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Supplementary Notes 
 
Note 1 
We calculated the number of occurrences of enhancer-associated SNPs overlapping 

predicted TF motif hits in our list, and as a control, we randomly shuffled SNPs within 

enhancer regions. We observed that no random permutation of SNPs overlapped as 

many TF motif hits as the actual RBC trait-associated SNPs (p<0.0001), suggesting 

that non-coding SNPs, in general, tend to overlap TF motif hits. 

 

Note 2 
For each single nucleotide substitution, a 15-bp sequence with the SNP at the center 

was obtained, using the GRCh38 version of the human reference sequence. For 

each of the eight 8-mers spanning the 15-bp window, contiguous ungapped PBM 8-

mer E-scores for a transcription factor of interest were obtained for both the 

reference and alternate alleles. The E-scores obtained for each base position were 

subsequently compared to determine whether the alleles of the SNP may lead to 

altered binding efficiency of the respective transcription factor. Wilcoxon signed-rank 

tests were performed for the eight reference 8-mers versus their corresponding eight 

SNP-containing 8-mers to evaluate the statistical significance of any change in E-

scores per 15-bp window associated with a SNP. We applied this approach to 

available PBM datasets for all STFs across all 3263 SNPs. We then calculated the 

ratio of observed/expected perturbation events by comparing the events across the 

set of trait-associated SNPs to the events seen across a background of all common 

(>10% allele frequency) SNPs in dbSNP (Build 151, GRCh38p7) (presented in 

details in Methods). 

 

Note 3 
To examine perturbed TF binding in the context of fine-mapped SNPs, we identified 

the LD-based SNPs from our list that were also present in the list of fine-mapped 

SNPs in Ulirsch et al1. We found 1064 SNPs at posterior probability (PP) > 0.01, and 

1911 SNPs at PP > 0.001 (Supplementary Table 8). We applied our PBM dataset-

based approach in analyzing perturbed TF binding in this subset of SNPs. We found 

that SNPs resulting in perturbed STF binding were significantly enriched in the 

intersection of our LD-based and fine-mapped lists of SNPs with PP > 0.01, versus 

SNPs that were present only in our LD-based list (Fisher's exact test, odds ratio 

1.211, p-value = 0.011, 95% CI: 1.043-1.406). This enrichment was not seen for the 

intersection with fine-mapped SNPs of PP > 0.001 (Fisher's exact test, odds ratio 



0.996, p-value = 0.972, 95% CI: 0.864-1.147), while the enrichment for perturbed 

GATA binding was not significant at PP > 0.01 (Fisher's exact test, odds ratio 1.148, 

p-value = 0.212, 95% CI: 0.925, 1.421) nor PP > 0.001 (Fisher's exact test, odds 

ratio 1.158, p-value = 0.164, 95% CI: 0.940-1.430). The PBM-driven analysis coupled 

with the PWM (position weight matrix)-based motif analysis strongly suggest that 

functional alterations caused by SNPs are mediated by impaired binding of STFs to 

DNA. 

 

Note 4 
It is interesting to note that BMP-SMAD1 and WNT-TCF7L2, two STFs used for 

functional assays in this study, have been shown to be GWAS hits for RBC traits, 

RBC distribution width (RDW) and erythrocyte count (RBC), respectively 

(https://www.ebi.ac.uk/gwas/genes/SMAD1;https://www.ebi.ac.uk/gwas/genes/TCF7

L2). This suggests that altered responsiveness to BMP and WNT signaling could 

affect RBC traits, further supporting our findings. Single examples of SNPs or larger 

enhancer deletions that could alter individual signaling events, mainly related to 

immune response or stressed-hematopoiesis, have been shown2-4. In a recent 

study2, using tiled CRISPR activation, the authors identified one enhancer associated 

with the IL2RA gene that harbors the autoimmunity risk variant rs61839660. Using 

genetically engineered mouse models of this variant, the authors were able to show 

delayed gene activation in response to specific extracellular signals; however, further 

studies to identify the TF motif that is potentially altered and elucidation of the effects 

of the SNP on transcription factor binding remain outstanding. In another study, the 

authors looked for genome-wide “amalgamated E-box and GATA motifs”3. They 

identified an anemia-induced stress-regulated enhancer that appears to control the 

expression of Samd14 implicated in Stem Cell Factor (SCF)/c-Kit signaling. By 

exploring our dataset, we observed that, in human CD34+ progenitors, the Samd14 

enhancer fits our definition of a SMAD1 TSC, and it is co-occupied by multiple STFs 

under stimulation, along with the MTFs GATA2 and PU.1. This supports our model 

that TSCs are critical nodes driving stress-responsive gene expression programs. In 

our current study, we show that, genome-wide, it is primarily the binding of 

developmental signaling-induced TFs within TSCs that is altered by enhancer 

variants, suggesting that many RBC trait phenotypes could result from altered 

stimulus response.   

 

 
 



Note 5: Supplementary Methods  
 
Chromatin Immunoprecipitation (ChIP) 
 A summary of the bound genes determined for all ChIP-seq data is contained within 

the Supplementary Table 2. For ChIP-seq experiments the following antibodies were 

used: Smad1 (Santa Cruz sc7965X), Gata1 (Santa Cruz sc265X), Gata2 (Santa 

Cruz sc9008X), H3K27ac (Abcam ab4729), PU1 (Santa Cruz sc352X) and KLF1 

(Abcam ab2483). ChIP experiments were performed as previously described 5,6. 

Briefly, 20-30 million cells for each ChIP were used.Fifty microliters of cell lysates 

prior to addition to the beads was kept as input.  
 
ChIP-PCR 
A total of 10-20x106 cells were harvested and fixed with 1% formaldehyde in 

preparation for ChIP with 10 μg of each antibody (Smad1, Santa Cruz sc7965X; 

Gata1, Santa Cruz sc265X; PU.1, Santa Cruz sc352X and TCF7L2, TCF4 Santa 

Cruz sc8631 and the corresponding normal IgG). ChIP-DNA was then quantified 

against the respective loci via Light Cycler 480 II SYBR green master mix (Applied 

Biosystems) and the QuantStudio 12K Flex Real-Time PCR System (Applied 

Biosystems). The primers used for individual loci can be found in Supplementary 

Table 16. 

 
RNA sequencing (RNA-seq)  
RNA-seq was performed on CD34+ cells for the following time points post-hrBMP4 

stimulation: D0, H2, H6 and D1-8. The cells were kept in media described above and 

treated with rhBMP4 for 2hrs before collection. RNA from one million cells was 

isolated using Trizol according to the manufacturer’s instructions. The RNA was 

DNAse-treated using the RNase-free DNase set from Qiagen (79254) according to 

the instructions. The whole amount of RNA was treated with the Ribo-Zero Gold kit 

(Human/Mouse/Rat, Epicentre) according to the manufacturer’s instructions. The 

cDNA was cleaned with Agencourt AMPure purification and this was used as a 

template to produce multiplexed libraries (see library preparation).  

 
ChIP-Seq and RNA-seq library Preparation 

Briefly, ChIP-seq libraries were prepared using the following protocol. End repair of 

immunoprecipitated DNA was performed using the End-It End-Repair kit (Epicentre, 

ER81050) and incubating the samples at 250C for 45 min. End-repaired DNA was 

purified using AMPure XP Beads (1.8X of the reaction volume) (Agencourt AMPure 



XP – PCR purification Beads, BeckmanCoulter, A63881) and separating beads using 

DynaMag-96 Side Skirted Magnet (Life Technologies, 12027). A-tail was added to 

the end-repaired DNA using NEB Klenow Fragment Enzyme (3’-5’ exo, M0212L), 1X 

NEB buffer 2 and 0.2 mM dATP (Invitrogen, 18252-015) and incubating the reaction 

mix at 370C for 30 min. A-tailed DNA was cleaned up using AMPure beads (1.8X of 

reaction volume). Subsequently, cleaned up A-tailed DNA went through Adaptor 

ligation reaction using Quick Ligation Kit (NEB, M2200L) following manufacturer’s 

protocol. Adaptor-ligated DNA was first cleaned up using AMPure beads (1.8X of 

reaction volume), eluted in 100μl and then size-selected using AMPure beads (0.9X 

of the final supernatant volume, 90 μl). Adaptor-ligated DNA fragments of proper size 

were enriched with PCR reaction using Fusion High-Fidelity PCR Master Mix kit 

(NEB, M0531S) and specific index primers supplied in NEBNext Multiplex Oligo Kit 

for Illumina (Index Primer Set 1, NEB, E7335L). Conditions for PCR used are as 

follows: 98 °C, 30 sec; [98°C, 10 sec; 65 °C, 30 sec; 72 °C, 30 sec] X 15 to 18 

cycles; 72°C, 5 min; hold at 4 °C. PCR enriched fragments were further size-selected 

by running the PCR reaction mix in 2% low-molecular weight agarose gel (Bio-Rad, 

161-3107) and subsequently purifying them using QIAquick Gel Extraction Kit 

(28704). Libraries were eluted in 25μl elution buffer.  

 For the RNA-seq libraries, purified double-stranded cDNA underwent end-

repair and dA-tailing reactions following manufacturer’s reagents and reaction 

conditions. The obtained DNAs were used for Adaptor Ligation using adaptors and 

enzymes provided in NEBNext Multiplex Oligos for Illumina (NEB#E7335) and 

following kit’s reaction conditions. Size selection was performed using AMPure XP 

Beads (starting with 0.6X of the reaction volume). DNA was eluted in 23 μl of 

nuclease free water. Eluted DNA was enriched with PCR reaction using Fusion High-

Fidelity PCR Master Mix kit (NEB, M0531S) and specific index primers supplied in 

NEBNext Multiplex Oligo Kit for Illumina (Index Primer Set 1, NEB, E7335L). 

Conditions for PCR used are as follows: 98 °C, 30 sec; [98°C, 10 sec; 65 °C, 30 sec; 

72 °C, 30 sec] X 15 cycles; 72°C, 5 min; hold at 4 °C. PCR reaction mix was purified 

using Agencourt AMPure XP Beads and eluted in a final volume of 20 μl. The 

libraries were sequenced in Illumina Hiseq 2500 platform.  

 
ChIP-Seq data analysis 
ChIP-Seq reads were aligned to the human reference genome (hg19) using bowtie7 

with parameters -k 2 -m 2 -S.  WIG files for display were created using MACS8 with 

parameters -w -S --space=50 --nomodel --shiftsize=200, were normalized to the 

millions of mapped reads, and were displayed in IGV9,10. High-confidence peaks of 



ChIP-Seq signal were identified using MACS with parameters --keep-dup=auto -p 1e-

9 and corresponding input control. The coupling of an unusually stringent p value 

cutoff and input control makes false positive peak identification highly unlikely, 

although formally possible. The bound genes that are studied in Fig. 1e and 

Extended Data Fig. 1h, associated with GATA2/1 and SMAD1 at each stage, are 

shown in Supplementary Table 2. Bound genes are defined as RefSeq genes 

meeting at least one of two criteria: (1) their transcription start site is most proximal to 

the center of the peak determined by bedtools closest, and/or (2) their promoters 

(transcription start site +/- 500bp) overlap a peak determined by bedtools 

intersect.  SMAD1/GATA co-bound genes are genes that are predicted targets of a 

co-bound peak, defined using bedtools intersect. The analysis in Fig. 1e integrated 

the RNA-seq and ChIP-seq stage-matched data set from one complete round of 

differentiation, including ATAC-seq and H3K27ac ChIP-seq from time-point-matched 

CD34 cells. Each dataset from each time-point was assessed prior to analysis for its 

concordance with known characteristics of progenitor/erythroid cells, including signal 

of/near known marker genes of hematopoietic progenitors and erythroid cells.  The 

overall quality control values, percentage occupancy of each factors at different 

genomic regions are mentioned in Supplementary Table 9. Region counts, collective 

region sizes in base pair, and gene counts associated with different genomic regions 

studied at respective differentiation stages are mentioned in Supplementary Table 

10. The ChIP-seq peaks/enriched regions obtained from D0, H6, D3, D4 and D5 are 

shown in Supplementary Data Tables 11-15. 

   

Identifying Enhancers and Transcriptional Signaling Centers (TSCs) 

Enhancers were identified using H3K27ac ChIP-Seq and ATAC-Seq peak 

information. ATAC-seq peaks were identified using MACS 1.4 with –keep-dup=auto. 

Peaks were identified as described above using MACS. Coding regions were 

removed from H3K27ac and ATAC-Seq peaks using bedtools subtract; coding 

regions were defined as exons from all RefSeq transcripts.  Non-exonic portions of 

ATAC-Seq peaks that overlapped H3K27ac peaks by at least 1 bp were retained.  

H3K27ac- or ATAC-Seq/H3K27ac-enriched regions outside exons were collapsed 

using bedtools merge. These steps were performed for each timepoint’s ATAC-

Seq/H3K27ac ChIP-Seq pair.  D0, H6, D4, and D5 regions were collapsed and used 

for “enhancers” across the time-course.   

 Transcription signaling centers (TSCs) were defined as those that were co-

bound by SMAD1 and the corresponding GATA factor.  For each time-point, regions 

enriched in both SMAD1 and the corresponding GATA were identified using bedtools 



intersect on the peaks.  Enhancers, as defined above, are considered TSCs if they 

overlap a SMAD1/GATA-bound region by at least 1 bp. The fraction of enhancers 

variously defined in Extended Data Fig. 2 was performed using H3K27ac peaks, 

stitched enhancers defined using H3K27ac peaks, and ATAC-seq peaks.  H3K27ac 

peaks were defined using MACS 1.4 with -p 1e-9 and input control from the 

corresponding time point.  ATAC-seq peaks were identified by MACS2 version 2.1.08 

peak finding algorithm with the following parameter --nomodel --shift -100 --extsize 

200. A q-value threshold of enrichment of 0.05 was used for all datasets. Promoters 

are defined as 1kb regions centered on RefSeq transcription start sites.  Stitched 

enhancers were defined using ROSE with stitching distance 12500 and -t 2000.  

Intersected regions were determined using bedtools intersect with a single bp 

overlap required.  Union regions were created using bedtools merge. 

 TSCs identified at each of D0, H6, D4, and D5 were collapsed and used as a 

canonical list of TSCs across the time-course. Progenitor signaling centers represent 

the union of D0 and H6; erythroid signaling centers represent the union of D4 and D5 

time-points. Lists of all the enhancers and TSCs identified using above methods are 

listed in Supplementary Table 4. 

 

Peak Similarity Heatmaps 

The called H3K27ac ChIP-seq and ATAC-seq peaks of all samples were combined 

to generate peak files for heatmap analysis. Depending on the overlap of the union of 

peaks and peak from individual sample, a binary matrix of 0 and 1 were assigned to 

each peak of each sample. The similarity score was derived and correlation matrix 

was calculated by the cor method, and the heatmap drawn by corrplot package in R. 

 

ChIP-Seq Read Density Heatmaps/Scatterplots 

ChIP-Seq read density heatmaps were constructed using bamToGFF 

(https://github.com/BradnerLab/pipeline) on 4kb regions centered on the peak center 

with parameters -m 200 -r -d and filtered bam files with at most one read per position.  

Heatmaps were visualized using the heatmap.2 package. 

 

Co-occupancy of multiple STFs upon stimulation with respective signaling 

pathways 

ChIP-Seq read density heatmaps were constructed using bamToGFF 

(https://github.com/BradnerLab/pipeline) on 4kb regions centered on the peak center. 

Single-TF heatmaps were built with parameters -m 200 -r -d and filtered bam files 

with at most one read per position; rows were ordered by the row sums of the 



indicated factor.  Multiple-TF heatmaps were built with parameters -m 100 -r -d, and 

rows were ordered by the row sum in SMAD1 signal. Binary peak/not-peak 

"heatmaps" were determined by asking if the original peak overlapped a SMAD1-

enriched region using bedtools intersect. 

 

Genome-wide occupancy comparison of PU.1 and SMAD1 at co-bound regions 

under PU.1 overexpression 

Peaks of PU.1 ChIP-Seq signal were defined as above, and 4kb regions centered on 

the peak center were created for metagene analysis.  Read coverage of each region 

was quantified using bamToGFF with parameters -r -d -m 200. The mean signal 

across all regions is plotted as a metagene using matplot. 

 

Genome-wide occupancy comparison of PU.1, SMAD1 and GATA2 at co-bound 

regions under PU.1 knockdown 

The transcription factor occupancy profile plots were generated by deeptools2 suite11 

with the computeMatrix and plotProfile command in the reference-point mode, where 

the TF binding profiles were plotted over the 2kb upstream and downstream regions 

of every TF binding sites. The y axis is the coverage score that correlated to the 

number of reads per bin. 

 

RNA-seq data analysis 
RNA-seq reads were mapped to the human reference genome (hg19) using TopHat 

v2.0.1312 the flags: “--no-coverage-search --GTF gencode.v19.annotation.gtf” where 

gencode.v19.annotation.gtf is the Gencode v19 reference transcriptome available at 

gencodegenes.org. Cufflinks v2.2.113 was used to quantify gene expression and 

assess the statistical significance of differential gene expression. Briefly, Cuffquant 

was used to quantify mapped reads against Gencode v19 transcripts of at least 

200bp with biotypes: protein_coding, lincRNA, antisense, processed_transript, 

sense_intronic, sense_overlapping. Cuffdiff was run on the resulting Cuffquant .cxb 

files, giving a table of RPKM (reads per kilo base per million) expression level, fold 

change and statistical significance for each gene. The genome-wide RPKM 

expression values during differentiation are mentioned in Supplementary Table 1. 

 

Assay for Transposase Accessible Chromatin (ATAC-seq) 
CD34+ cells were expanded and differentiated using the protocol mentioned above. 

Before collection, cells were treated with 25 ng/mL hrBMP4 for 2 hr. 5X104 cells per 

differentiation stage were harvested by spinning at 500 x g for 5 min, 4° C. Cells 



were processed exactly as was described in Buenestaro et al14. Using Illumina 

Nextera kit, 15028252, libraries were constructed according to Illumina protocol using 

the DNA treated with transposase, NEB PCR master mix, Sybr green, universal and 

library-specific Nextera index primers. Samples with appropriate nucleosomal 

laddering profiles were selected for next generation sequencing using Illumina Hiseq 

2500 platform.  

 

ATAC-seq data analysis 
All human ATAC-Seq datasets were aligned to build version NCBI37/HG19 of the 

human genome using Bowtie2 (version 2.2.1)15 with the following parameters: --end-

to-end, -N0, -L20. Coverage files for display were created using MACS with 

parameters -w -S –space=50 –nomodel –shiftsize=200.  We used the MACS2 

version 2.1.08 peak-finding algorithm to identify regions of ATAC-Seq peaks, with the 

following parameter --nomodel --shift -100 --extsize 200. A q-value threshold of 

enrichment of 0.05 was used for all datasets. For correlation of ATAC-seq data with 

ChIP-seq binding, reads were mapped to the human genome (hg19) using Bowtie 

v2.2.5 15 with default options. BedTools16  was used to count the number of ATAC-

seq reads under Gata/Smad peaks (+/-2.5kb from peak center; 50bp bins). Read 

counts were normalized by library size to get CPM. The ATAC-seq peaks/enriched 

regions obtained from D0, H6, D3, D4 and D5 are shown in Supplementary Data 

Tables 11-15. 

 

Analysis of single nucleotide polymorphisms (SNPs) using protein binding 
microarray (PBM) data 
Universal protein binding microarray (PBM) 8-mer enrichment (E) score datasets 

were downloaded from the UniPROBE17 and CIS-BP18 databases. Please see 

Supplementary Table 7 for the list of PBM datasets analysed in this manuscript 18-22. 

Of the 3318 RBC trait SNPs mapped within the non-exonic enhancer regions in this 

manuscript (defined, as above in Identifying Enhancers and Transcriptional Signaling 

Centers (TSCs), using the H3K27ac ChIP-seq and ATAC-seq peak information), 

3,263 SNPs involving single nucleotide substitutions were considered in the 

analytical workflow. For each SNP, a 15-bp window, with the SNP at the centre, was 

obtained, using the GRCh38 version of the human reference sequence. For each of 

the eight 8-mers spanning the 15-bp window, contiguous ungapped PBM 8-mer E-

scores for a transcription factor of interest were obtained for both the reference allele 

and the SNP-containing allele. Wilcoxon signed-rank tests were performed for the 

eight reference 8-mers versus their corresponding eight SNP-containing 8-mers to 



evaluate the statistical significance of any change in E-scores per 15-bp window 

associated with a SNP. For heightened stringency, the RBC trait SNP examples 

presented in this manuscript contain at least two consecutive 8-mers within the 15-bp 

window23,24 in which the reference allele 8-mers have E-scores of >0.35 and the 

SNP-containing allele 8-mers have E-scores <0.3, or vice-versa. 

 
Analysis of perturbed transcription factor binding events associated with the 
set of single nucleotide substitution RBC trait SNPs  
For this analysis, individual PBM datasets (Supplementary Table 7) were considered, 

with the exception of GATA – the average E-score for each contiguous ungapped 8-

mer from GATA3, GATA4, GATA5 and GATA6 PBM datasets was used; results were 

similar to this averaged GATA binding profile when individual GATA factor PBM 

datasets were analysed. The GATA zinc fingers in these mouse GATA3, GATA4, 

GATA5 and GATA6 TFs show between 80.00% to 91.43% amino acid identity when 

compared to the corresponding DNA binding domains in human GATA1, and 82.86% 

to 97.14% amino acid identity to that in human GATA2. A threshold of ~70% amino 

acid identity in the DNA binding domain has previously been proposed for TFs to 

share similar sequence specificity18. We analyzed a mouse SMAD3 PBM dataset 19; 

mouse SMAD3 shows 69.61% identity in the amino acid sequence of the MH1 DNA 

binding domain when compared to the human SMAD1 MH1 DNA binding domain 

(please see below, in Sequence alignment of transcription factor DNA binding 

domains, for the methodologies used to calculate percent amino acid identity of DNA 

binding domains of TFs considered from the same family).  
 To consider whether the set of 3,263 single nucleotide substitution RBC trait 

SNPs mapped within enhancers were enriched for perturbation of binding by GATA 

factors versus putative signal transcription factors or by GATA factors, this set of 

SNPs was compared against a background set of SNPs, comprising all common 

SNPs from dbSNP (Build 151, GRCh38p7) that had an allele frequency >10%. We 

chose this set of common dbSNP variants as our background to avoid including 

anything that would be particularly deleterious (with the assumption that such 

deleterious SNPs would likely be selected against and hence would likely appear 

less frequently in the population). To clarify our procedure for generating the 

background, we excluded indels, and SNPs giving rise to frameshift, missense, 

nonsense or synonymous mutations in protein-coding regions, in order to allow for 

comparison of the set of non-exonic single nucleotide substitution RBC trait SNPs 

against equally-sized samples of non-exonic single nucleotide substitution common 

SNPs. 



 For each PBM dataset of interest, the E-scores for reference allele 8-mers 

versus SNP-containing allele 8-mers were obtained according to the method 

described in Analysis of single nucleotide polymorphisms (SNPs) using protein 

binding microarray (PBM) data. For each pair of reference allele 8-mer and 

corresponding SNP-containing 8-mer, if one allele had an E-score >0.35, while the 

other allele had an E-score < 0.3, binding by the corresponding transcription factor 

was considered to be perturbed by the SNP. This procedure considered both SNPs 

that resulted in a gain of binding by the transcription factor of interest, and SNPs that 

abrogated or diminished transcription factor binding. This computation was 

performed for all PBM datasets of interests, to compare all 3,263 foreground SNPs 

against the background of ~5.4 million SNPs. Bootstrapping of the background SNPs 

was performed to obtain an empirical background distribution: 100,000 iterations of 

the background were obtained by sampling, with replacement, 3263 SNPs from the 

background SNPs. Each of these 100,000 iterations resulted in a distribution of 

values corresponding to the number of perturbed transcription factor binding events 

per 3263 SNPs * eight 8-mers per SNP = 26,104 8-mers; the mean value of these 

100,000 iterations was taken as the expected number of perturbed binding events 

per transcription factor of interest. The empirical p-value for each transcription factor 

of interest was computed by ranking the number of perturbed transcription factor 

binding events for the foreground set of 3263 SNPs * eight 8-mers per SNP against 

the 100,000 values from the empirical background distribution. The Benjamini-

Hochberg procedure was applied, using the p.adjust function in R, to correct for 

multiple hypothesis testing. 

 
Sequence alignment of transcription factor DNA binding domains 

DNA binding domains in transcription factors were identified by using hmmscan on 

the HMMER web server25, scanning against the Pfam profile hidden Markov model 

database26 and using the default Pfam gathering threshold parameters. Pairwise 

global alignment of the protein sequences of these DNA binding domains was 

performed using EMBOSS Needle27, with the default parameters, to allow for 

computation of amino acid identity between two sequences. 
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Supplementary Fig. 1. FACS Gating Strategy. Cells of interest were separated 

from dead cell debris using forward scatter versus side scatter. Single cells were 

separated from doublets through forward scatter height (FSC-H) versus forward 

scatter area (FSC-A). Subsequent live-dead differentiation was done using 

Propidium Iodide (PI) stain. The live cells were then stained for the differentiation 

markers, such as CD235a-APC and CD71-FITC for the CD34+ and the HUDEP2 

cells. 


