Supporting Information

Active Bromoaniline–Aldehyde Conjugate Systems and Their Complexes as Versatile Sensors of Multiple Cations with Logic Formulation and Efficient DNA/HSA Binding Efficacy: Combined Experimental and Theoretical Approach

Manik Das,^a Somali Mukherjee,^{b,*} Paula Brandao,^c Saikat Kumar seth,^d Santanab Giri,^e Soumya Sundar Mati,^f Bidhan Chandra Samanta,^g Soumik Laha,^h Tithi Maity^{a,*}

^a Department of Chemistry, P. K. College, Contai, Purba Medinipur, West Bengal 721404, India.

^b Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.

^c Departamento de Química/CICEC, Universidade de Aveiro

^d Department of Physics, Jadavpur University, Kolkata, India.

^e Department of Chemistry, HIT, Haldia, India

^f Department of Chemistry, Government General Degree College, Keshiary, India

^g Department of Chemistry, Mugberia Gangadhar Mahavidyalaya, Purba Medinipur, West Bengal India

^h IICB, Kolkata

E-mail: <u>titlipkc2008@gmail.com</u> & <u>somalimukherjee1993@gmail.com</u>

Sl. No.	Index	Page No.
1.	IR spectrum of complex 1 and 2 (Figure S1)	S 3
2.	UV spectrum of complex 1 and 2 (Figure S2)	S 3
3.	Selected bond lengths and angles table of complex 1 and 2 (Table S1)	S4
4.	Change of fluorescence intensity after addition of different analysts (60 μ M) to a fixed concentration of ligand HL ₁ and HL ₂ (40 μ M) DMSO/H ₂ O HEPES buffer solution (Figure S3)	S4
5.	Stern-Volmer graph for detection of quenching constant of HL_1 after addition of Cu^{2+} ion (Figure S4)	S 5

6.	Change of Fluorescence emission intensity of (a) HL_1 as a function of Cu^{2+} ion and (b) HL_2 as a function of Zn^{2+} ion for detection limit calculation (Figure S5)	S 5
7.	UV spectral titration of (a) HL_1 with Cu^{2+} and (b) HL_2 with Zn^{2+} ion solution respectively (Figure S6)	S6
8.	Stability in DMSO/H ₂ O 9:1 HEPES buffer medium at different pH and the stability in DMSO/water (9:1) solvent at a fixed pH value (7.4) by means of time–scan experiment of (a) HL_1 and (b) HL_2 (Figure S7)	S6
9.	Naked eye colour changes after addition of Al^{3+} and Hg^{2+} to complex 2 in the presence of different cations in 9:1 (DMSO/H ₂ O) HEPES buffer (pH = 7.4) solution (Figure S8)	S7
10.	Stern-Volmer graph for detection of quenching constant of complex 2 after addition of (a) Al^{3+} ion and (b) Hg $^{2+}$ ion (Figure S9)	S7
11.	Change of Fluorescence emission intensity of complex 2 as a function of (a) Al^{3+} ion and (b) Hg^{2+} ion for detection limit calculation (Figure S10)	S8
12.	Absorption titration spectra of (a) complex 1 (b) complex 2 in absence and presence of ct-DNA. Inset: best fitting graph for binding affinity calculation (Figure 11)	S 8
13.	Change of Emission spectra of the ctDNA-EtBr complex with addition of increasing concentration of (a) Complex 1 (b) Complex 2 and in inset the fractional fluorescence (F^0/F) plot of CT-DNA-EtBr as a function concentration of the complexes (Figure S12)	S9
14.	Change of Emission spectra of the ctDNA-DAPI complex with addition of increasing concentration of (a) Complex 1 (b) Complex 2 and in inset the fractional fluorescence (F^0/F) plot of CT-DNA-DAPI as a function concentration of the complexes (Figure S13)	S9
15.	CD spectra of ctDNA in CP buffer in the presence and absence of (a) complex 1 and (b) 2 (Figure 14)	S10
16.	UV-Vis spectral analysis of complexes in tris buffer medium (Figure S15)	S10
17.	Docked binding energy and other parameters of complex 1 and complex 2 with HSA and ctDNA (Table S2)	S11

Figure S1. IR spectrum of complex (a) 1 and (b) 2.

Figure S2. UV spectrum of complex 1 and 2.

Bond length (Å)						
Complex 1		Complex 2				
Cu1-O1	1.888(4)	Zn1-O1	1.899(3)			
Cu1-N1	2.011(3)	Zn1-N1	2.022(3)			
Bond angle (°)						
Complex 1		Complex 2				
Con	plex 1	Com	plex 2			
O1-Cu1-N1	90.83(14)	O1-Zn1-N1	96.60(11)			
O1-Cu1-N1 01-Cu1-N1a	90.83(14) 89.17(14)	O1-Zn1-N1 N1-Zn1-N1a	96.60(11) 122.03(11)			
Con 01-Cu1-N1 01-Cu1-N1a N1-Cu1-N1a	90.83(14) 89.17(14) 180	O1-Zn1-N1 N1-Zn1-N1a O1-Zn1-O1a	96.60(11) 122.03(11) 119.60(12)			

Table S1. Selected bond length and bond angle table of Complex 1 and 2.

Figure S3. Change of fluorescence intensity after addition of deferent analytes (60 μ M) to a fixed concentration of ligand (a) **HL**₁ and (b) **HL**₂ (40 μ M) DMSO/H₂O

Figure S4. Stern-Volmer graph for determination of quenching constant of HL_1 after addition of Cu^{2+} ion.

Figure S5. Change of Fluorescence emission intensity of (a) HL_1 as a function of Cu^{2+} ion and (b) HL_2 as a function of Zn^{2+} ion for detection limit calculation.

Figure S6. UV spectral titration of (a) HL_1 with Cu^{2+} and (b) HL_2 with Zn^{2+} ion solution respectively.

Figure S7. Stability in DMSO/H₂O (9:1) HEPES buffer medium at different pH and the stability in DMSO/water (9:1) solvent at a fixed pH value (7.4) by means of time–scan experiment of (a) HL_1 and (b) HL_2

Figure S8 Naked eye colour changes after addition of Al^{3+} and Hg^{2+} to complex **2** in the presence of different cotions in 9:1 (DMSO/H₂O) HEPES buffer (pH = 7.4) solution.

Figure S9. Stern-Volmer graph for detection of quenching constant of complex 2 after addition of (a) Al^{3+} ion and (b) Hg $^{2+}$ ion.

Figure S10. Change of fluorescence emission intensity of complex **2** as a function of (a) Al^{3+} ion and (b) Hg^{2+} ion for detection limit calculation.

Figure 11. Absorption titration spectra of (a) complex 1 (b) complex 2 in absence and presence of ct-DNA. Inset: best fitting graph for binding affinity calculation.

Figure S12. Change of Emission spectra of the ctDNA-EtBr complex with addition of increasing concentration of (a) Complex 1 (b) Complex 2 and in inset the fractional fluorescence (F^0/F) plot of CT-DNA-EtBr as a function concentration of the complexes.

Figure S13. Change of Emission spectra of the ctDNA-DAPI complex with addition of increasing concentration of (a) Complex 1 (b) Complex 2 and in inset the fractional fluorescence (F^0/F) plot of CT-DNA-DAPI as a function concentration of the complexes.

Figure S14. CD spectra of ctDNA in CP buffer in the presence and absence of (a) complex 1 and (b) 2

Figure S15. UV-Vis spectral analysis in tris buffer medium of (a) complex 1 and (b) 2.

Table S2. Docked binding energy and other parameters of complex 1 and complex 2 with HSA and ctDNA.

HSA							
Complex	Binding energy (kcal/mol)	Ligand Efficiency	Intermolecular Energy (kcal/mol)				
1	-8.96	-0.26	-9.55				
2	-8.29	-0.25	-8.89				
ctDNA							
Complex	Binding energy (kcal/mol)	Ligand Efficiency	Intermolecular Energy (kcal/mol)				
1	-5.61	-0.22	-6.20				
2	-5.96	-0.26	-6.55				