regression performance metric. MAE equals the 

average of the absolute difference between the expected (target or true values) and predicted 

values for all points in a dataset using the same regression model. Given the MAE of the main 

and auxiliary models (MAE​ ​main​ and MAE​ ​aux​, respectively), this example describes how to assess 

performance differences in Tutorial Table 3.  

 

​Tutorial Table 3: Differences in MAE between main and auxiliary models. 

Case 1 2 3 

MAE​main 40 400 4,000 

MAE​aux 30 300 3,000 

MAE​aux​−​MAE ​main 10 100 1,000 

MAE​aux​ /  MAE ​main 0.75 0.75 0.75 

(MAE​aux​− ​MAE ​main​)/MAE ​main 0.25 0.25 0.25 

(MAE​aux​− ​MAE ​main​)/Mean, Mean = 1000 0.01 0.1 1 

(MAE​aux​− ​MAE ​main​)/Mean, Mean = 100 0.1 1 10 

(MAE​aux​− ​MAE ​main​)/(max-min), max = 500, min = 0 0.02 0.2 2 

 

Unlike accuracy and AUC, MAE does not rely on a reference point to indicate bad performance. 

Thus, taking the difference (​MAE ​aux​− ​MAE ​main​), ratio ( ​MAE ​aux​ /  MAE ​main​), or scaled difference 

(​(MAE ​aux​−​MAE ​main​)/MAE ​main​) does not quantify how good or bad the gap between the two 

performances is.  



   Thus, a normalization factor is needed to account for the magnitude of the performance 

difference relative to the expected range of value in this problem. For example, a regression 

problem where the output values are expected to be in the range of 1,000 - 10,000 can tolerate 

errors of 30 and 40 (Case 1), but errors in the thousands (3,000 and 4,000 in Case 3) cannot be 

tolerated. For that, dividing the difference by the mean of the expected output values can be a 

reasonable metric. Also, dividing the difference by the acceptable range is a reasonable metric if 

the output points are uniformly distributed across this range. Different cases need to be examined 

for an adopted metric in order to determine the thresholds of acceptable differences along the 

guidelines mentioned above. 

 

 

Tutorial 3: Bias interrogation - Examining generalizability gaps for 

framework bias potential   

Generalizability gaps are metrics used in ​Generalizability Auditors​ to assess the difference in 

performance of an ML framework when tested on an independent generalization dataset 

compared to its claimed performance (usually when trained and tested on subsets of the same 

dataset). When examining the generalizability gaps in the ‘bias interrogation’ step to determine if 

the framework of interest​ F​1​ is biased, we first examine the generalizability gaps of all versions 

of ​F​1​ (​F​11​, F​12​,...), where ​F​1​ is trained on different datasets (​D​1​, ​D​2​,...) and tested on 

generalizability datasets (​D​g1​, D​g2​, …). This is equivalent to singling out the columns 

corresponding to framework ​F​1​ versions from each generalization performance matrix (G1, G2, 

…, tested on different ​D​gx​) and subtracting them from the corresponding column in the 

benchmarking matrix ​B​ (see the auditing protocol in Supplementary Note 1 for details). This 

tutorial explains Step 8 in the protocol.  

 

For this tutorial, assume that the performance is measured in classification accuracy and a 

threshold of -5% is set as a significant decrease in accuracy in generalization performance and a 

5% upper bound is set as an insignificant increase in accuracy (increase of <5% is considered 

insignificant).  

 



[Scenario 1]  
In Case (a)​​ (​Tutorial Table 4), consider the gaps for the generalizability datasets ( ​D​​g1​-D​g4​) 
for the first five variants of F​ ​1​ (F​ ​11​-F​15​). In all cases, the gaps are smaller in size (>-5%) than the 
threshold of significant performance decrease or slightly better than zero, but not to a significant 

extent (< 5%). Such small increase in performance can happen when the generalization dataset 

examples belong to subpopulations that are well represented in the training data and followingly 

are accurately scored by the model. Overall, having all gaps within the acceptable performance 

range (5%> gap >-5%) strongly suggests that F​ ​1​ is unbiased and the auditing process can be 

terminated here.   

Tutorial Table 4: ​Generalizability gaps (%) for a framework of interest F ​1​ trained on six datasets 

(producing different frameworks F​11​-F​16​) and tested on generalizability datasets D​g1​-D​g5​ in two 

cases (a) and (b).  

 Case (a) Case (b) 

 D​g1 D​g2 D​g3 D​g4 D​g5 D​g1 D​g2 D​g3 D​g4 D​g5 

F​11 -2.2 -1.4 -4.0 1.0 -5.0 -6.0 -5.4 -14.0 -6.0 -.2 

F​12 -1.9 -0.9 -3.8 0.8 -5.1 -6.1 -6.9 -18.8 -8.8 -1.9 

F​13 -1.8 0.0 -4.1 1.3 -6.3 -5.3 -4.8 -11.1 -9.3 -1.8 

F​14 -2.1 1.0 -4.3 1.7 -4.5 -6.9 -9.3 -14.3 -6.7 -2.1 

F​15 -2.3 -1.1 -3.5 2.1 -7.3 -7.4 -5.1 -13.5 -7.1 -2.3 

F​16 -18.3 -13.5 -11.2 -9.8       

 

 

[Scenario 2] Now consider the previous situation but for generalizability datasets ​D ​g1​-D​g5​. The 

performance of all variants of ​F​1​ ( ​F​11​-F ​15​) for ​D ​g5​ slightly exceeds the acceptable gap threshold. 

This can indicate that the examples of ​D ​g5​ belong to less represented subpopulations in all the 

training data or that ​F​1​ is slightly biased against these subpopulations. However, since the gaps 

are not much higher than the arbitrary threshold, and this situation only occurred for a single 



generation dataset, it is legitimate to consider F​ ​1​ unbiased and to terminate the auditing process 

at this stage. However, it is recommended to look into the gaps of the other frameworks (F​ ​2​, 

F​3​,...​) for ​D​g5​ and to confirm that this dataset is a true outlier (see Tutorial 4). This especially 

holds if the number or diversity of the generalization datasets is not sufficient to ignore the gaps 

of F​ ​1​ variants for ​D​g5​.  

 
[Scenario 3] Now consider another scenario from Tutorial Table 4 ​ for all framework variants  

(​F ​​11​-F ​16​) against the first four generalization datasets (D​​g1​-D​g4​). While all other framework varian

ts have gaps within the acceptable variation range, the gaps of F ​​16​ ​are noticeably larger than the 

acceptable threshold for all generalization datasets. This suggests a potential bias in the training 

data D​ ​6​ on which the framework variant ​F​16​ was trained. At this point, similarly to Scenario 2, F​ ​1 
can be considered unbiased and the auditing process can be terminated here. However, it is 

recommended to look into the gaps of the other frameworks trained on D​ ​6​ (​F​26​, F​36​,...​) and to 

confirm the training dataset D​ ​6​ is a true outlier.  

   

[Scenario 4] In Case (b)​ ​, consider the gaps for the generalizability datasets (D​ ​g1​-D​g4​). The gaps 

for all cases are mostly larger than (or in a few cases slightly smaller than) the threshold for a 

significant performance decrease. This is a straightforward signal that F​ ​1​ is biased and needs to 

be audited.  

 

[Scenario 5] Now consider another situation where the gaps belong to the generalizability 

datasets (D​ ​g1​-D​g5​). For D​ ​g5​, gaps of all variants of F​ ​1​ are below the significance threshold. This 

can indicate that the examples of D​ ​g5​ belong to the more represented subpopulations in all the 

training data or that F​ ​1​ has a little bias against these subpopulations. Since this situation only 

occurred for a single generalization dataset, considering F​ ​1​ unbiased is not justified, and thus ​F​1 

still needs to be audited.  

 

 

  



Tutorial 4: Bias interrogation - identifying the source of the bias 

If examining the framework generalizability gaps is inconclusive (​Tutorial 3​), it is important to 

co-examine the generalizability gaps of the other frameworks as well to determine whether the 

bias is associated with i) the framework of interest, ii) training datasets, iii) benchmarking 

datasets, or iv) general to all frameworks. If the bias is associated with the framework of interest, 

co-examining the other frameworks can point to biases in components of the frameworks that are 

shared as well.  

In Scenario 3 of Tutorial 3 ​ (​​Tutorial Table 4, Case ​a​​), all framework variants have gaps within 

the acceptable variation range except F ​​16​ , for which all gaps exceed the acceptable threshold of  

decrease in performance (across all generalization datasets). This pattern suggests that  
the training set D​​6​ might be biased. To confirm this, the user should examine the gaps of the other 
frameworks when trained on D​​6​ (Tutorial Table 5 ​).​  

Tutorial Table 5: ​Generalizability gaps (%)  for frameworks F ​1​-F ​5 ​trained and tested on subsets 

of dataset D ​6​, and tested for generalization on generalization datasets D ​g1​-D​g4​ in three different 

cases a ,b and c. 

 Case a Case b Case c 

 D​g1 D​g2 D​g3 D​g4 D​g1 D​g2 D​g3 D​g4 D​g1 D​g2 D​g3 D​g4 

F​16 -18.3 -13.5 -11.2 -9.8 -18.3 -13.5 -11.2 -9.8 -18.3 -13.5 -11.2 -9.8 

F​26 -11.9 -7.9 -13.8 -10.8 -1.9 -0.9 -0.8 -0.1 -1.9 -0.9 -0.8 -0.1 

F​36 -11.8 -9.0 -15.1 -11.3 -0.8 -1.0 0.3 -2.3 -0.8 -1.0 0.3 -2.3 

F​46 -12.1 -11.0 -8.3 -13.7 -2.1 -2.1 1.0 -3.2 -2.1 -2.1 1.0 -3.2 

F​56 -21.3 -21.1 -13.5 -7.1 -21.3 -21.1 -13.5 -7.1 -1.3 -4.1 2.3 -3.1 

 

In ​Case​ a ​​(Tutorial Table 5), all frameworks trained on the same dataset ​D​​6 ​ consistently do not 

generalize to any other dataset. This suggests a bias within training dataset D​​6​ and not the 



framework of interest ​F​1​ (as long as the same behaviour is not repeated with the other training 

datasets). At this stage, ​F​1​ can be declared unbiased and the auditing process can be terminated. 

However, it is very useful to audit ​D​6​ to understand what may have caused this bias, which can 

give more insights into the machine learning process.  
 

In ​Case​ b ​​(Tutorial Table 5 ​), another framework ( ​F ​​5​) exhibits non-generalizability that is comp

arable to F ​1​ for all datasets when trained on ​D​6​, while the other frameworks do not. This can  

indicate that F ​1​ and ​F ​5​ have a shared component that is biased. In the Bias Identification module   

of the auditing protocol, one can identify which component is introducing the bias by comparing 

all components of F ​​1​ and ​F ​5​.  

 

In ​Case ​ ​c ​(​Table 5 ​), there is no framework exhibiting non-generalizability on all datasets as 

observed for ​F​1​ trained on ​D​6​, which suggests that ​F ​1​ has a unique component that introduces the 

bias when trained on ​D​6​. In the Bias Identification module of the auditing protocol, one can 

identify which component is introducing the bias by comparing all components of ​F​1​ to those of 

the other frameworks.  

 

If we consider a situation corresponding to Scenario 3 of Tutorial 3 (​Table 4​, Case ​a​) where 

framework ​F​1​ is not generalizable to any generalization dataset. The user first needs to look at 

the generalizability gaps of the other examined frameworks. Here are possible scenarios:  

a. All other frameworks are generalizable. In this case, there must exist at least a single 

component of ​F​1​ that introduces the bias. By comparing the behaviour of each component 

of ​F ​1​ with the corresponding components of the other frameworks, the biased component 

can be identified.  

b. Some frameworks are not generalizable, similarly to ​F1​, while the remaining ones are. In 

this case, the non-generalizable frameworks may share a component with ​F1​ or have 

divergent components that behave similarly and introduce analogous biases. To resolve 

this situation: 

i. The user must examine shared components among the non-generalizable 

frameworks that do not exist in the generalizable frameworks.  



ii. If the biased component is not identified, there may be analogous components 

(between ​F1​ and the other non-generalizable frameworks) that behave similarly in 

terms of biases. This needs a deeper investigation into how each component of 

these behaves for each framework.  

iii. Finally, if nothing is identified yet, the user will need to examine combinations of 

two or more components that are shared among the non-generalizable 

frameworks, but not among the generalizable frameworks, to account for the 

possibility that certain combinations of components may introduce a bias, 

although no individual component does this.  

c. All other frameworks are similarly non-generalizable. This indicates a general bias across 

all frameworks.  

i. First, the user needs to exclude that the generalization datasets differ in quality or 

processing from the training datasets. For example, the training datasets may each 

be the results of a single stringent experiment while the generalization datasets are 

from curated noisy datasets. Another example is that the two sets are processed 

using different pipelines with divergent assumptions.  

ii. If there is no common difference between the two sets, examine shared 

components among all frameworks. For example, they all may share a 

preprocessing step that introduces the bias.  

iii. If no single component is shared among all frameworks, examine components that 

have similar behavior among all frameworks. For example, input features can be a 

global sum of input entities without local features. Alternatively, all ML models 

may be assuming independence between input features. 

iv. If no single component is identified in (ii) nor (iii), repeat the two steps assuming 

combinatorial effect of components by examining two components at a time.  

v. If the bias source remains unidentified, there can be a bias inherited in the type of 

biological data utilized in this problem that all frameworks capture, such as is the 

case with protein-protein interaction data in the Main Text.  

  



Supplementary Figure 

 

Supplementary Figure 1​: Performance gap (measured by the difference in AUC between 

reported/ benchmarked and independent testing performances) for the seven PPI classifiers, 

F1-F7, when benchmarked on datasets D1 ​(a)​ and D2 ​(b)​ and tested on dataset D3 before (pink) 

and after (blue) removing the node degree representational bias. 
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