Supplement to:

A novel drug response score more accurately predicts renoprotective drug effects than existing renal risk scores

Content:

- S Table 1: Published and included renal risk scores
- S Table 2A: Characteristics of the populations used to develop the renal risk scores
- S Table 2B: Characteristics of the RENAAL clinical trial population

Figure S1: Calibration plots of the ADVANCE, KFRE, and PRE score

Figure S2: Receiver Operating Curves of the ADVANCE, KFRE, and PRE score

Figure S3: Regression coefficients (β) of covariates included in the PRE score

	Year	Population	Patients, n	Events, <i>n</i> Predictors		Outcome	
Tangri et al. [S1]	2011	CKD stage 3-5	3449	386	eGFR, age, sex, UACR, albumin, phosphate, bicarbonate, calcium	ESRD	
Jardine et al. [S2]	2012	T2D, high renal and/or CV risk	11,140	128	eGFR, retinopathy, sex, UACR, SBP, waist circumference, HbA1c, age at completion formal education	Composite of DSCR to ≥200 µmol/L and ESRD	
Bidadkosh et al. [S3]	2017	T2D, advanced CKD	861	60	UACR, sCr, Hb, age, sex, NT- proBNP, hsTNT	Composite of ESRD and 40% eGFR decline	
Desai et al. [S4]	2011	T2D, anemia, CKD stage 3-4	995	222	Age, sex, race, BMI, insulin use, eGFR, SUN, UPCR, albumin, prior stroke/PAD/HF, cardiac arrhythmia, Hb, CRP, prior AKI, NT-proBNP, TnT	ESRD	
Hoshino et al. [85]	2015	T1D or T2D, CKD stage 1-5	205	NR	Pathological features based on renal biopsy	ESRD	
Johnson et al. [S6]	2008	CKD stage 3-4	9782	323	Age, sex, eGFR, diabetes, anemia, hypertension	ESRD	
Landray et al. [S7]	2010	CKD stage 3-5	382	190	Sex, UACR, phosphate, sCr	ESRD	

Supplement Table 1. Identified renal risk scores that were developed in populations including patients with type 2 diabetes and/or diabetic kidney disease. The risk scores marked grey in the table below are used in the present study.

Li et al.	2016	T2D	604	22	HbA1c, eGFR, proteinuria, VAP-1	ESRD
[58]					Age sex eGER Hb proteinuria	
Schroeder et al. [S9]	2017	CKD stage 3-4	22,460	737	SBP, antihypertensive treatment, diabetes	ESRD
Xie et al. [S10]	2016	CKD stage 3-5 Low socio-economic status	28,779	1730	Age, sex, race, eGFR, dipstick proteinuria	ESRD

T2D, type 2 diabetes; CKD, chronic kidney disease; CV, cardiovascular; DSCR, doubling of serum creatinine; ESRD, end-stage renal disease; UACR, urine albumin: urine creatinine ratio; sCr, serum creatinine; Hb, haemoglobin; NT-proBNP, N-terminal pro-brain natriuretic peptide; hsTNT, high sensitivity troponin T; BMI, body mass index; eGFR, estimated glomerular filtration rate; SUN, serum urea nitrogen; UPCR, urine protein: urine creatinine ratio, PAD; peripheral arterial disease; HF, heart failure; CRP, C-reactive protein; AKI, acute kidney injury; SBP, systolic blood pressure; HbA1c, glycated haemoglobin; VAP-1, vascular adhesion protein 1.

	Study	Population	Outcome	Patients, <i>n</i>	Events, n	Median FU, y	Predictors	Validation **
KFRE	Tangri 2011 [S1]	CKD stage 3-5	ESRD after 1, 3 and 5 y	3449	386	2.1	Age, sex, alb, eGFR, ACR, ca, phos, HCO3	External
ADVANCE	Jardine 2012 [S2]	T2D, high renal and/or CV risk	Composite renal outcome after 5 y	11140	128	4.4	Sex, eGFR, retn, ACR, SBP, waist circ, HbA1c, education age	Internal
PRE score	Parving 2012 [S11]	T2D, high renal and/or CV risk	Composite renal outcome / ESRD	4287	ESRD: 110 Comp: 248	2.7	ACR, SBP, HbA1c, Hb, uric	External
	Packham 2012 [S12]	T2D, overt proteinuria	Composite renal outcome / ESRD	598	ESRD: 9 Comp: 30	0.8	acid, TC, BMI, K	External
	Lewis 2001 [S13]	T2D, overt proteinuria	Composite renal outcome / ESRD	569	ESRD: 101 Comp: 158	2.6		

Supplement Table 2A. Characteristics of the populations used to develop the renal risk scores.

* Defined as a doubling of serum creatinine to ${\geq}200~\mu mol/L$ or ESRD

** Internally validated scores are tested in the dataset used to develop the risk model. Externally validated scores are additionally tested in a different dataset that is not used for development.

Supplement Table 2B. Characteristics of the RENAAL clinical trial population.

Study	Inclusion criteria	Intervention	Primary outcome	Event rate, <i>N/n (%)</i>	Median FU, y
RENAAL [S14]	T2D, ACR>300 mg/g sCr 1.3-3.0 mg/dl	Losartan 100 mg/day on top of standard care	Composite of DSCR, ESRD and death	Placebo: 359/762 (47.1) Losartan: 327/751 (43.5)	3.4

CKD, chronic kidney disease; T2D, type 2 diabetes; CV, cardiovascular; ESRD, end-stage kidney disease; FU, follow-up; alb, serum albumin; eGFR, estimated glomerular filtration rate; retn, retinopathy; ACR, urine albumin: urine creatinine ratio; ca, serum calcium; phos, serum phosphate; HCO3. Serum bicarbonate; SBP, systolic blood pressure; waist circ, waist circumference; HbA1c, glycated haemoglobin; education age, age at completion of formal education; Hb, haemoglobin; TC, total cholesterol; BMI, body mass index; K, potassium; sCr, serum creatinine; DSCR, doubling of serum creatinine.

Supplement Figure 1. Observed versus predicted risk for the composite renal outcome of doubling of serum creatinine to $\geq 200 \ \mu mol/L$ or ESRD based on predictions by the ADVANCE risk score and the PRE score (A) and for the separate ESRD endpoint based on predictions by the KFRE and the PRE score (B).

Supplement Figure 2. Receiver operating curves (ROC) for the composite renal endpoint of doubling of serum creatinine to $\geq 200 \ \mu mol/L$ or ESRD based on predictions by the ADVANCE risk score and the PRE score (A) and for the separate ESRD endpoint based on predictions by the KFRE and the PRE score (B).

Supplement Figure 3: Regression coefficients (β) of covariates included in the PRE score are consistent in various patient subgroups from the background population used to derive the PRE score

÷	Hba1c (%)	SBP (mmHg)	UACR (mg/g)	BMI (kgm²)	Total Cholesterol (mg	/dL) K (mmol/L)	K ² (mmol/L)	Hemoglobin (mg/dL)	Uric acid (mg/dl
Total (n= 4380)	- 101	ы	ю	ы	юч	ф	Ю	ъ	ю
UACR>0 mg/g (n= 4380)	0-	-0-	-0-	-0-	-0-	5	ъ	-0-	-0-
UACR>30 mg/g (n= 3355)	- 101	н о ч	нон	-O-I	HQH	юч	юч	юч	юч
IACR>300 mg/g (n=1366)		-0-	-0	÷	-0-	÷	-0-	-0-1	-0-
IACR>1000 mgig (n=718)		- 		- -	01	÷	ю	⊢₀⊣	
eGFR>20 (n=4226)	0	-0-	-0-	÷	-0	ч	-0-	ъ	-Q-
eGFR 20-50 (n=2167)		нон	нон	нон	⊢⊙⊣	юч	нон	нон	нoн
eGFR 20-70 (n=3306)	0-	- 0-	-0-	-0-	- 0- -	ъ	юч	чοч	-0-
eGFR 20-90 (n=3820)		-0-1	юч	ноч	-0-1	-0-	юч	юч	HOH
SBP>130 mmHg (n=3033)		-0	-0-	-0-	-0-	ъ	-0-	-0-	-0-
SBP>140 mmHg (n=2099)		i	H0H	H0-1	⊢0 ⊣	ю	H0H	нон	-0-1
S8P>150 mmHg (n=1283)			нон	нон	-0-1	нон	нон	нон	
Age>40 years (n=4216)	0-1	-0-	101	н о -1	-0-1	μQu	-01	ъ	-0-
Age>50 years (n=3752)		нон	нон	ноч	-0-1	ю	юн	нон	-0-1
Age>60 years (n=2491)			-0-1	O '		-0-	-0-1		
Male (n=2950)		юч	юч	Б	нон	ъ	юч	ъ	ноч
Female (n=1329)			-0-	0		- o			-0-
Smoker (n=689)				⊢⊖ −i				<u>нон</u>	
Non smoker (n=3602)	0-1	-0-1	-0-	-0-1	-0-1	ч о ч	-0-	-0-1	-0-
CVD (n=1111))				⊢ ₀−1		H-0-1		<u>— о – і</u>	
No CVD (n=3178)		~~~	-0-	-0	-0-	-0-	-0-	- O -	-0-
	-0.2 0.0 0.2 0.4	+0.02 0.00 0.02	0.5 1.0 1.5 2.0 -0.1	0-0.05 0.00 0.05 -0.01	10 -0.005 0.000 0.005 0.010	-10 0 10	-1 0 1	-0.6 -0.4 -0.2 0.0	-0.2 0.0 0.2
	B (95%CI)	β (95%CI)	β (95%CI)	B (95%CI)	B (95%CI)	B (95%CI)	B (95%CI)	β (95%Ci)	B (95%CI)

Supplementary references

S1. Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D *et al*. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011; 305: 1553-1559.

S2. Jardine MJ, Hata J, Woodward M, Perkovic V, Ninomiya T, Arima H *et al.* Prediction of kidney-related outcomes in patients with type 2 diabetes. Am J Kidney Dis 2012; 60: 770-778.

S3. Bidadkosh A, Lambooy SPH, Heerspink HJ, Pena MJ, Henning RH, Buikema H *et al.* Predictive Properties of Biomarkers GDF-15, NTproBNP, and hs-TnT for Morbidity and Mortality in Patients With Type 2 Diabetes With Nephropathy. Diabetes Care 2017; 40: 784-792.

S4. Desai AS, Toto R, Jarolim P, Uno H, Eckardt KU, Kewalramani R *et al.* Association between cardiac biomarkers and the development of ESRD in patients with type 2 diabetes mellitus, anemia, and CKD. Am J Kidney Dis 2011; 58: 717-728.

S5. Hoshino J, Mise K, Ueno T, Imafuku A, Kawada M, Sumida K *et al*. A pathological scoring system to predict renal outcome in diabetic nephropathy. Am J Nephrol 2015; 41: 337-344.

S6. Johnson ES, Thorp ML, Platt RW, Smith DH. Predicting the risk of dialysis and transplant among patients with CKD: a retrospective cohort study. Am J Kidney Dis 2008; 52: 653-660.

S7. Landray MJ, Emberson JR, Blackwell L, Dasgupta T, Zakeri R, Morgan MD *et al.* Prediction of ESRD and death among people with CKD: the Chronic Renal Impairment in Birmingham (CRIB) prospective cohort study. Am J Kidney Dis 2010; 56: 1082-1094.

S8. Li HY, Lin HA, Nien FJ, Wu VC, Jiang YD, Chang TJ *et al*. Serum Vascular Adhesion Protein-1 Predicts End-Stage Renal Disease in Patients with Type 2 Diabetes. PLoS One 2016; 11: e0147981.

S9. Schroeder EB, Yang X, Thorp ML, Arnold BM, Tabano DC, Petrik AF *et al.* Predicting 5-Year Risk of RRT in Stage 3 or 4 CKD: Development and External Validation. Clin J Am Soc Nephrol 2017; 12: 87-94.

S10. Xie Y, Maziarz M, Tuot DS, Chertow GM, Himmelfarb J, Hall YN. Risk prediction to inform surveillance of chronic kidney disease in the US Healthcare Safety Net: a cohort study. BMC Nephrol 2016; 17: 57-016-0272-0.

S11. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD *et al.* Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 2012; 367: 2204-2213.

S12. Packham DK, Wolfe R, Reutens AT, Berl T, Heerspink HL, Rohde R *et al.* Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J Am Soc Nephrol 2012; 23: 123-130.

S13. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB *et al*. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345: 851-860.

S14. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH *et al.* Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345: 861-869.