Supporting Information for Publication

Specific and Rapid SARS-CoV-2 Identification Based on LC-MS/MS analysis

Ofir Schuster^{1*#}, Anat Zvi², Osnat Rosen³, Hagit Achdout¹, Amir Ben-Shmuel¹, Ohad Shifman², Shmuel Yitzhaki⁴, Orly Laskar¹ and Liron Feldberg⁵*[#]

¹ Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel

² Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel

³ Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona, Israel

⁴ Israel Institute for Biological Research, Ness Ziona, Israel

⁵ Department of Analytical Chemistry Israel Institute for Biological Research, Ness Ziona, Israel

* Corresponding author

[#] Equal contribution

Figure S1: S and N proteins sequences and their predicted tryptic peptides

<u>S protein</u>

MFVFLVLLPLVSSQCVNLTTR**TQLPPAYTNSFTRGVYYPDK**VFRSSVLHSTQDLFLPFFSN VTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIR**GWIFGTTLDSK**TQSLLIVNN ATNVVIKVCEFQFCNDPFLGVYYHKNNK **SWMESEFR**VYSSANNCTFEYVSQPFLMDLEGKQ GNFKNLREFVFK**NIDGYFK**IYSK**HTPINLVR**DLPQGFSALEPLVDLPIGINITR**FQTLLAL HR**SYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK**S** FTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEFNATRFASVYAWNRKRISNCVADYSV LYNSASFSTFK<mark>CYGVSPTK</mark>LNDLCFTNVYADSFVIRGDEVR<mark>QIAPGQTGKIADYNYK</mark>LPDD FTGCVIAWNSNNLDSK<mark>VGGNYNYLYR</mark>LFRK<mark>SNLKPFER</mark>DISTEIYQAGSTPCNGVEGFNCF PLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK**STNLVK**NKCVNFNFNGLTGTGV LTESNKK**FLPFQQFGRDIADTTDAVR**DPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLY QDVNCTEVPVAIHADQLTPTWR**VYSTGSNVFQTR**AGCLIGAEHVNNSYECDIPIGAGICAS YOTOTNSPRRARSVASOSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKT SVDCTMYICGDSTECSNLLLQYGSFCTQLNR**altgiaveqdkntqevfaqvk**qiyktppik DFGGFNFSQILPDPSKPSKR<mark>SFIEDLLFNKVTLADAGFIKQYGDCLGDIAAR</mark>DLICAQK</mark>FN GLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLY ENQK**LIANQFNSAIG<mark>K</mark>IQDSLSSTASALGK**LQDVVNQNAQALNTLVKQLSSNFGAISSVLN DILSRLDK**VEAEVQIDR**LITGR**LQSLQTYVTQQLIR**AAEIR<mark>ASANLAATK</mark>MSECVLGQSK</mark>R **VDFCGK**GYHLMSFPQSAPHGVVFLHVTYVPAQEK**NFTTAPAICHDGK**AHFPREGVFVSNGT HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTS PDVDLGDISGINASVVNIQKEIDR**LNEVA<mark>K</mark>NLNESLIDLQELGK**YEQYIKWPWYIWLGFIA GLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT

<u>N protein</u>

MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGK EDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLP YGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQLPQGTTLPKGFYAEGSRGGSQAS SRSSRSRNSSRNSSRNSSRSTPGSSRGTSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQQQGQ TVTKKSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIA QFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPT EPKKDKKKKADETQALPQRQKKQQTVTLLPAADLDDFSKQLQSMSSADSTQA

Figure S1: The predicted peptides following tryptic digest presented on top of the parental spike protein (A) and nucleocapsid protein (B). All peptide sequences are shown in bold and are underlined; highlighted in yellow are peptides specific to SARS-CoV-2 or SARS. Cleavage sites are highlighted in blue. Proteins sequence origins: GenPept QHD43416 and GenBank accession YP_009724397.2, for S and N proteins, respectively (see materials and methods, section 3.2).

Figure S2: SARS-CoV-2 kinetic profile

Figure S2: Kinetic profiles for tryptic digest of SARS-CoV-2 of a representative marker for S protein and N protein (peptides number 6 and 3, respectively). In each profile, each point represents the intensity at a specific time point.

Figure S3: Identification of SARS-COV-2 representative marker, derived from N protein (AYNVTQAFGR). For SARS-CoV-2 identification will be required a specific marker with proper chromatographic retention time, accurate masses (< 2ppm) and at list two MS/MS fragments. (A) Extracted ion chromatogram (EIC) of m/z 563.7856 from full scan LC-MS run of SARS-CoV-2 after precipitation (1e6 PFU/ml-left and 1e4 PFU/ml-right). (B) Mass spectrum of the expected chromatographic peak (mass accuracy< 2ppm. 1e6 PFU/ml-left and 1e4 PFU/ml-right). (C) MS/MS spectrum of m/z 563.7856 (7 identified fragments in 1e6 PFU/ml-left, 4 identified fragments in 1e4 PFU/ml-right).

Peptide	Tryptic peptide	Molecular	Retention	Purified N protein		Cell-cultured SARS-CoV-2			SARS-CoV-2 precipitation			
No.		ion	time	Signal	Precision	Linearity	Signal	Precision	Linearity	Signal	Precision	Linearity
		(Multiple	(min)	Intensity	(%)		Intensity	(%)	(PFU/ml)	Intensity	(%)	(PFU/ml)
		charge)										
1	GQQQQGQTVTK	601.8098	2.3	4.8e6	11	10ppb-	3.1e4	5	10 ⁵ -10 ⁶	4.0e5	8	104-106
		(M+2H)/2				10ppm						
2	ADETQALPQR	564.78583	2.8	4.7e6	13	10ppb-	4.0e4	2	10 ⁵ -10 ⁶	3.8e5	11	104-106
		(M+2H)/2				10ppm						
3	AYNVTQAFGR	563.78563	3.5	2e7	28	10ppb-	2.1e5	9	104-106	1.9e6	12	10 ³ -10 ⁶
		(M+2H)/2				10ppm						
4	DQVILLNK	471.7845	3.5	8e6	30	10ppb-	9.7e4	20	104-106	6.7e5	8	104-106
		(M+2H)/2				10ppm						
5	TFPPTEPK	458.7423	3.3	1.5e7	22	10ppb-	7.8e4	3	10 ⁵ -10 ⁶	7.8e5	13	104-106
		(M+2H)/2				10ppm						
6	GFYAEGSR	443.7063	2.9	1.4e7	22	10ppb-	1.4e5	8	10 ⁴ -10 ⁶	6.8e5	30	104-106
		(M+2H)/2				10ppm						
7	NSTPGSSR	403.1935	1.9	7e6	15	10ppb-	2.2e4	3	10 ⁵ -10 ⁶	1.9e5	4	10 ⁴ -10 ⁶
		(M+2H)/2				10ppm						
8	GGSQASSR	375.1804	1.2	2.6e5	4	_	2.5e3	30	_	5.8e4	14	10 ⁵ -10 ⁶
		(M+2H)/2										

Table S1: LC-MS analysis of N protein markers

<u>Table S1</u>: LC-MS analysis of tryptic peptides derived from the Nucleocapsid (N) protein. The peptide analytical performance was evaluated according to ESI response, precision (triplicate) and linearity observed from tryptic digestion of pure proteins and cell cultured SARS-CoV-2 with and without prior precipitation.

Peptide	Tryptic peptide	Molecular	Retention	Purified S protein		Cell-cultured SARS-CoV-2			SARS-CoV-2 precipitation			
No.		ion	time	Signal	Precision	Linearity	Signal	Precision	Linearity	Signal	Precision	Linearity
		(Multiple charge)	(mm)	Intensity	(%)		Intensity	(%)	(PFU/ml)	Intensity	(%)	(PFU/ml)
1	LQSLQTYVTQQLIF	564.32107	4.3	1.2e6	12	10ppb-	9.8e4	3	10 ⁵ -10 ⁶	2.1e5	3	10 ⁴ -10 ⁶
		(M+3H)/3				10ppm						
2	TQLPPAYTNSFTR	748.3806	3.6	3.2e5	67	1ppm-	3.8e4	14	10 ⁵ -10 ⁶	1.2e4	6	_
		(M+2H)/2				10ppm						
3	IQDSLSSTASALGK	689.3646	3.4	2e6	18	10ppb-	4.9e4	11	104-106	1.1e5	7	104-106
		(M+2H)/2				10ppm						105.105
4	VYSTGSNVFQTR	679.8386	3.3	8e5	5	100ppb-	4.2e4	19	10 ⁵ -10 ⁶	1.9e5	11	10°-10°
	LIANOENRALOZ	(M+2H)/2	26	2-6	60	10ppm	9-4	5	105 105	1.7-5	17	105 105
2	LIANQPNSAIGK	038.3004	3.0	260	00	100ppb-	se4	2	10~-10	1./e)	1/	10-10-
6	SEIEDI I ENIV	(IVI+2H)/2 613 22690	47	2.546	15	10ppm 10pph	2.845	-	104 106	1505	30	104 106
	SLIEDFFLUX	013.32080	4./	2.500	15	10000	2.803	,	10-10-	4.585	30	1010.
7	GWIFGTTI DSK	612 8166	43	4 3e5	17	100nnh-	1.2e5	14	104-106	2e5	21	10 ⁴ -10 ⁶
	own of iteost	(M+2H)/2				10ppm	1.200	14	10-10	205	21	10 -10
		(112 222) 2				1. ppm						
8	VGGNYNYLYR	609.7987	3.5	6.6e5	11	100ppb-	4.9e4	6	105-106	1.6e5	23	10 ⁵ -10 ⁶
		(M+2H)/2				10ppm						
			·,			· · · · · · ·						
9	NTQEVFAQVK	582.3064	3.3	1.9e5	34	100ppb-	6.4e3	30	_	5.2e4	3	10 ⁵ -10 ⁶
		(M+2H)/2				10ppm						
10	ALTGIAVEQDK	572.8140	3.3	3.0e5	53	100ppb-	5.0e3	46	_	5.8e4	2	10 ⁵ -10 ⁶
		(M+2H)/2				10ppm						
11	FLPFQQFGR	570.3035	4.2	9.9e5	28	100ppb-	1.7e5	20	10 ⁴ -10 ⁶	6.3e5	30	104-106
		(M+2H)/2				10ppm						
12	FASVYAWNR	557.2774	3.7	8e5	8	100ppb-	4.1e4	30	105-106	1.1e5	17	104-106
		(M+2H)/2				10ppm						
13	FQTLLALHR	366.8854	3.6	1.7e6	7	100ppb-	1.6e5	24	10 ⁴ -10 ⁶	3.9e5	30	104-106
		(M+3H)/3				10ppm						
14	GIYQTSNFR	543.2724	3.2	3.6e5	30	100ppb-	3.7e4	29	10 ⁵ -10 ⁶	1.0e5	23	10 ⁵ -10 ⁶
		(M+2H)/2				10ppm						
15	MSECVLGQSK	541.2544	3.1	1.3e5	68	_	_			_		
		(M+2H)/2										
16	DIADTTDAVR	538.7646	3	2.9e4	77	1ppm-	7.9e3	32	105-106	3.5e4	15	105-106
		(M+2H)/2				10ppm						

Table S2: LC-MS analysis of S protein markers

Peptide	Tryptic peptide	Molecular	Retention	Purified S protein		Cell-cultured SARS-CoV-2			SARS-CoV-2 precipitation			
No.		ion	time	Signal	Precision	Linearity	Signal	Precision	Linearity	Signal	Precision	Linearity
		(Multiple	(min)	Intensity	(%)		Intensity	(%)	(PFU/ml)	Intensity	(%)	(PFU/ml)
		charge)										
17	SWMESEFR.	536.2318	3.7	3.6e5	14	100ppb-	4.6e4	1	10 ⁵ -10 ⁶	8.9e4	15	10 ⁵ -10 ⁶
		(M+2H)/2				10ppm						
18	VTLADAGFIK	517.7977	3.9	2.2e6	18	10ppb-	2.2e5	13	10 ⁴ -10 ⁶	1.4e5	29	10 ⁴ -10 ⁶
		(M+2H)/2				10ppm						
19	VQPTESIVR	514.7904	3.1	9.7e5	50	100ppb-	9.6e4	1	10 ⁴ -10 ⁶	2e5	7	10 ⁴ -10 ⁶
		(M+2H)/2				10ppm						
20	SNLKPFER.	330.8504	2.8	4.7e5	13	100ppb-	5.3e4	8	10 ⁵ -10 ⁶	6.5e4	13	105-106
		(M+3H)/3				10ppm						
21	HTPINLVR	475.2825	3	1.5e6	10	100ppb-	2.2e5	13	10 ⁴ -10 ⁶	3.5e5	16	10 ⁴ -10 ⁶
		(M+2H)/2				10ppm						
22	QIAPGQTGK	450.2509	2.5	8.1e5	28	100ppb-	5.1e4	18	10 ⁵ -10 ⁶	2e5	7	10 ⁴ -10 ⁶
		(M+2H)/2				10ppm						
23	IADYNYK	443.71889	2.9	3.6e5	16	100ppb-	4.8e4	1	10 ⁵ -10 ⁶	8.3e4	80	10 ⁵ -10 ⁶
		(M+2H)/2				10ppm						
24	ASANLAATK	423.7376	2.5	2.9e6	17	10ppb-	5e4	6	10 ⁵ -10 ⁶	1.8e5	25	10 ⁴ -10 ⁶
		(M+2H)/2				10ppm						
25	DLICAQK	395.7100	3.1	6.6e4	64	1ppm-	_			_		
		(M+2H)/2				10ppm						

Table S2: LC-MS analysis of tryptic peptides derived from the Spike (S) protein. The peptide analytical performance was evaluated according to ESI response, precision (triplicate) and linearity observed from tryptic digestion of pure proteins and cell cultured SARS-CoV-2 with and without prior precipitation.

peptide	e S3	peptide	peptide S4				
peptide sequence	#occurrences (in 56,940)	peptide sequence	#occurrences (in 56,940)				
FKTLLALHR	11	HTPIBLVR	1				
FQILLALHR	8	HTPINL	1				
FQPLLALHR	1	HTPINLAR	9				
FQTLFALHR	9	HTPINLLR	27				
FQTLLA	2	HTPINLV	50				
FQTLLAFHR	1	HTPINLVR	55519				
FQTLLALH	9	HTPINLXR	3				
FQTLLALHK	3	HTPISLVR	1				
FQTLLALHR	55519	HTPITLVR	1				
FQTLLALRR	1	HTPIXLVR	2				
FQTLLALXR	7	HTPIYLVR	2				
FQTLLALYR	24	HTPJNLVR	1				
FQTLLAXHR	4	HTPXNLVR	2				
FQTLLAXXR	1	HTXINLVR	4				
FQTLLPFHR	2	PINLVR	14				
FQTLLSLHR	9	QTPINLVR	2				
FQTLLVLHR	5	TPINL	1				
FQTLLXLHR	8	TPINLVR	14				
FQTLLXXHR	4	TPXNLVR	1				
FQTLPALHR	5	ND	1285*				
FQTLXALHR	1						
FQTLXXLHR	10						
FQTLXXXHR	1						
FQTXLALHR	3						
FQTXXALHR	2						
FQTXXXLHR	2						
FQXLLALH	1						
FQXLLALHR	5						
FRTLLALHR	3						
FXTLLALHR	2						
LLALHR	3						
QTLLALH	1						
QTLLALHR	7						
TLLALHR	11						
YQTQTNSHR	14						
ND	1241*						

Table S3: Universality of S3 and S4 markers

<u>Table S3</u>: Universality of markers S3 and S4. Variant sequences of peptides S3 and S4, and the extent of their occurrences in the 56,940 genomes retrieved from GISAID, present a high level of sequence identity (>97.5%). * Truncated sequences in which the peptide region is missing

Table S4: Markers retention time stability

Matrix	Concentration	AYNVTQAFGR	GFYAEGSR	SFIEDLLFNK	FLPFQQFGR	FQTLLALHR	HTPINLVR
	10ppm	3.55	2.92	4.68	4.16	3.59	3.01
purified proteins	1 ppm	3.52	2.88	4.69	4.18	3.61	3.03
	0.1 ppm	3.53	2.89	4.70	4.17	3.61	3.03
	1e6 PFU/ml	3.52	2.87	4.70	4.16	3.58	3.00
SARS-CoV-2 spiked	1e5 PFU/ml	3.53	2.92	4.71	4.18	3.62	3.03
	1e4 PFU/ml	3.53	2.88	4.71	4.20	3.60	3.04
SARS-CoV-2 sniked	1e5 PFU/ml	3.56	2.86	4.75	4.19	3.59	3.04
into different NP	1e5 PFU/ml	3.49	2.85	4.68	4.19	3.58	3.01
samples	1e6 PFU/ml	3.48	2.84	4.67	4.15	3.57	3.00
stdv	0.03	0.03	0.02	0.02	0.02	0.02	
mean	3.52	2.88	4.70	4.18	3.59	3.02	
precision	0.7	1.0	0.5	0.4	0.5	0.5	

Table S4: Retention time stability of markers in different matrix at different days and concentrations