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Section I: Bayesian models for ECLIPSE and SPIROMICS 
 

Both ECLIPSE(1) and SPIROMICS(2) categorized each patient-year as being associated with 0, 1, or 2+ (2 or 

more) AECOPDs. This results in 27 different combination of AECOPD patterns over three years. Both studies 

provided data on the number of individuals who fell into each of the 27 categories. 

Let Yi,j be the observed number of AECOPDs for the ith patient in the jth year.  

The “unstable underlying rate” model was specified as 

𝑌𝑖,𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖,𝑗) 

𝜆𝑖,𝑗~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 

In this model, the underlying AECOPD rate, specified by 𝜆𝑖,𝑗, takes different values for each patient in each year 

(therefore there is no stable underlying rate). 

The “stable underlying rate” model was specified as  

𝑌𝑖,𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) 

𝜆𝑖~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 

In this model, the underlying AECOPD rate, specified by 𝜆𝑖, takes a fixed value for each patient, but remains the 

same across follow-up years for each patient (therefore there is a stable underlying rate). 

The OpenBUGS(3) code for the models is provided below. We note that because 𝑌𝑖,𝑗 is truncated (follow-up years 

with 2 or more AECOPDs are coded as 2), the internally programmed Poisson distribution in OpenBUGS could not 

be used. Instead, we used the “zero trick” approach to directly implement the probability mass function of the 

truncated Poisson distribution(4, p.353). 

We also examined the choice of the Normal distribution in place of the Gamma to model the underlying AECOPD 

rates: 

ln(𝜆𝑖,𝑗)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝑣) for the ‘unstable underlying rate’; 

ln(𝜆𝑖)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝑣) for the ‘stable underlying rate’. 

. 

Among these variants, we chose two final models, one for the ‘unstable underlying rate’, and one for the ‘stable 

underlying rate’, based on the likelihood. We note that the use of penalized goodness-of-fit metrics is not required in 

this context because all four models have the same number of fixed parameters (p=2). Table S1 provides the results. 

For both cohorts, and for both the ‘unstable underlying rate’ and ‘stable underlying rate’ models, the versions based 

on the gamma distribution better fitted the data. 

Table S1: Goodness-of-fit measures (log-likelihood) of the models (the higher the better) 

Model ECLIPSE SPIROMICS 

Unstable underlying rate 

Gamma -5346 -2532 

Normal -5346 -3992 

Stable underlying rate 

Gamma -4856 -2385 

Normal -4896 -4337 

All results are based on 1,000 Markov Chain Monte Carlo simulations after 

1,000 burn-ins (for adaptation) 
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Section II: Results based on alternative definition of the frequent-exacerbator group 

 

1. American Thoracic Society (ATS) definition of frequent exacerbator (≥1 moderate/severe AECOPD) 

Figure S1. Probability of being classified into different 

exacerbator phenotypes over two consecutive years given a stable 

underlying AECOPD rate. 

 
 

 

2. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) (≥2 moderate AECOPD or ≥1 severe 

AECOPD) 

Because the GOLD definition of frequent exacerbator uses separate thresholds for moderate and severe 

AECOPDs, this analysis required one additional parameter: the rate ratio of severe to moderate + severe 

AECOPDs. For consistency with the overall content, we used data from the ECLIPSE and SPIROMICS studies 

to estimate this ratio. In ECLIPSE, 18.2% of AECOPDs in the first year were severe; this value was 24.3% for 

SPIROMICS. This results in a sample-size-weighted average rate ratio of 20.3%. 

Figure S2. Probability of being classified into different exacerbator 

phenotypes over two consecutive years given a stable underlying AECOPD 

rate. 
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Section III: OpenBUGS code for the final model 
 
#ECLIPSE (data are coded as cumulative sum) 

list(n_total=1.67900E+03, cumul_margin=c(0.00000E+00, 3.87000E+02, 4.89000E+02, 5.24000E+02, 6.26000E+02, 6.78000E+02, 7.13000E+02, 7.48000E+02, 

7.83000E+02, 8.01000E+02, 8.86000E+02, 9.38000E+02, 9.56000E+02, 1.00700E+03, 1.04200E+03, 1.07700E+03, 1.11200E+03, 1.14700E+03, 1.19800E+03, 

1.23300E+03, 1.25100E+03, 1.26900E+03, 1.30400E+03, 1.33900E+03, 1.39000E+03, 1.40800E+03, 1.47600E+03, 1.67900E+03)) 

 

 

#SPIROMICS (data are coded as cumulative sum) 

list(n_total=1.10500E+03, cumul_margin=c(0.00000E+00, 5.64000E+02, 6.37000E+02, 6.57000E+02, 7.43000E+02, 7.67000E+02, 7.77000E+02, 8.12000E+02, 

8.34000E+02, 8.55000E+02, 9.09000E+02, 9.21000E+02, 9.30000E+02, 9.51000E+02, 9.59000E+02, 9.62000E+02, 9.75000E+02, 9.88000E+02, 1.00000E+03, 

1.01600E+03, 1.02300E+03, 1.03200E+03, 1.04100E+03, 1.04900E+03, 1.05600E+03, 1.06800E+03, 1.08000E+03, 1.10500E+03)) 

 

 

#Initial values (for both null and stable underlying rate models) 

list(alpha=1, beta=1) 

 

 

 

#unstable underlying rate model 

  model() 

  { 

    for(i in 0:2) 

    { 

      for(j in 0:2) 

      { 

        for(k in 0:2) 

        { 

          for(l in  (cumul_margin[9*i+3*j+k+1]+1):cumul_margin[9*i+3*j+k+2]) 

          { 

            Ns[l,1]<-i 

            Ns[l,2]<-j 

            Ns[l,3]<-k 

          }   

        } 

      } 

    } 

     

     

    for(i in 1:n_total) 

    { 

      for(j in 1:3) 

      { 

        rate[i,j]~dgamma(alpha,beta) 

        p[i,j]<-step(1.5-Ns[i,j])*pow(rate[i,j],Ns[i,j])*exp(-rate[i,j])+step(Ns[i,j]-1.5)*(1-exp(-rate[i,j])-exp(-rate[i,j])*rate[i,j]) 

      } 

       

      p1[i]<-p[i,1]*p[i,2]*p[i,3] 

       

      LL[i]<-log(p1[i]) 

      dummy[i]<-0 

      dummy[i]~dloglik(LL[i]) 

    } 

    alpha~dgamma(0.001,0.001) 

    beta~dgamma(0.001,0.001) 

     

    mu<-alpha/beta 

    var_w<-alpha/beta/beta 

  } 

 

 

 

 

#Stable underlying rate model 

model() 

  { 

    for(i in 0:2) 

    { 

      for(j in 0:2) 

      { 

        for(k in 0:2) 

        { 

          for(l in  (cumul_margin[9*i+3*j+k+1]+1):cumul_margin[9*i+3*j+k+2]) 

          { 
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            Ns[l,1]<-i 

            Ns[l,2]<-j 

            Ns[l,3]<-k 

          }   

        } 

      } 

    } 

     

     

    for(i in 1:n_total) 

    { 

      my_rate[i]~dgamma(alpha,beta) 

      for(j in 1:3) 

      { 

        rate[i,j]<-my_rate[i] 

        p[i,j]<-step(1.5-Ns[i,j])*pow(rate[i,j],Ns[i,j])*exp(-rate[i,j])+step(Ns[i,j]-1.5)*(1-exp(-rate[i,j])-exp(-rate[i,j])*rate[i,j]) 

      } 

       

      p1[i]<-p[i,1]*p[i,2]*p[i,3] 

       

      LL[i]<-log(p1[i]) 

      dummy[i]<-0 

      dummy[i]~dloglik(LL[i]) 

    } 

    alpha~dgamma(0.001,0.001) 

    beta~dgamma(0.001,0.001) 

     

    mu<-alpha/beta 

    var_b<-alpha/beta/beta 

  } 
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